
Bandwidth Approximation

of a Restricted Family of Trees

Abstract

Bandwidth is one of the canonical NP-complete problems [17]. It
is NP-hard to approximate within any constant, even on trees [22].

Gupta gave a randomized approximation algorithm [8] for band-
width on trees, which has an approximation ratio of O(log2.5

n). This
algorithm has the best currently known approximation ratio on trees.

Gupta showed that his algorithm has an approximation ratio of
O(log n) on caterpillars, a restricted family of trees. We show that
Gupta’s algorithm has an approximation ratio of O(log n) on many-
caterpillars, an extension of caterpillars. We also simplify and deran-
domize Gupta’s algorithm on many-caterpillars.

1 Introduction

Bandwidth is one of the well-known NP-complete problems on graphs. Given
an undirected graph G = (V, E), an ordering f is a one-to-one mapping from
V to {1, . . . , n}, where n = |V |. The stretch of the edge (x, y) ∈ E in the
ordering f is |f(x) − f(y)|. The bandwidth of the ordering f is B(f) =
max(x, y)∈E |f(x) − f(y)|. Finally, the bandwidth of G is B(G) = minf B(f),
where f goes over all possible orderings of G. For example, the bandwidth
of a path is 1, as figure 1 shows.

11 22 33 44 55 66 77 88 99 1010

Figure 1: An optimal ordering of P10.

The bandwidth of a cycle is 2, as figures 2 and 3 demonstrate.

11

33
5577

99

1010

88
66 44

22

Figure 2: An optimal ordering of C10.

Figure 3: The same optimal ordering of C10.

1

The bandwidth of a complete k-ary tree with n vertices is Θ(n/ logk n). The
exact value was found by Smithline [19], who also gave an algorithm to
construct an optimal ordering. See also [11] for a discussion about full binary
trees.

Bandwidth arises in several contexts. According to [12], the problem
originated in the 1960s in JPL (the Jet Propulsion Laboratory) in the context
of coding (see [12] for references). A canonical application of bandwidth is in
linear algebra. A sparse matrix can be stored and processed more efficiently
if its non-zero entries are concentrated in a narrow band around the diagonal
(hence the name bandwidth). Given a sparse symmetric matrix An×n, one
seeks a permutation matrix P that minimizes the bandwidth of PAP−1. This
is equivalent to finding an optimal ordering of the graph G whose vertices
are {1, . . . , n}, and (i, j) is an edge whenever Aij 6= 0. For details see [3].

Bandwidth generalizes in several ways. It can be generalized to directed
acyclic graphs by requiring the ordering to be topological (see [7]). In sec-
tion 2.3 we describe bandwidth as an embedding problem. In technical terms,
bandwidth is the minimal dilation of an embedding of a graph into the in-
finite path. In VLSI layout, the target graph is a square mesh representing
an integrated circuit [21].

Bandwidth is one of several layout problems. One of them, minimum
linear arrangement, also originated in JPL, according to [12]. The problem
is to find an ordering of the vertices of a graph that minimizes the sum of
the stretches of all edges. Minimum linear arrangement can also be seen as
an embedding problem, and is useful in the area of VLSI.

1.1 NP-hardness results

Saxe’s algorithm [18] decides whether B ≤ k in time O(nk), using dynamic
programming. Another algorithm [7] tests whether B ≤ 2 in linear time.
Both algorithms also output an optimal ordering of the graph.

Bandwidth is NP-complete [17]. Contrary to many other NP-complete
problems, bandwidth remains NP-complete even when restricted to trees.
In fact, bandwidth is NP-complete [7] on trees with maximum degree 3.
Moreover, bandwidth remains NP-complete [16] when restricted to cater-
pillars with maximum degree 3 or maximum hair length 3 (caterpillars are
described later in the introduction).

Bandwidth is not only hard to compute exactly, but also hard to approx-
imate. A reduction from 3SAT shows [1] that it is NP-hard to approximate
bandwidth to within 3

2
on general graphs, and to within 4

3
on trees (the

difference results from replacing cliques by stars). Unger [22] has recently

2

published an extended abstract claiming that it is NP-hard to approximate
bandwidth within any constant factor, even on caterpillars with maximum
degree 3.

Unger [22] further claims that for every x > 1 and ǫ > 0 there is a family
of graphs on which bandwidth is approximable within x + ǫ, yet NP-hard
to approximate within x − ǫ. Examples of such families for x = 2 are unit
circular-arc graphs (intersection graphs of a set of unit arcs on a circle), and
two restricted families of ringed caterpillars (caterpillars whose spines are
completed to cycles).

1.2 Approximation algorithms

Several approximation algorithms have been proposed for bandwidth, most of
them randomized. Many of the algorithms express their performance in terms
of the local density, which is the maximum of the ratio (|G′| − 1)/ diam(G′)
over all connected subgraphs G′ of the given graph. The local density of a
graph G is customarily denoted D(G). In section 2.2 there is a related notion
of graphical density.

Local density serves as a lower bound to the bandwidth. To see this,
suppose a graph G has a subgraph G′ consisting of n′ +1 vertices and having
diameter d′ . Consider an optimal ordering f of G. Let vl be the leftmost
vertex of G′ in this ordering, and let vr be the rightmost. On the one hand,
|f(vr)− f(vl)| ≥ n′, since G′ has n′ + 1 vertices. On the other hand, |f(vr)−
f(vl)| ≤ d′B(G), since the distance between vl and vr is at most d′. It follows
that B(G) ≥ n′/d′ = (|G′| − 1)/ diam(G′), hence B(G) ≥ D(G).

A constant factor approximation algorithm for dense graphs is given
in [12]. The randomized algorithm produces w.h.p. (with high probabil-
ity) an ordering with bandwidth at most 3B(G) in time O(n1/δ), where the
minimum degree of G is at least δn. Another constant factor approximation
algorithm [13] works on asteroidal triple-free graphs (see [13] for definition).
In view of Unger’s results [22], we should not expect such an algorithm for
general graphs, or even for trees.

The first polylogarithmic approximation algorithm for bandwidth on gen-
eral graphs was given by Feige [6]. The randomized algorithm uses volume
respecting embeddings, inspired by [14]. First the graph is embedded into
a high dimensional Euclidean space, then it is projected on a random line
through the origin. The algorithm outputs the ordering induced by this line.
The bandwidth of the resulting ordering is w.h.p. O(D log3.5 n

√
log log n).

Around the same time, a different approximation algorithm was proposed
in [2]. The randomized algorithm uses a semi-definite program to embed the

3

graph into a high dimensional Euclidean space. The result is projected on a
random line through the origin, resulting in an ordering whose bandwidth is
w.h.p. O(

√
nB log n).

The two approaches were combined by Vempala [23, 5] to give the best
approximation algorithm currently known for general graphs. Vempala’s
randomized algorithm first uses the semi-definite program of [2], then embeds
the result using a volume respecting embedding [6], and finally performs a
projection onto a random line through the origin. With high probability, the
resulting ordering has bandwidth O(B log3 n

√
log log n).

Vempala’s algorithm [23] also approximates the minimum linear arrange-
ment. Furthermore, it generalizes to produce embeddings into d-dimensional
infinite grids instead of the 1-dimensional infinite path.

Approximation algorithms with better approximation ratios are known
for trees. An extremely simple approximation algorithm [10] approximates
bandwidth on caterpillars. Caterpillars are trees formed by picking a path
called the spine, and attaching to it other paths called hairs. All hairs em-
anate from the spine. See figure 6 for an example. The algorithm produces an
ordering by sorting the vertices with respect to their depths (distances from
the root). The resulting ordering has bandwidth O(D log n). See section 3.1
for a description and analysis of this algorithm.

A more complicated algorithm [20, 9] approximates bandwidth on a type
of trees called height-balanced trees (see [9] for a definition). The algorithm
is greedy, and it outputs an ordering with bandwidth O(D log n).

Gupta’s algorithm [8] is a polylogarithmic approximation algorithm for
general trees. The randomized algorithm uses the concept of caterpillar de-
composition. A caterpillar decomposition of a rooted tree is a decomposition
of the tree into edge-disjoint paths. The decomposition has dimension κ if
each route from the root to a leaf is composed of at most κ different paths.
The dimension of the lowest-dimensional caterpillar decomposition of a tree
T is called its caterpillar dimension κ(T). The caterpillar dimension, along
with an optimal decomposition, can be found using dynamic programming
in polynomial time [15]. It turns out [15] that κ ≤ log n. Gupta’s algorithm
produces w.h.p. an ordering with bandwidth O(D log2 n

√
κ) = O(D log2.5 n).

Gupta’s algorithm is easy to describe, though harder to analyze. Given
an optimal caterpillar decomposition, stretch each path independently by
a random factor between 1 and 2. Sort the vertices with respect to their
(stretched) distances from the root, and output the resulting ordering. On
caterpillars, Gupta’s algorithm is nearly equivalent to the one in [10], hence
(as Gupta showed) it produces an ordering with bandwidth O(D log n), in-
dependently of the stretching.

4

1.3 Our contribution

The main result in this paper is the following theorem.

Theorem 1. There is a deterministic polynomial-time algorithm (described
in section 4.1) that, given a many-caterpillar T with density D and height h,
constructs an ordering of T with bandwidth O(D log h).

Theorem 1 is a reformulation of theorem 7 in the main body. Here we
explain the context in which theorem 1 was proved.

We tried to improve the analysis of Gupta’s algorithm [8], suspecting that
the algorithm produces an ordering with bandwidth O(D log n) on all trees.

Conjecture 1. Given a tree T with n vertices, Gupta’s algorithm [8] pro-
duces an ordering of T with bandwidth O(D(T) log n).

To describe our approach, we define two notions. For any κ, a tree T
for which κ(T) ≤ κ is called a κ-tree. A κ-tree whose root has degree 1 is
called a κ-caterpillar. Using this terminology, caterpillars can be described
as 2-caterpillars. General 2-trees are given the name ‘many-caterpillars’. For
an example of a many-caterpillar which is not a caterpillar, see figure 7.

Our plan was to prove conjecture 1 by induction on the caterpillar di-
mension of the tree. The induction base is either paths (1-caterpillars) or
many-paths (1-trees). Many-paths can be described as stars with extended
paths, see figure 4. It is easy to see that given a many-path, Gupta’s algo-
rithm outputs an ordering with bandwidth O(D).

Figure 4: A many-path

There are two induction steps. The simpler step, step H, consists of
showing that given that conjecture 1 holds on κ-caterpillars, it also holds on
κ-trees. Note that κ-trees are constructed from κ-caterpillars ‘horizontally’,
by identifying the roots of several κ-caterpillars.

The more complicated step, step V, consists of showing that given that
conjecture 1 holds on κ-trees, it also holds on (κ + 1)-caterpillars. Note that

5

(κ+1)-caterpillars are constructed from κ-trees ‘vertically’, by letting several
κ-trees emanate from the vertices of a path, the spine.

When trying to execute our plan, we had to strengthen the induction
hypothesis (see later for a formulation). Moreover, we could only prove
induction step H. We then proved the strengthened induction hypothesis
for caterpillars, using a regularization process. As a result, we have shown
that Gupta’s algorithm outputs an ordering with bandwidth O(D log n) on
many-caterpillars.

The strengthened induction hypothesis implies the stronger conclusion
that Gupta’s algorithm outputs an ordering with bandwidth O(D log h) on
a many-caterpillar with height h. This conclusion is the best possible in
the following sense. For each D > 1 there exists a family of caterpillars
(constructed in section 3.1 under the name ‘triangle caterpillars’) of density
Θ(D), for which Gupta’s algorithm outputs an ordering with bandwidth
Ω(D log h). Note, however, that the bandwidth of a triangle caterpillar T is
Θ(D(T)), and an optimal ordering can be constructed efficiently.

Having restricted our scope to many-caterpillars, we simplified Gupta’s
algorithm and derandomized it (see section 4.1).

The proof of theorem 1 can be extended to trees which are not many-
caterpillars, yet have similar structure. In particular, theorem 1 extends to
the trees used in [1] to show that bandwidth is hard to approximate within 4

3
.

Our framework is summarized by the following three theorems.

Definition 1 (Layout Function). Let T = (V, E) be a tree of height h. A lay-
out function of T is any function f : V → [1, 2h] satisfying |f(x) − f(y)| ≤ 2
for each edge (x, y) ∈ E. Note [1, 2h] denotes a closed interval on the real
line.

Definition 2 (Property Good). Let T be a tree of height h. The tree T has
property Good if there exists a constant c and a distribution F(T) of layout
functions of T satisfying the following property. For every integers k ≥ 1
and z ∈ {1, . . . , 2h},

Ef∈F[|f−1(Iz)|k] ≤ n[z](T)

z
ck(D(T)k)k−1,

where n[z](T) is the number of vertices of T of depth ≤ z, and Iz is the
interval [z, z + 1).

A family T of trees has property Good if every tree T ∈ T in the family
has property Good, with the same constant c for all trees in the family.

Theorem 2. Caterpillars have property Good. Given a caterpillar T of
height h, the distribution F(T) consists of h equally probable functions f1

6

up to fh. The function fi is defined by fi(v) = (1 + i/h)d(v), where d(v) is
the depth of v (the distance from v to the root).

Theorem 3. Let T be a family of trees. A tree is horizontally derived from T

if it is the result of identifying the roots of several trees belonging to T. The
family H(T) consists of all trees horizontally derived from T.

If the family T has property Good with constant c, then so does H(T) with
constant O(c). Given a tree T ∈ T which is the result of identifying the roots
of T1 up to Td, the distribution F(T) is defined as follows. To sample F(T),
sample a layout function fi ∈ F(Ti) for each i ∈ {1, . . . , d}. The resulting
sample f ∈ F(T) is defined by f(r) = 0 if r is the root, and f(v) = fi(v) if
v ∈ Ti.

Theorem 4. If T has property Good then B(T) = O(D(T) log h).

Theorem 2 is a reformulation of corollary 21. The theorem is proved using
the results of section 3. Theorem 3 is a reinterpretation of lemma 24. Finally,
theorem 4 is a corollary of lemma 14. It is based on similar results in [6, 8].

Theorem 2 represents a simplification of Gupta’s original algorithm. How-
ever, theorem 2 is also true with respect to the original algorithm.

In the main body of this paper, no attempt is made to formulate the
results in terms of the general framework. Instead, we concentrate on proving
the main result, theorem 1.

1.4 Directions for further research

We believe that the analysis of Gupta’s algorithm can be greatly improved
by employing our framework. The following conjecture (induction step V)
needs to be proven.

Conjecture 2. Let T be a family of trees. A tree is vertically derived from
T if it is the result of letting several trees belonging to T hang from vertices
of a path (called the spine). The family V (T) consists of all trees vertically
derived from T.

If the family T has property Good, then so does V (T). Given a tree T ∈ T

which is the result of letting the trees T1 up to Td hang from depths h1 to hd,
the distribution F(T) is defined as follows. To sample F(T), sample a layout
function fi ∈ F(Ti) for each i ∈ {1, . . . , d}, and an integer s ∈ {1, . . . , h},
where h is the length of the spine. The resulting sample f ∈ F(T) is defined by
f(si) = (1+s/h)i if si is the spinal vertex at depth i, and f(v) = f(shi

)+fi(v)
if v ∈ Ti.

7

Proving conjecture 2 would imply that the performance of Gupta’s algo-
rithm is O(Dcκ log h), where cκ is a constant depending only on the caterpillar
dimension, probably of the form cκ. Further refining could then possibly be
used to remove the dependency on the caterpillar dimension.

Moreover, we follow others and conjecture that B = O(D log n), at
least for trees. One can prove such a relation constructively using approx-
imation algorithms. For example, Feige’s algorithm [6] shows that B =
O(D log3.5 n

√
log log n) for general graphs. Perhaps B = O(D log n) can be

proved for trees using Gupta’s algorithm.
We should mention that there are examples where B = Ω(D log n). An

expander family with B = Ω(D log n) can be found in [14]. A tree family
with B = Ω(D log n) was constructed by Chvátalová [4]. The trees are
constructed recursively as follows. Let T0 consist of a single vertex. The tree
Ti+1 is constructed from two copies of Ti by putting each copy down a path of
length 2i emanating from the new root. The density of each tree is constant,
whereas the bandwidth is Ω(i) = Ω(log n). The tree T2 appears in figure 5.

Figure 5: The tree T2

Note that ordinary full k-ary trees have B = O(D), as proved by Smith-
line [19]. The triangle caterpillars mentioned in section 1.3 also have B =
O(D).

8

2 Preliminaries

We define bandwidth and many-caterpillars, as well as some notions of den-
sity, in the present section. In section 3 we describe a certain regularization
process on caterpillars, and draw some conclusions. In section 4 we present
and analyze the approximation algorithm.

We fix once and for all some terminology. First, log n = log2 n, that is,
all our logarithms are base 2. Second, some graphical terminology is needed.

Notation 3 (Graphical terminology). Let G be a graph. The vertex-set of G
is denoted V (G). The edge-set of G is denoted E(G). If T is a rooted tree,
the root of T is denoted r(T), and the number of non-root vertices of T is
n(T) = |V (T) \ r(T)| = |V (T)| − 1.

Note the unusual definition of n(T).

2.1 Caterpillars and many-caterpillars

Caterpillars and many-caterpillars are certain types of rooted trees having a
simple structure.

Definition 4 (Caterpillar). A caterpillar is a rooted tree T which is composed
of a spine and hairs, all rooted paths. The spine contains the root r(T). The
caterpillar T is obtained by identifying the root of each hair H with a spinal
vertex A(H). The hair H is said to emanate from A(H).

Note that the decomposition of a caterpillar into spine and hairs is not
necessarily unique. Figure 6 shows a caterpillar whose spine is the vertical
path.

Figure 6: A caterpillar

Definition 5 (Many-caterpillar). A many-caterpillar is a rooted tree formed
by identifying the roots of several caterpillars.

Any caterpillar is also a many-caterpillar. Figure 7 shows a many-caterpillar
which is not a caterpillar.

9

Figure 7: A many-caterpillar

Many-caterpillars can be used to construct more complicated rooted trees.
This is done by taking a rooted tree, and identifying each vertex with the
root of a many-caterpillar. If a rooted tree can be constructed by taking
a single vertex and iterating this process d ≥ 1 times, the tree is said to
have caterpillar dimension d + 1. Clearly, many-caterpillars are the trees of
caterpillar dimension 2.

Alternatively, the caterpillar dimension of a tree is ≤ d if the tree can
be decomposed into edge-disjoint paths in such a way that every root-to-leaf
route is composed of at most d paths.

The caterpillar dimension of an arbitrary tree can be found using dynamic
programming. It turns out that the caterpillar dimension of a rooted tree
having n vertices is at most log n. The caterpillar dimension of a binary
tree of height h is h. In other words, a binary tree having n vertices has
caterpillar dimension Ω(log n).

2.2 Density

We describe two related notions of graphical density. The first notion is
geared towards relating to bandwidth. The second notion is defined only on
rooted trees, and agrees with the first notion up to a multiplicative constant.
The first notion is ‘density’, and the second notion is ‘thickness’.

Before describing the notions of density and thickness, we fix three bits
of terminology.

Notation 6 (Distance). The shortest distance between two vertices x and y
in a graph is denoted d(x, y).

Notation 7 (Subtree). Each vertex v in a rooted tree is a root of a subtree
whose vertices (including v) are denoted V↓(v).

Notation 8 (Ancestor). Each vertex v in a rooted tree T other than the
root has an ancestor denoted A(v). We also define A(r(T)) = r(T) (recall
r(T) is the root of T). The vertex Ad(v) is the result of applying d times in
succession the ancestor function A on v.

10

Density measures the relative size of neighborhoods.

Definition 9 (Neighborhood). Let v be a vertex in a graph G. The dth
neighborhood of v is

N(v, d) = {x ∈ V (G) : 0 < d(x, v) ≤ d}.
Note that in our definition, v /∈ N(v, d).

Definition 10 (Density). A graph G is D-dense if for every vertex v and
integer d ≥ 0 we have |N(v, d)| ≤ 2dD. The density D(G) of G is the
minimal number D such that G is D-dense.

Thickness is the analog of density when neighborhoods are replaced by
downward neighborhoods.

Definition 11 (Downward neighborhood). Let v be a vertex in a rooted tree.
The dth downward neighborhood of v is

N↓(v, d) = {x ∈ V↓(v) : 0 < d(x, v) ≤ d}.
Definition 12 (Thickness). A rooted tree T is Θ-thick if for every vertex v
and integer d ≥ 0 we have |N↓(v, d)| ≤ dΘ. The thickness Θ(T) of G is the
minimal number Θ such that T is Θ-thick.

Note that whereas |N(v, d)|/d ≤ 2D(G) for every neighborhood N(v, d)
of G, here |N↓(v, d)|/d ≤ Θ(T) for every downward neighborhood N↓(v, d)
of T .

In a caterpillar, only certain downward neighborhoods are required to
find the thickness.

Lemma 1. A caterpillar T is Θ-thick if and only if for every spinal vertex
v and integer d ≥ 0 we have |N↓(v, d)| ≤ dΘ.

Proof. The only if part is clear. So suppose that for every spinal vertex v
and integer d ≥ 0 we have |N↓(v, d)| ≤ dΘ. If n(T) = 0 then clearly T is
Θ-thick, so suppose n(T) ≥ 1. In this case |N↓(r(T), 1)| ≥ 1 and so Θ ≥ 1.
If u is a non-spinal vertex then clearly |N↓(u, d)| ≤ d ≤ dΘ for every d ≥ 0.
It follows that T is Θ-thick.

Density and thickness are equivalent up to a multiplicative constant.

Lemma 2. Let T be a rooted tree. Then D(T) ≤ Θ(T) ≤ 2D(T).

Proof. Since N↓(v, d) ⊂ N(v, d), if T is D-dense then T is also 2D-thick.
Therefore Θ(T) ≤ 2D(T).

For the other direction, note that for some neighborhood N(v, d) we have
|N(v, d)| = 2dD(T). Let x = Ad(v). Clearly N↓(x, 2d) ∪ x ⊃ N(v, d) ∪ v,
hence |N↓(x, 2d)| = 2dD(T). It follows that Θ(T) ≥ D(T).

11

2.3 Bandwidth

The notion of bandwidth arises when attempting to evaluate an embedding
of a graph onto the infinite path. One possible evaluation is in terms of the
distortion of distance. Specifically, we would like distances to be not much
larger than in the original graph. The notion of bandwidth is one possible
formalization of this idea.

Definition 13 (Bandwidth). Let G be a graph. A layout f of G is a one-to-
one function mapping vertices of G to integers. The bandwidth of a layout
f is B(f) = max(x, y)∈E(G) |f(x) − f(y)|. The bandwidth of the graph G is
B(G) = minf B(f), where f goes over all layouts of G.

A layout of a graph is simply an embedding into the infinite path, and
the bandwidth of a layout measures the worst multiplicative factor by which
distances are stretched (this measure is known as the dilation of the embed-
ding). The definition is only concerned with the stretching of edges, yet the
two notions are equivalent.

Lemma 3. Let f be a layout of a connected graph G. Then

B(f) = max
x 6=y

|f(x) − f(y)|
d(x, y)

.

Proof. Let B∗(f) = maxx 6=y |f(x) − f(y)|/d(x, y). Clearly B∗(f) ≥ B(f).
On the other hand, if d(x, y) = d then |f(x)− f(y)| ≤ dB(f) by considering
the path of length d from x to y. Hence also B∗(f) ≤ B(f).

The bandwidth of a graph measures the amount by which distances are
stretched in any embedding of the graph into the infinite path. If there is a
large neighborhood with small diameter, it is evident that distances must be
stretched to accommodate this neighborhood.

Lemma 4. Let G be a connected graph. Then B(G) ≥ D(G).

Proof. There is a neighborhood N(v, d) such that |N(v, d)| = 2dD(G). Let f
be any layout of G. By lemma 3, for each x ∈ N(v, d) we have |f(x)−f(v)| ≤
dB(f). There are 2dB(f) integers i 6= f(v) satisfying |i − f(v)| ≤ dB(f).
Since f is one-to-one it follows that |N(v, d)| ≤ 2dB(f). Hence B(f) ≥
D(G), and so B(G) ≥ D(G).

12

3 Regularization of caterpillars

Caterpillars have a very simple structure. Yet for some purposes, it is ad-
vantageous to consider caterpillars having an even simpler structure. In
section 3.1 we describe a regularization process, which transforms a given
caterpillar into another caterpillar of extremely simple form, conserving cer-
tain important statistics. In section 3.2 we draw some conclusions.

We summarize some useful terminology in the following definition.

Definition 14 (Depth, Height, Tail vertex). Let T be a rooted tree with root
r. The depth of a vertex x is d(x) = d(x, r). The height h(T) of the tree
is the depth of the deepest vertex. A vertex of maximal depth is called a tail
vertex.

Lemma 5. Let T be a rooted tree. Then n(T) ≤ Θ(T)h(T).

Proof. Clearly n(T) = |N↓(r(T), h(T))|, where r(T) is the root of T . The
lemma now follows from the definition of thickness.

3.1 Regularization process

Before seeking a regularization process, one must ask what statistics are to
be conserved by the process. Three natural statistics are the number of
vertices, the height and the thickness. Our regularization process conserves
these three statistics, as well as a fourth one. To motivate the fourth statistic,
we look at a bandwidth approximation algorithm for caterpillars.

The best bandwidth approximation algorithm currently known for cater-
pillars is roughly as follows [10].

Algorithm 1. Given a caterpillar, order its vertices in such a way that if
d(x) < d(y) then x precedes y (recall d(v) is the depth of v). There are
many possible such orders, and the exact order chosen is not important. The
algorithm produces a layout f defined by f(x) = k, where x is the kth vertex
in the order.

Theorem 5. Let f be a layout constructed as described for a caterpillar T .
Then B(f) = O(Θ(T) log h(T)).

Proof. It is easy to see that B(f) is bounded by twice the maximal number
of vertices at given depth. Let n(T, h) be the number of vertices at depth h.
If there is no spinal vertex at depth h−1 then clearly n(T, h) ≤ n(T, h−1).
So we upper bound the number of vertices at depth h, assuming there is a
spinal vertex at depth h − 1.

13

For any vertex v, let d(v, S) be its distance from the spine. For integral
k ≤ h, let

V (k) = {x : d(x) = h and
k

2
≤ d(v, S) ≤ k}.

For integral 0 ≤ k < h, let Sk be the spinal vertex at depth k. Evidently
|N↓(Sh−k, k)| ≥ |V (k)|k/2. Since |N↓(Sh−k, k)| ≤ Θ(T)k, it follows that
|V (k)| ≤ 2Θ(T).

Let K = {20, 21, . . . , 2⌈log h⌉}. Each non-spinal vertex at depth h belongs
to V (k) for some k ∈ K. The set K contains O(log h) integers, hence there
are at most 1 + O(|K|Θ(T)) = O(Θ(T) log h) vertices at depth h. The
proposition follows.

By lemmas 2 and 4 we have Θ(T) ≤ 2D(T) ≤ 2B(T). Hence algorithm 1
has an approximation ratio of O(log h), where h is the height of the caterpil-
lar.

The proof of theorem 5 points to the importance of the number of vertices
at given depth. In the proof of the theorem, only the maximal number was
used. However, other results require more data.

Definition 15 (Inventory). Let T be a rooted tree. For integral h ≤ h(T),
define n(T, h) as the number of vertices at depth h. The inventory of T is
the multiset

I(T) = {n(T, h) : 1 ≤ h ≤ h(T)}.

Note that since the root is always the only vertex at depth 0, there is no
need to include n(T, 0) in the definition. We emphasize that the inventory is
a multiset, a term meaning that the number of occurrences of each element
is important, but the elements are not ordered.

The two statistics n(T) and h(T) are determined by the inventory.

Lemma 6. Let T be a rooted tree. Then n(T) =
∑

x∈I(T) x and h(T) =

|I(T)|.

Proof. The lemma is a direct consequence of the definition of I(T).

As a consequence of lemma 6, whenever the inventory is conserved, so are
the height and the number of vertices.

We can restate theorem 5 as max I(T) = O(Θ(T) log h(T)), if T is a cater-
pillar. The following family of caterpillars [10], called ‘triangle caterpillars’,
satisfy max I(T) = Ω(Θ(T) log h(T)).

Fix the desired thickness to be an odd Θ ≥ 3. Choose a height h = 2l ≥ 1.
The spine consists of the root S0 and h other vertices S1, . . . , Sh, such that
the depth of Si is i. Let δ = (Θ − 1)/2. There are 2δ hairs of length 1

14

emanating from Sh−1. For each integer j ∈ [1, l], there are δ hairs of length
2j emanating from Sh−2j . The resulting tree for Θ = 3 and h = 22 is shown
in figure 8.

Figure 8: A triangle caterpillar

It can be checked that the thickness of the resulting tree T is Θ, and n(T, h) =
δ(log h + 2) + 1 is the maximum of the inventory. The properties of triangle
caterpillars are summarized in proposition 1.

One feature of the triangle caterpillars is that the spine and hairs all have
tail vertices (vertices of depth h(T)). Such caterpillars are easy to analyze,
since their structure is wholly contained in their inventory.

Definition 16 (Regular Caterpillar). A regular caterpillar is a caterpillar
whose spine and hairs each contain a tail vertex.

Lemma 7. For each multiset I of positive integers there is a unique (up to
isomorphism) regular caterpillar T such that I(T) = I.

Proof. Given a multiset I, the unique regular caterpillar T is constructed as
follows. Order I = {I1, . . . , Ih} so that Ii ≤ Ii+1. The caterpillar T has a
spine of length h. There are I1 − 1 hairs emanating from the root. For each
i ∈ [1, h− 1], there are Ii+1 − Ii hairs emanating from depth i. Clearly, T is
the unique regular caterpillar such that I(T) = I.

At this point, it is useful to increase our terminology involving spines and
hairs.

Definition 17 (Spine Terminology). Let S be the spine of a caterpillar.
Define A(S) as the root of the caterpillar, and denote the deepest vertex of
S by B(S). The depth of A(S) is denoted top(S) (it is always zero), and
the depth of B(S) is denoted bot(S). A spine is long if it contains a tail
vertex. Otherwise it is short. The spinal vertex at depth i is denoted Si. If
i < bot(S) then the successor of Si is suc(Si) = Si+1.

15

Definition 18 (Hair Terminology). For a hair H of a caterpillar T , recall
A(H) denotes the spinal vertex from which H emanates. The depth of A(H)
is denoted top(H). The deepest vertex of H is denoted B(H), and its depth
is denoted bot(H). A long hair is any hair having a tail vertex. A short
hair is any hair not having a tail vertex. A deep hair is any hair H with
bot(H) > bot(S), where S is the spine of T .

The reader is cautioned that depth grows downwards in our figures, so
that vertices at maximal depth appear at the bottom.

The regularization process conserves the inventory. It might, however,
decrease the thickness. In our application, this is in fact a blessing.

Theorem 6 (Regularization process). Let T be any caterpillar. There is a
regular caterpillar T ′ satisfying I(T ′) = I(T) and Θ(T ′) ≤ Θ(T).

Proof. The regularization process is algorithmic. It starts by performing
‘spine elongation’, to insure that the spine is long (has a tail vertex). It then
repeatedly performs two operations called ‘normalization’ and ‘shifting’. All
three operations change the form of the caterpillar, conserving the inventory.
All operations also do not increase the thickness, but some may decrease it.

Spine elongation. Suppose the spine S is short. Hence some hair is
deep (extends below the spine). Of all the deep hairs, choose a hair H with
maximal top(H). The spine is lengthened by shortening H to a hair H ′ such
that bot(H ′) = bot(S), and extending the spine by adding bot(H) − bot(S)
new vertices to the deep end of the spine.

H H
0

Figure 9: Spine lengthening

This exchange does not change the inventory.
Moreover, if T is the original caterpillar and T ′ is the new one, then

Θ(T ′) ≤ Θ(T). Indeed, let S be the spine of T , and let S ′ be the spine of T ′.
Pick a spinal vertex S ′

i of T ′, and an integer d ≥ 0.

1. If i ≤ top(H) then |N↓(S
′
i, d)| = |N↓(Si, d)| ≤ dΘ(T).

16

2. If top(H) < i and i+d ≤ bot(S) then again |N↓(S
′
i, d)| = |N↓(Si, d)| ≤

dΘ(T).

3. If top(H) < i ≤ bot(S) and i + d > bot(S) then

|N↓(S
′
i, d)| = |N↓(Si, bot(S)− i)| + |N↓(v, d− (bot(S)− i))| ≤ dΘ(T),

where v is the vertex of H at depth bot(S).

4. Finally, if bot(S) < i ≤ bot(S ′) then |N↓(S
′
i, d)| = |N↓(u, d)| ≤ dΘ(T),

where u is the vertex of H at depth i.

By lemma 1, T ′ is Θ(T)-thick and so Θ(T ′) ≤ Θ(T).
Spine elongation is performed by the following algorithm: as long as the

spine is short, perform spine lengthening (as just described). Since each spine
lengthening actually increases the length of the spine, this algorithm termi-
nates. After spine elongation, the spine is long. Since all other operations
preserve this property, spine elongation is performed only once.

Normalization. Let H and H1 be two hairs such that top(H) < top(H1) ≤
bot(H) < bot(H1).

H

H1

H

H1

Figure 10: Conflicting pairs

Such a pair of hairs is called a conflicting pair. This pair is normalized by
shortening H1 to a hair H ′

1 such that bot(H ′
1) = bot(H), and extending H

to a hair H ′ such that bot(H ′) = bot(H1).

Figure 11: Normalizing a conflicting pair

This exchange does not change the inventory. It also keeps the spine long.
Moreover, if T is the original caterpillar and T ′ is the new one, then Θ(T ′) ≤
Θ(T). Indeed, for every spinal vertex S ′

i of T and integer d ≥ 0 we have
|N↓(S

′
i, d)| ≤ |N↓(Si, d)| ≤ dΘ(T), where S and S ′ are the spines of T and

T ′, respectively.

17

Note that the reverse exchange preserves the inventory, but might increase
the thickness.

� = 2:5 � = 3

Figure 12: The reverse of normalization

For this reason, pair normalization is a natural operation. Note, however,
that when performing spine elongation, the reverse exchange is performed
and justified.

Normalization of an entire caterpillar is performed by the following algo-
rithm: as long as there is a conflicting pair, normalize that pair. To see that
the algorithm terminates, consider the potential function Φ =

∑

v top(H(v)),
where v goes over all non-spinal vertices, and H(v) is the hair containing v.
Every iteration decreases Φ. Since Φ ≥ 0, the algorithm terminates. The
result is a caterpillar without conflicting pairs. Note that normalization pre-
serves the length of the spine.

Shifting. Let T be a normalized caterpillar having some short hair
H . The hair H is part of a group of short hairs delimited by long hairs
above and below it (if they exist). To determine the group, we determine
its delimiters Top and Bot, which are simply depths. The top delimiter is
Top = maxH′ top(H ′), where the maximum is over all long hairs H ′ such
that top(H ′) ≤ top(H). If no such hairs exist, Top = 0. The bottom de-
limiter is Bot = minH′ top(H ′), where the minimum is over all long hairs H ′

such that top(H ′) > top(H), or equivalently top(H ′) > bot(H) (recall T is
normalized). If no such hairs exist, Bot = h(T).

Top

Bot

Top

Bot

Top

Bot

Figure 13: An illustration of Top and Bot

The local group of short hairs containing H is the set H consisting of
all short hairs H ′ such that Top ≤ top(H ′) < Bot, or equivalently Top <

18

bot(H ′) < Bot. Shifting H is done by letting each hair H ′ ∈ H be attached
to suc(A(H)) instead of A(H). In other words, the group H is shifted done
by one vertex. Note that suc(A(H)) exists since the spine is long.

Figure 14: An example of shifting

It is easy to see that since the original caterpillar is normalized, shifting
conserves the inventory. Shifting also keeps the spine long.

Moreover, if T is the original caterpillar and T ′ is the new one, then
Θ(T ′) ≤ Θ(T). Indeed, let S be the spine of T , and S ′ be the spine of T ′.
Pick a spinal vertex S ′

i of T ′ and an integer d ≥ 0. If i ≤ Top or i ≥ Bot
then it is easy to see that |N↓(S

′
i, d)| ≤ |N↓(Si, d)| ≤ dΘ(T). Next suppose

Top < i < Bot. If i + d ≤ Bot then |N↓(S
′
i, d)| ≤ |N↓(Si−1, d)| ≤ dΘ(T). If

i + d > Bot then

|N↓(S
′
i, d)| ≤ |N↓(Si−1, Bot−i)| + |N↓(SBot, d − (Bot−i))| ≤ dΘ(T).

It follows by lemma 1 that Θ(T ′) ≤ Θ(T).
Shifting consists of the operation just described, that is shifting a single

group of short hairs.
Regularization. The regularization process executes the following algo-

rithm: first, perform spine elongation; second, as long as there are short hairs,
normalize and then shift. To see that the algorithm terminates, consider the
potential function Ψ =

∑

H(h(T) − top(H)), where H goes over all hairs.
Normalization does not increase Ψ (it can decrease it), and shifting decreases
Ψ, unless all hairs are long. Since Ψ ≥ 0, the algorithm terminates.

Figure 15 shows an example of an execution of the regularization process.
The letters N and S stand for normalization and shifting, respectively.

19

N S N

Figure 15: Regularization of a caterpillar

Recall that by lemma 7, for each caterpillar T there is a unique regular
caterpillar T ′ with I(T ′) = I(T). The lemma also provides an easy con-
struction of T ′. Hence what the regularization process really shows is that
Θ(T ′) ≤ Θ(T). An example where Θ(T ′) < Θ(T) is presented in figure 16.

�(T) = 3 �(T0) = 2:5

Figure 16: Regularization might decrease the thickness

3.2 Consequences

The inventories of regular caterpillars are easy to analyze. Results proven
about the inventories of regular caterpillars can be extended to all caterpillars
using theorem 6.

A natural question to ask about an inventory is the size of its largest ele-
ment. This question is answered in theorem 5. For convenience, we reproduce
the proof here.

Lemma 8. Let T be a caterpillar. Then max I(T) = O(Θ(T) log h(T)).

Proof. By theorem 6, we can assume that T is regular.
Suppose the maximum M = max I(T) is achieved at depth h ≤ h(T). Let

H denote the multiset H = {h−top(H) : top(H) < h}, so that M = 1+ |H|.
It is easy to find O(log h) intervals of the form [k/2, k] that cover [0, h − 1].
One of these intervals [k/2, k] contains Ω(M/ log h) elements of H. Hence
|N↓(Sh−k, k)| = Ω(kM/ log h). It follows that M/ log h = O(Θ(T)), and so
M = O(Θ(T) log h).

A generalization of the previous question asks how many elements of the
inventory can be greater than a given number.

20

Definition 19. Let I be a multiset. The number of elements of I which are
greater than r is denoted |I|>r.

Lemma 9. Let T be a caterpillar. Then for integral s ≥ 1 we have

|I(T)|>2Θ(T)s ≤
n(T)

Θ(T)
2−s.

Proof. By theorem 6, we can assume that T is regular.
Order the hairs of T in order of increasing top(H). Let len(k) denote

h(T) − top(Hk), where Hk is the kth hair in the order. Since T is regular,
|I(T)|>k = len(k), if Hk exists, and |I(T)|>k = 0 otherwise.

Choose any k > 2Θ(T). The 2Θ(T) hairs Hk to Hk−2Θ(T)+1 all have
length at least len(k). This implies that |N↓(Sh(T)−ℓ, ℓ)| ≥ 2Θ(T) len(k),
where ℓ = len(k − 2Θ(T)). Hence len(k − 2Θ(T)) ≥ 2 len(k). It follows that
len(k − 2Θ(T)r) ≥ 2r len(k) for r ≥ 0.

The first 2Θ(T) hairs H1 to H2Θ(T) all have length at least len(2Θ(T)) ≥
2s−1 len(2Θ(T)s). Hence n(T) ≥ 2sΘ(T) len(2Θ(T)s). The lemma follows.

Corollary 10. Let T be a caterpillar. Then

max I(T) = O
(

Θ(T) log
n(T)

Θ(T)

)

.

Proof. Define h′ = n(T)/Θ(T), and let s = ⌈max I(T)/2Θ(T)⌉ − 1. Then
|I(T)|>2Θ(T)s ≥ 1, and so h′ ≥ 2s by lemma 9. It follows that s ≤ log h′ and
so max I(T) = O(Θ(T) log h′).

Recall that by lemma 5, n(T) ≤ Θ(T)h(T). Hence corollary 10 is stronger
than lemma 8. Both the corollary and the lemma are tight in the following
sense. The triangle caterpillars defined in section 3.1 satisfy max I(T) =
Ω(Θ(T) log h(T)) and h(T) = n(T)/Θ(T).

The following lemma is a consequence of lemma 9. This lemma (or rather
its corollary) is the only result from this section which is needed in section 4.

Lemma 11. Let T be a caterpillar. For integral k ≥ 1, we have the following
inequality, for some constant C1:

∑

x∈I(T)

xk = O(n(T)Θ(T)k−1(C1k)k).

21

Proof. We divide the sum
∑

x∈I(T) xk into two parts SL and SH , according

to the size of x. The sum SL contains all summands xk where x ≤ 2Θ(T).
The sum SH contains all summands xk where x > 2Θ(T).

We begin by estimating the sum SL. Let mi denote the number of
summands ik in SL, so that SL =

∑2Θ(T)
i=1 mii

k. Denote m =
∑2Θ(T)

i=1 mii.
Clearly m ≤ n(T). For i ∈ [1, 2Θ(T)], let m′

i = mii, so that m =
∑

i m
′
i

and SL =
∑

i m
′
ii

k−1. Since i ≤ 2Θ(T), evidently SL ≤ m(2Θ(T))k−1 ≤
n(T)(2Θ(T))k−1.

We turn to estimate the sum SH . Clearly

SH ≤
∞

∑

s=2

(2Θ(T)s)k|I(T)|>2Θ(T)(s−1).

Using lemma 9, we can estimate

SH ≤ 2kn(T)Θ(T)k−1
∞

∑

s=2

sk

2s−1
.

It remains to estimate the sum
∑∞

s=2 sk/2s:

∞
∑

s=2

sk

2s
=

2k
∑

s=2

sk

2s
+

∞
∑

s=2k+1

sk

2s

≤ (2k)k

2k
∑

s=2

2−s +
(2k)k

22k

∞
∑

t=1

((2k + 1)/2k

2

)t

≤ (2k)k + (k/2)k
∞

∑

t=1

(3

4

)t

= (2k)k + 3(k/2)k = O((2k)k).

The lemma follows with C1 = 4.

Corollary 12. Let T be a caterpillar. For integral k ≥ 1, we have the
following inequality, for some constant C2:

∑

x∈I(T)

xk = O(n(T)(C2Θ(T))k−1k!).

Proof. The Stirling formula states that k! = Θ(
√

k(k/e)k). It follows that
kk = O(ekk!). The corollary follows by letting C2 = eC1.

The inequality in lemma 11 is asymptotically tight for the triangle cater-
pillars discussed in section 3.1, in a sense made precise by corollary 13.

22

Proposition 1. Let T be a triangle caterpillar constructed for thickness Θ
and height h = 2l (the construction is described in section 3.1). Then T is
a regular caterpillar with n(T) = hΘ, h(T) = h, Θ(T) = Θ and B(T) =
D(T) = (Θ + 1)/2. Moreover, the inventory I(T) is

{(δ + 1)2l−1

, (2δ + 1)2l−2

, . . . , (lδ + 1)20

, ((l + 2)δ + 1)20},

where δ = (Θ − 1)/2.

Corollary 13. Let T be a triangle caterpillar constructed for thickness Θ
and height h = 2l. If l ≥ k then

∑

x∈I(T)

xk ≥ n(T)Θ(T)k−1(k/6)k.

Proof. Since l ≥ k, I(T) contains 2l−k times the element (kδ + 1), where
δ = (Θ − 1)/2 ≥ Θ/3. Hence

∑

x∈I(T)

xk ≥ 2l−k(kδ)k = h(kδ/2)k ≥ n(T)Θ(T)k−1(k/6)k.

It can be shown that if T is a triangle caterpillar then B(T) = D(T) =
(Θ(T) + 1)/2. Details omitted.

23

4 Approximation Algorithm

An approximation algorithm for bandwidth was proposed in [10]. The algo-
rithm operates only on caterpillars, and its approximation ratio is O(log n).
It is described and analyzed in section 3.1. Gupta [8] presented a randomized
approximation algorithm for trees with approximation ratio O(log2.5 n). On
caterpillars, the algorithm operates in a manner reminiscent of the algorithm
in [10], and its approximation ratio is also O(log n). Moreover, Gupta showed
that his algorithm has approximation ratio O(log2 n) on many-caterpillars
(and more generally, on trees of constant caterpillar dimension).

In section 4.1 we present a randomized approximation algorithm for many-
caterpillars, which is based on Gupta’s algorithm. We outline its analysis,
and show how to derandomize it. In section 4.2 we complete the analysis
of our algorithm, showing that it has an approximation ratio of O(log n). It
follows from our analysis that the approximation ratio of Gupta’s algorithm
on many-caterpillars is also O(log n).

4.1 Algorithm

Recall algorithm 1 described in section 3.1. The layout produced by this
algorithm is equivalent to an ordering of the vertices with respect to their
depths. The algorithm for many-caterpillars uses this ordering for each in-
dividual caterpillar. The different orderings are first ‘stretched’ randomly,
then combined together.

Algorithm 2 (Randomized version). Let T be a many-caterpillar obtained
by identifying the roots of the caterpillars T1 up to Td, where n(Ti) > 0. For
each caterpillar Ti, choose independently a random integer σi from [1, h(Ti)]
uniformly, and let si = 1 + σi/h(Ti) be the stretch factor of Ti.

For each vertex v of Ti, recall d(v) is the depth of v. Let p(v) = sid(v)
be the placement of v. Order the vertices of T in order of ascending p(v):
v0 = r(T), v1, . . . , vn(T). Output the layout f(vj) = j.

Algorithm 1 is a special case of algorithm 2, obtained when d = 1.
The analysis in section 3.1 estimates the maximal number of vertices

having the same depth. This is useful since each edge connects vertices
of adjacent depths. In algorithm 2, each edge is stretched by some factor
between 1 and 2. Hence it is natural to look at the number of vertices falling
within a constant width interval.

Definition 20 (Unit interval, Unit statistic). A unit interval is any interval
of the form [z, z + 1), where z is an integer.

24

Let T be a many-caterpillar. The zth unit statistic Xz(T) is the random
variable counting the number of vertices v ∈ V (T) such that p(v) ∈ [z, z + 1)
in an execution of algorithm 2 on T . The notation Xk

z (T) means (Xz(T))k.

Using unit statistics, we can adapt the analysis in section 3.1 to algo-
rithm 2.

Lemma 14. Let T be a many-caterpillar. Suppose that in some execution
of algorithm 2, the inequality

2h(T)
∑

z=1

Xk(T)
z (T) ≤ (C0Θ(T)g(T))k(T)

holds for some constant C0 and functions g(T) and k(T). Then the layout f
produced by the algorithm has bandwidth B(f) = O(Θ(T)g(T)).

Proof. The given inequality implies that Xz(T) ≤ C0Θ(T)g(T) for each z ∈
[1, 2h(T)]. Also, X

k(T)
0 (T) = 1. By definition of B(f), there is some edge

(x, y) ∈ E(T) such that f(y) = f(x) + B(f). Hence there are at least B(f)
vertices v that are placed in the interval [p(x), p(y)]. Since p(y) ≤ p(x) + 2,
the interval [p(x), p(y)] is covered by at most 3 unit intervals. One of these
interval [z, z + 1) contains at least B(f)/3 vertices. Thus Xz(T) ≥ B(f)/3
and so B(f) ≤ 3C0Θ(T)g(T).

Proposition 1 demonstrates that algorithm 1 may produce an arrange-
ment with B(f) = Ω(Θ(T) log h(T)), for example on triangle caterpillars.
Since algorithm 2 extends algorithm 1, we aim for g(T) = log h(T).

In section 4.2 we show that the inequality needed for lemma 14 holds
in expectation, with g(T) = log h(T). Given this fact, it is easy to use the
method of conditional expectations to derandomize algorithm 2. They key
is the following lemma.

Lemma 15. Let Y1 to Yd be mutually independent random variables, and let
K ≥ 0 be an integer. Suppose that for integral k ∈ [0, K], the expectation
E[Y k

1] can be computed. Then E[(Y1 + · · · + Yd)K] can be computed in time
polynomial in d and K.

Proof. Let Zi = Y1 + · · ·+ Yi. We are given E[Zk
1] for all integral k ∈ [0, K].

We show how to compute E[Zk
i+1] from the values of E[Z l

i] for integral l ∈
[0, k] in time polynomial in k. The result follows.

Let k be an integer in [0, K], and suppose that E[Z l
i] is given for all

l ∈ [0, k]. The random variables Zi and Yi+1 are mutually independent.

25

Using the binomial theorem, linearity of expectation, and the independence
of Zi and Yi+1, we get

E[Zk
i+1] =

k
∑

l=0

(

k

l

)

E[Z l
i]E[Y k−l

i+1].

The last sum can be computed from known expectations in time polynomial
in k.

Using lemma 15 it is easy to derandomize algorithm 2.

Lemma 16 (Derandomizing algorithm 2). Let T be a many-caterpillar ob-
tained by identifying the roots of the caterpillars T1 up to Td. Let

X =

2h(T)
∑

z=1

Xk(T)
z (T)

for some integral function k(T). Let X(τ) denote the value of X if σi = τi.
Integers τ1 up to τd such that X(τ) ≤ E[X] can be found in time polynomial
in k(T) and n(T).

Proof. The expectations E[Xk
z (Ti)] for integers z ∈ [1, 2h(T)], k ≤ k(T)

and i ∈ [1, d] can all be found in polynomial time. The value of Xk
z (Ti)

given σi = τi can also be computed in polynomial time. Let C represent any
constraint on the σi. Since Xz(T) =

∑d
i=1 Xz(Ti) for z ≥ 1, lemma 15 can

be used to compute E[X|C] in polynomial time.
The assignment τ is found using the method of conditional expectations.

First τ1 is found, then τ2, and so on. To determine τi, compute E[X|Ci(τ
∗)]

for all possible τ ∗, where Ci(τ
∗) is the constraint “σj = τj for all j < i, and

σi = τ ∗”. Pick some τi that satisfies E[X|Ci(τi)] ≤ E[X].

Lemma 16 directly transforms algorithm 2 into a deterministic algorithm.

Algorithm 3 (Deterministic version). Let T be a many-caterpillar obtained
by identifying the roots of the caterpillars T1 up to Td, where n(Ti) > 0.
Use lemma 16 to find an assignment τ . Let si = 1 + τi/h(Ti) be the stretch
factor of Ti. Let p(v) = sid(v) be the placement of v. Order the vertices of
T in order of ascending p(v): v0 = r(T), v2, . . . , vn(T). Output the layout
f(vj) = j.

The analysis outline of lemma 14 easily adapts to algorithm 3.

26

Lemma 17. Let T be a many-caterpillar. Suppose that for each z ∈ [1, 2h(T)]
the inequality

E[X log h(T)
z (T)] ≤ (c0Θ(T)g(T))logh(T)

holds, for some constant c0 and function g(T). Then the layout f produced
by algorithm 3 has bandwidth B(f) = O(Θ(T)g(T)).

Proof. The inequality

E

[

2h(T)
∑

z=1

X log h(T)
z (T)

]

≤ (C0Θ(T)g(T))logh(T)

holds for C0 = 4c0. By lemma 16, an execution of algorithm 3 is equivalent
to an execution of algorithm 2 for which

2h(T)
∑

z=1

X log h(T)
z (T) ≤ (C0Θ(T)g(T))logh(T).

The lemma now follows from lemma 14 using k(T) = log h(T).

4.2 Analysis of the algorithm

To complete the analysis of algorithm 3, we have to show that if we run
algorithm 2 on a many-caterpillar T , then for all z ∈ [1, 2h(T)] the inequality

E[X log h(T)
z (T)] ≤ (c0Θ(T) log h(T))log h(T)

holds, for some constant c0. We prove a more general inequality on caterpil-
lars, then deduce the same inequality, with a different constant, for many-
caterpillars.

When dealing with Xz(T), only vertices of T whose depth is at most z
matter, since only such vertices can be placed in [z, z + 1). This leads to the
following definition.

Definition 21. Let T be a rooted tree, and z ≥ 0 be an integer. Define

V [z](T) = {v ∈ V (T) : d(v) ≤ z} = N↓(r(T), z) ∪ r(T).

Let T [z] be the subtree of T induced by V [z](T), and denote n(T [z]) = n[z](T).

Lemma 18. Let T be a many-caterpillar. Then Xz(T) = Xz(T [z]).

27

Proof. Recall Xz(T) denotes the number of vertices v of T such that p(v) ∈
[z, z + 1) in an execution of algorithm 2. Recall next that p(v) = σid(v) for
some σi ≥ 1. Hence if p(v) ∈ [z, z + 1) then d(v) ≤ z, so that v ∈ V [z](T).
The lemma follows from the nature of algorithm 2.

We can bound n[z](T) using the thickness of T .

Lemma 19. Let T be a rooted tree. For every integer z ≥ 0 we have n[z](T) ≤
zΘ(T).

Proof. By definition of Θ(T), |N↓(r(T), z)| ≤ zΘ(T). The lemma follows.

In section 3.1 we defined the inventory of a caterpillar (definition 15).
Recall that n(T, h) is the number of vertices of T at depth h. It is easy to
estimate E[Xk

z (T)] for a caterpillar T using n(T, h) for various h.

Lemma 20. Let T be a caterpillar, z be an integer in [1, 2h(T)] and k ≥ 1
be an integer. Then

E[Xk
z (T)] ≤ 8

z

z
∑

h=⌈z/2⌉

n(T, h)k ≤ 8

z

∑

x∈I(T)

xk.

Proof. The random variable Xz(T) depends on the random stretch s. The
random stretch s gets with equal probability the h(T) values sσ = 1+σ/h(T)
for σ ∈ [1, h(T)]. We first determine the value of Xz(T) given s = sσ.

Recall that Xz(T) counts the number of vertices v such that p(v) ∈
[z, z + 1). Also recall that p(v) = sσd(v), where d(v) is the depth of v. Hence
Xz(T) counts the number of vertices v such that d(v) ∈ [z/sσ, (z + 1)/sσ).
The interval Iσ = [z/sσ, (z + 1)/sσ) is of length 1/sσ. Since sσ ≥ 1, Iσ

contains at most one integer ⌈z/sσ⌉ (it might contain no integers). Hence if
s = sσ then Xz(T) ≤ n(T, ⌈z/sσ⌉).

If z = 1 then Xz(T) ≤ n(T, 1), and the lemma follows. Hence we can
assume that z ≥ 2. Let zσ = ⌈z/sσ⌉. Then

E[Xk
z (T)] ≤ 1

h(T)

h(T)
∑

σ=1

n(T, zσ)k.

The zσ range from ⌈z/2⌉ to z. Let w be an integer in [z/2, z]. We determine
how often zσ = w. If w = 1 then z = 2 and so zσ = 1 only for σ = 2. Next
assume w ≥ 2. The equation zσ = w is equivalent to w − 1 < z/sσ ≤ w.
The last inequality is equivalent to z/w ≤ sσ < z/(w− 1). The length of the

28

interval Iw = [z/w, z/(w − 1)) is at most z/w(w−1) ≤ 2z/w2 ≤ 8/z. Hence
Iw contains at most 8h(T)/z points of the form 1 + σ/h(T). Summarizing,

E[Xk
z (T)] ≤ 8

z

z
∑

h=⌈z/2⌉

n(T, h)k.

Corollary 21. Let T be a caterpillar, z be an integer in [1, 2h(T)] and k ≥ 1
be an integer. Then

E[Xk
z (T)] = O

(n[z](T)

z
(C2Θ(T))k−1k!

)

for some constant C2.

Proof. Follows directly from lemma 18 and corollary 12.

Gupta’s algorithm [8] differs from algorithm 2 by stretching the hairs
independently of the spine. The proof of lemma 20 can be extended to
Gupta’s algorithm, and so corollary 21 is also true for that algorithm (with
a different constant). Details omitted.

An analog of corollary 21 holds for many-caterpillars. This is proved
using the relation Xz(T) = Xz(T1)+ · · ·+Xz(Td), employing the multinomial
theorem. We begin by stating the multinomial theorem.

Proposition 2 (Multinomial theorem). Given d numbers x1 up to xd and
an integer k ≥ 0, the following identity holds:

(x1 + · · · + xd)k =
∑

p1+···+pd=k
pi≥0 an integer

k!

p1! · · · pd!
xp1

1 · · ·xpd

d .

We think of p1 up to pd as a vector denoted p̂. We need to differentiate
vectors according to the number of indexes i such that pi ≥ 1. The reason is
that corollary 21 holds only for k ≥ 1.

Definition 22 (Multinomial vectors, Strength, Support). A multinomial
vector is a vector of non-negative integers. The elements of a multinomial
vector p̂ of length d are denoted p1 to pd. The set of all multinomial vectors
of length d and sum k is denoted Vec(d, k).

The strength of a multinomial vector p̂ is the number str(p̂) of indexes
i such that pi ≥ 1. The support of p̂ is the set sup(p̂) consisting of these
indexes. The subset of Vec(d, k) consisting of vectors of strength s is denoted
Vec(d, k; s).

29

We reformulate the multinomial theorem using the new notation.

Proposition 3 (Multinomial theorem, reformulation). Given d numbers x1

up to xd and an integer k ≥ 0, the following identity holds:

(x1 + · · · + xd)k = k!
∑

p̂∈Vec(d, k)

∏

i∈sup(p̂)

xpi

i

pi!
.

Before proving the analog of corollary 21 on many-caterpillars we need
two auxiliary lemmas. The first estimates the size of Vec(d, k; s).

Lemma 22. Let d ≥ 1, k ≥ 0 and s ∈ [1, d] be integers. The cardinality of
Vec(d, k; s) is at most 2k(ed/s)s.

Proof. A multinomial vector p̂ of strength s can be reduced naturally to a
multinomial vector red(p̂) of length s by listing all the non-zero elements
of p̂ in their order. On the other hand, each positive vector in Vec(s, k)
corresponds to

(

d
s

)

vectors in Vec(d, k; s). Each positive vector in Vec(s, k)
is an ordered partition of k. Since there are 2k−1 ordered partitions of k,
Vec(s, k) contains at most 2k−1 positive vectors. Hence |Vec(d, k; s)| ≤
2k−1

(

d
s

)

< 2k(ed/s)s.

The second auxiliary lemma shows that the point where certain symmetric
functions are maximal is itself symmetric.

Lemma 23. Let n1, . . . , nd be non-negative real variables constrained by the
inequality n1 + · · · + nd ≤ n. For an integer s ∈ [0, d], the maximum of

sym(n̂; s) = sym(n1, . . . , nd; s) =
∑

I⊂{1, ..., d}
|I|=s

∏

i∈I

ni

is attained when ni = n/d. Moreover, the maximum point is unique if s ≥ 2.

Proof. Note that the domain in question is compact, and so the continuous
function sym(n̂; s) attains a maximum under the constraints (including non-
negativity). If s = 0 then clearly sym(n̂; s) = 1 regardless of n̂. For s > 0, it
is clear that if n1 + · · ·+ nd < n then increasing n1 increases sym. Hence we
can assume that n1+· · ·+nd = n. If s = 1 then sym(n̂; s) = n1+· · ·+nd = n
regardless of n̂. So we can also assume that s ≥ 2.

Consider an assignment n̂ different from ni = n/d. Thus nj 6= nk for
some j and k. Define a new assignment m̂ by letting mi = ni for i /∈ {j, k},

30

and mj = mk = (nj + nk)/2. Note that the mk are non-negative and that
m1 + · · · + md = n. Define

sym′(m̂; t) =
∑

I⊂{1, ..., d}\{j, k}
|I|=t

∏

i∈I

mi,

and define sym′(n̂; t) the same way. Note that sym′(m̂; t) = sym′(n̂; t) for all
t. Note also that mj + mk = nj + nk. Since nj 6= nk, we have (nj − nk)2 > 0.
Written differently, this is (nj + nk)2 > 4njnk or mjmk > njnk. The new
assignment satisfies

sym(m̂; s) =
∑

I⊂{1, ..., d}
|I|=s

∏

i∈I

mi

= sym′(m; s) + (mj + mk) sym′(m; s − 1) + mjmk sym′(m; s − 2)

≥ sym′(n; s) + (nj + nk) sym′(n; s − 1) + njnk sym′(n; s − 2)

=
∑

I⊂{1, ..., d}
|I|=s

∏

i∈I

ni = sym(n̂; s).

Moreover, if either s = 2 or ni 6= 0 for some i /∈ {j, k}, then sym′(n; s − 2) 6=
0 and so sym(m̂; s) > sym(n̂; s). It follows that the unique maximal assign-
ment is ni = n/d.

We are now ready to present the many-caterpillar analog of corollary 21.

Lemma 24. Let T be a many-caterpillar, z be an integer in [1, 2h(T)] and
k ≥ 1 be an integer. Then for some constant C3,

E[Xk
z (T)] ≤ O

(n[z](T)

z
(C3Θ(T))k−1k!

)

.

Proof. Suppose T is obtained by identifying the roots of the caterpillars T1

to Td, where n(Ti) > 0. Clearly n[z](T1) + · · ·+ n[z](Td) = n[z](T). Moreover,
the thickness of each Ti is at most Θ(T).

To compute E[Xk
z (T)] we use the equality Xz(T) = Xz(T1)+· · ·+Xz(Td).

We expand E[Xk
z (T)] using the multinomial theorem (proposition 3) and the

mutual independence of the Xz(Ti):

E[Xk
z (T)] = k!

∑

p̂∈Vec(d, k)

∏

i∈sup(p̂)

E[Xpi
z (Ti)]

pi!
. (1)

31

By corollary 21, for some constant c2 we have the inequality

E[Xp
z (Ti)] ≤

n[z](Ti)

z
cp
2Θ(Ti)

p−1p! ≤ n[z](Ti)

z
cp
2Θ(T)p−1p! . (2)

Substituting inequality (2) into (1) we get (recall str(p̂) = | sup(p̂)|)

E[Xk
z (T)] ≤ k!

∑

p̂∈Vec(d, k)

∏

i∈sup(p̂)

n[z](Ti)

z
cpi

2 Θ(T)pi−1

= k!(c2Θ(T))k
∑

p̂∈Vec(d, k)

(zΘ(T))− str(p̂)
∏

i∈sup(p̂)

n[z](Ti)

= k!(c2Θ(T))k

d
∑

s=1

(zΘ(T))−s
∑

p̂∈Vec(d, k; s)

∏

i∈sup(p̂)

n[z](Ti). (3)

For each s, the corresponding summand in the expression (3) is clearly a mul-
tiple of the function sym(n[z](T1), . . . , n[z](Td); s) mentioned in lemma 23.
Since n[z](T1) + · · · + n[z](Td) = n[z](T), it follows from lemma 23 that

E[Xk
z (T)] ≤ k!(c2Θ(T))k

d
∑

s=1

(zΘ(T))−s
∑

p̂∈Vec(d, k; s)

∏

i∈sup(p̂)

n[z](T)

d

= k!(c2Θ(T))k

d
∑

s=1

(n[z](T)

d z Θ(T)

)s

|Vec(d, k; s)|. (4)

By lemma 19, n[z](T) ≤ zΘ(T). Using this and the estimate given by
lemma 22, we obtain

E[Xk
z (T)] ≤ k!(2c2Θ(T))k

d
∑

s=1

(e n[z](T)

s z Θ(T)

)s

≤ k!(2c2)kΘ(T)k−1e n[z](T)

z

d
∑

s=1

(e n[z](T)

s z Θ(T)

)s−1

≤ k!(2c2)kΘ(T)k−1e n[z](T)

z

d
∑

s=1

(e

s

)s−1

. (5)

It is easy to see that the infinite series
∑∞

s=1(e/s)s−1 converges. Hence the
lemma follows from inequality (5) with C3 = 2c2.

Combining lemma 24 with lemma 17, we show that algorithm 3 has an
approximation ratio of O(log h).

32

Theorem 7. The layout f produced by running algorithm 3 on a many-
caterpillar T satisfies B(f) = O(Θ(T) log h(T)).

Proof. By Lemma 24, for each z ∈ [1, 2h(T)] the inequality

E[X log h(T)
z (T)] ≤ C4

n[z](T)

z
(C3Θ(T))log h(T)−1(log h(T))!

holds for an execution of algorithm 2 on T (assuming log h(T) is integral, a
technicality), for some constant C4. By lemma 19 we have n[z](T)/z ≤ Θ(T),
hence

E[X log h(T)
z (T)] ≤ C4(C3Θ(T))log h(T)(log h(T))!

holds. Using (log x)! ≤ (log x)log x we infer that

E[X log h(T)
z (T)] ≤ C4(C3Θ(T) log h(T))log h(T) ≤ (C5Θ(T) log h(T))log h(T),

where C5 = C3C4 is a constant. The theorem now follows from lemma 17
using g(T) = log h(T) .

Corollary 25. Algorithm 3 has an approximation ratio of O(log h(T)) on a
many-caterpillar T .

Proof. By lemma 2, Θ(T) ≤ 2D(T). By lemma 4, Θ(T) ≤ 2B(T). Hence
algorithm 3 produces a layout f with B(f) = O(B(T) log h(T)).

Since corollary 21 holds also for Gupta’s algorithm, it follows that Gupta’s
algorithm also has an approximation ratio of log h on many-caterpillars.

33

5 References

1. G. Blache, M. Karpinski and J. Wirtgen, On approximation intractabil-
ity of the bandwidth problem, ECCC TR98-014.

2. A. Blum, G. Konjevod, R. Ravi and S. Vempala, Semi-definite relax-
ations for Minimum Bandwidth and other vertex-ordering problems,
STOC 30 (1998), 100–105.

3. P. Chinn, J. Chvátalová, A. K. Dewdney and N. Gibbs, The bandwidth
problem for graphs and matrices — a survey, Journal of Graph Theory 6
(1982), 223–254.

4. J. Chvátalová, On the bandwidth problem for graphs, Ph.D. disserta-
tion, University of Waterloo, 1980.

5. J. Dunagan and S. Vempala, On Euclidean embeddings and bandwidth
minimization, RANDOM-APPROX 2001, 229–240.

6. U. Feige, Approximating the bandwidth via volume respecting embed-
dings, JCSS 60(3) (2000), 510–539.

7. M. R. Garey, R. L. Graham, D. S. Johnson and D. E. Knuth, Complex-
ity results for bandwidth minimization, SIAM J. Appl. Math. 34 (1978),
477–495.

8. A. Gupta, Improved bandwidth approximation for trees and chordal
graphs, J. Algorithms 40(1) (2001), 24–36.

9. J. Haralambides and F. Makedon, Approximation algorithms for the
bandwidth minimization problem for a large class of trees, Theory Com-
put. System 30 (1997), 67–90.

10. J. Haralambides, F. Makedon and B. Monien, Bandwidth minimization:
an approximation algorithm for caterpillars, Math. Systems Theory 24
(1991), 169–177.

11. R. Heckmann, R. Klasing, B. Monien and W. Unger, Optimal embed-
ding of complete binary trees into lines and grids, J. Par. Dist. Comp. 49(1)
(1998), 40–56.

12. M. Karpinski, J. Wirtgen and A. Zelikovski, An approximation algo-
rithm for the bandwidth problem on dense graphs, ECCC TR97-017.

34

13. T. Kloks, D. Kratsch and H. Müller, Approximating the bandwidth for
asteroidal triple-free graphs, ESA 95 (Lecture Notes in Computer Sci-
ence 979), 434–447.

14. N. Linial, E. London and Y. Rabinovich, The geometry of graphs and
some of its algorithmic applications, Combinatorica 15 (1995), 215–245.

15. J. Matoušek, On embedding trees into uniformly convex Banach spaces,
Israel J. Math. 114 (1999), 221–237.

16. B. Monien, The bandwidth minimization problem for caterpillars with
hair length 3 is NP-complete, SIAM J. Algebraic Discrete Methods 7
(1986), 505–512.

17. C. H. Papadimitriou, The NP-completeness of the bandwidth minimiza-
tion problem, Computing 16 (1976), 263–270.

18. J. Saxe, Dynamic programming algorithms for recognizing small-bandwidth
graphs in polynomial time, SIAM Journal on Algorithmic Methods 1
(1980), 363–369.

19. L. Smithline, Bandwidth of the complete k-ary tree, Disc. Math. 142
(1995), 203–212.

20. M. M. Sys lo and J. Zak, The bandwidth problem for ordered caterpillars,
Report CS-80-065 at the Computer Science Department of Washington
State University, 1980.

21. J. D. Ullman, Computational aspects of VLSI, Computer Science Press,
1984.

22. W. Unger, The complexity of the approximation of the bandwidth prob-
lem, FOCS 39 (1998), 82–91.

23. S. Vempala, Random Projection: a new approach to VLSI layout, FOCS
39 (1998), 389–395.

35

