
Another look at degree lower bounds for polynomial calculus

Yuval Filmus∗.

August 20, 2019

Abstract

Polynomial complexity is an algebraic proof system inspired by Gröbner bases which was
introduced by Clegg, Edmonds and Impagliazzo. Alekhnovich and Razborov devised a method
for proving degree lower bounds for polynomial calculus. We present an alternative account of
their method, which also encompasses a generalization due to Galesi and Lauria.

1 Introduction

Polynomial calculus [5, 1] is an algebraic proof system whose lines are polynomials over a field.
Given a list of initial polynomials, the rules of polynomial calculus allow deriving polynomials
which are in the ideal generated by the initial polynomials. When used as a refutation system, the
goal is to derive 1, showing that the ideal generated by the initial polynomials is empty, and so the
set of initial polynomials is inconsistent (has no common solution).

Given a list of initial polynomials, there are several ways of measuring how difficult it is to
refute them in polynomial calculus. One obvious measure is proof size, and another one is space
complexity [1]. In this article we will be interested in a third measure, degree, which is the analog of
width in Resolution. Width lower bounds translate to size lower bounds in Resolution [4]. Similarly,
degree lower bounds translate to size lower bounds in polynomial calculus [8]. Moreover, degree
lower bounds for the related Nullstellensatz proof system can be used to prove lower bounds on
constant-depth Frege [3].

The principal method for proving lower bounds on degree in polynomial calculus is due to
Alekhnovich and Razborov [2]. Galesi and Lauria used the method to prove non-automatizability
results for polynomial calculus [6]. They also used a generalized version of the method to prove
lower bounds on the graph ordering principle [7]. Mikša and Nordström [9] used the method to
prove lower bounds on formulas based on combinatorial block designs, and in subsequent work [10]
unified all existing bounds based on this method.

The goal of this article is twofold. First, we provide a new proof of the original lower bound of
Alekhnovich and Razborov. Second, we present it in an abstract framework which separates the
algebraic and combinatorial parts of the argument.

Both our paper and the work of Mikša and Nordström [10] generalize the original framework
of Alekhnovich and Razborov. However, the focus of the two works is rather different. Whereas
our paper focuses on reproving known results in a new and hopefully illuminating way, Mikša and
Nordström focus on applying the original proof of Alekhnovich and Razborov to new situations,

∗Technion — Israel Institute of Technology, Haifa, Israel. Taub Fellow — supported by the Taub Foundations

1

obtaining novel lower bounds. We believe that our framework can be adapted to encompass the
generalization of Mikša and Nordström, but leave it for further research.

Organization After a few preliminaries in Section 2, we describe our abstract our abstract frame-
work and alternative proof in Section 3. We provide two instantiations of our abstract framework:
one which follows the original work of Alekhnovich and Razborov [2] (Section 4), and another which
follows the work of Galesi and Lauria [7] (Section 5).

Acknowledgements This article is based on work done while the author was visiting Jakob
Nordström’s group at KTH in December 2012. We thank Jakob and his group for their hospitality
and for exposing me to the fascinating subject matter of this article.

2 Preliminaries

2.1 Polynomial calculus

Polynomial calculus is a Hilbert-style refutation system for polynomials over an arbitrary field F.
The goal of the system is to show that a given set of squarefree polynomials A doesn’t have a
common 0/1 solution. Each line in the system is a squarefree polynomial. The intended meaning
of a line P is that every 0/1 assignment to the variables of P zeroes P .

The system has three deduction rules. Axiom download allows deriving any axiom. Linear
combination allows deriving any linear combination of two derived lines. Multiplication by variable
allows multiplying any derived line by a variable; the line is then reduced to its squarefree form.

A polynomial calculus refutation is a sequence of lines, each line following from previous lines
via a deduction rule, which culminates at the line 1. It is not hard to check that the system is
sound: if there is a refutation for A then no 0/1 assignment zeroes all polynomials in A. It is also
complete [5].

The degree of a polynomial calculus refutation is the maximal degree of a line in the refutation.
We say that A cannot be refuted in degree D if A has no refutation of degree D or less.

Polynomial calculus can be used to refute unsatisfiable CNFs. A clause of width w is replaced
by a monomial of degree w using the substitutions x 7→ x and x̄ 7→ 1 − x, and A is the set
of monomials corresponding to the various clauses. Similarly, it can be used to refute systems
of polynomial equations over 0/1-valued assignments, by converting an equation P = Q to the
polynomial P −Q.

2.2 Background from commutative algebra

Let V be an ordered set of variables, and let S = {Si} be a set of polynomials over V with coefficients
in the field F. The ideal generated by S is I(S) = {

∑
i PiSi : Pi ∈ F[V]}.

The degree of a monomial
∏
i x

pi
i is

∑
i pi. We define a total ordering of monomials as follows.

Let m1 = x1m
′
1, m2 = x2m

′
2, where x1, x2 are the minimal variables in m1,m2 (respectively)

according to the order of V. Then m1 < m2 if either of the following is true: degm1 < degm2; or
degm1 = degm2 and x1 < x2; or degm1 = degm2, x1 = x2, and m′1 < m′2.

For a non-zero polynomial P , the leading monomial (the largest in the monomial ordering) is
denoted LM(P). The entire leading term (the monomial together with its coefficient) is LT(P).F
or example, LT(3x2 + y) = 3x2 while LM(3x2 + y) = x2.

2

A monomial m is reducible modulo an ideal I if it is the leading term of some polynomial in
I. Otherwise, we say that it is irreducible modulo I. For example, if IV = {x2 − x : x ∈ V} then
m is irreducible iff m is squarefree. In the sequel, we will always work modulo IV , and so we will
assume that all monomials are squarefree.

For a monomial m and a polynomial P , we say that m appears in P , denoted m ∈ P , if the
coefficient of m in P is non-zero. For a set S of variables, let Mon(S) =

∏
x∈S x.

3 Main argument

In this section we describe a method for proving that a set A of axioms cannot be refuted in degree
D in polynomial calculus. This method abstracts the arguments of Alekhnovich and Razborov, as
well as their extension due to Galesi and Lauria [7].

Alekhnovich and Razborov proved a lower bound for CNFs in which the vertex-clause incidence
graph is an expander. Galesi and Lauria proved a lower bound for the graph ordering principle.
We describe these applications in more detail in the following sections, and use them as running
examples to illustrate some of our definitions.

Notation We denote the image of a set S under a function f by f(S). For a set S and a number
z, let 2S denote the power set of S, and let S≤z = {T ⊆ S : |T | ≤ z}.

Setup For the rest of this section, let D ∈ N be a parameter, let A be a set of polynomials of
degree at most D over the set of variables V, and let O be an auxiliary set of abstract “objects”.

In the work of Alehknovich and Razborov, the objects are the same as the variables: O = V.
Galesi and Lauria consider the graph ordering principle on a graph G = (V,E). In their case,
V = {xij : {i, j} ∈ E} corresponds to the edges, and O = V is the set of vertices.

Let Objs : V → 2O and ObjsA : A → 2O be functions satisfying the following axiom:

(VO) For each o ∈ O there exists an assignment σo to all variables x ∈ V satisfying o ∈ Objs(x),
such that for all C ∈ A either o ∈ ObjsA(C), or σo(C) = 0, or σo(C) = C.

In the case of Alekhnovich and Razborov, Objs(x) = {x} and ObjsA(C) is the set of variables
appearing in C. In this case (VO) is trivial: σx can be any assignment to x. For the graph ordering
principle considered by Galesi and Lauria, Objs(xij) = {i, j}. The axioms come in two flavors:
axioms stating that the xij encode a linear order on the vertices, and axioms Mi stating that
vertex i is not a local minimum. Then ObjsA(Mi) = {i}, and ObjsA(C) = ∅ for all other axioms C.

For a monomial or set of variables m, define Objs(m) to be the union of Objs(x) for all variables
x appearing in m. For a polynomial P , define Objs(P) to be the union of Objs(m) for all monomials
m ∈ P . For a subset A ⊆ A, define ObjsA(A) to be the union of ObjsA(C) for all C ∈ A.

Let the support be a function Sup: Objs(V≤D)→ 2A whose input is a set of the form Objs(S)
for some S ∈ V≤D. For a monomial or set of variables m, define Sup(m) = Sup(Objs(m)). For
a non-zero polynomial P , define Sup(P) = Sup(LM(P)). We say that a subset A ⊆ A is legal if
A = Sup(S) for some S ∈ V≤D. For a polynomial P , define the total support TSup(P) of P to be
the union of Sup(m) for all monomials m ∈ P .

We assume that the support satisfies the following axioms:

3

(S1) Non-triviality: 1 /∈ I(Sup(1)).

(S2) For C ∈ A, C ∈ Sup(C) and Objs(C) ⊆ Objs(LM(C)) ∪ObjsA(Sup(C)).

(S3) Let S1, S2 ∈ V≤D. If Objs(S1) ⊆ Objs(S2) ∪ObjsA(Sup(S2)) then Sup(S1) ⊆ Sup(S2).

(S4) Let S ∈ V≤D and let A ⊆ A be legal. If Sup(S) ⊆ A and Mon(S) is reducible modulo I(A)
then it is reducible modulo the smaller ideal I(Sup(S)).

When all axioms in A are monomials, (S2) reduces to C ∈ Sup(C).
The support of a monomial is intended to be the set of “relevant” axioms. The definition of

support in particular applications is rather subtle. When instantiating our framework in Section 4
and Section 5, we use the exact same definition of the support used by Alekhnovich and Razborov [2]
and by Galesi and Lauria [7], in a slightly simplified form.

We prove our degree lower bound by showing that each line appearing in the proof can be
reduced to zero using the following algorithm: repeatedly reduce the line P modulo Sup(P), each
time working only over the variables appearing in LM(P) and Sup(P). We call a polynomial which
can be reduced to zero in this way semisimple. If one step already reduces the polynomial to zero,
we call it simple; (S2) implies that this is the case for axioms. Every semisimple polynomial is a
sum of simple polynomials with decreasing leading monomials, and it turns out that the converse
holds as well; we use this property to define semisimple polynomials. Since the algorithm doesn’t
reduce 1 to zero due to (S1), this shows that no refutation is possible.

Here are the formal definition of the two concepts just mentioned:

• A polynomial P is simple if degP ≤ D, Objs(P) ⊆ Objs(LM(P)) ∪ ObjsA(Sup(P)), and
P ∈ I(Sup(P)).

• A polynomial P is semisimple if it can be written as
∑

i Pi, where each Pi is simple, and
LM(Pi) 6= LM(Pj) for i 6= j. We call

∑
i Pi a semisimple decomposition of P .

The definition of semisimple polynomials immediately implies the following lemma.

Lemma 3.1. Suppose P is a semisimple polynomial with semisimple decomposition
∑

i Pi. Then
for some i, LT(Pi) = LT(P), and for j 6= i, LM(Pj) < LM(P).

Proof. Let Pi be the polynomial maximizing LM(Pi). By definition, LM(Pj) < LM(Pi) for all j 6= i.
Therefore LT(P) = LT(Pi).

We have defined simple polynomials so that the following property holds.

Lemma 3.2. If P is simple then TSup(P) = Sup(P).

Proof. Since TSup(P) ⊇ Sup(LM(P)) = Sup(P), it is enough to prove that Sup(m) ⊆ Sup(P) for
every m ∈ P . Indeed, since P is simple, Objs(m) ⊆ Objs(LM(P)) ∪ ObjsA(Sup(LM(P)), and so
(S3) implies that Sup(Objs(m)) ⊆ Sup(LM(p)).

Our plan is to show that everything derivable from A in degree D is semisimple, while 1 is not
semisimple. This will require a criterion for semisimplicity, Lemma 3.4 below. In order to prove
our criterion, we need a way of coming up with simple polynomials. This is the contribution of the
following lemma.

4

Lemma 3.3. If m is a monomial of degree at most D reducible modulo I(Sup(m)) then there is a
simple polynomial P whose leading term is m.

Proof. LetQ ∈ I(Sup(m)) satisfy LT(Q) = m, and define S = Objs(Q)\(Objs(m)∪ObjsA(Sup(m))).
The proof is by induction on |S|. If S = ∅ then we are done. Otherwise, let o ∈ S. According
to (VO), there exists an assignment σo to all variables x ∈ V satisfying o ∈ Objs(x), such that for
all C ∈ A, either o ∈ ObjsA(C), or σo(C) = 0, or σo(C) = C. Consider the polynomial R = σo(Q).
Since o /∈ Objs(m), the assignment σo doesn’t affect any variable in m, and so LT(R) = m. Since
o /∈ ObjsA(Sup(m)), the assignment σo either zeroes or leaves unchanged every C ∈ Sup(m), and
so R ∈ I(Sup(m)). Finally, since σo assigns a value to each variable x ∈ V satisfying o ∈ Objs(x),
we have Objs(R) \ (Objs(m) ∪ ObjsA(Sup(m))) ⊆ S \ {o}, and so we can apply the induction
hypothesis to complete the proof.

The following lemma, which contains the only application of (S4), is our crucial criterion for
semisimplicity.

Lemma 3.4. If P is a polynomial of degree at most D and P ∈ I(A) for some legal superset A ⊆ A
of TSup(P) then P is semisimple.

Proof. The proof is by induction on LM(P). The base case is P = 0. If P 6= 0 then LM(P)
is reducible modulo I(A), and so modulo I(Sup(LM(P))), by (S4). Lemma 3.3 shows that there
exists a simple polynomial Q with LT(Q) = LT(P). Since Sup(Q) = Sup(P) ⊆ TSup(P) and Q
is simple, Q ∈ I(A) and so P − Q ∈ I(A). Since Q is simple, Lemma 3.2 shows that TSup(Q) =
Sup(Q) ⊆ TSup(P) ⊆ A. Since LM(P − Q) < LM(P), we can apply the induction hypothesis
to P − Q, deducing that it is semisimple. Lemma 3.1 shows that all polynomials in a semisimple
decomposition

∑
iRi of P −Q satisfy LM(Ri) ≤ LM(P −Q) < LM(P) = LM(Q), and so Q+

∑
iRi

is a semisimple decomposition of P .

We can now follow up on our plan to show that everything derivable from A in degree D is
semisimple, starting with the base case, axiom download; this is the only place we use (S2).

Lemma 3.5. Every C ∈ A is simple, and so semisimple.

Proof. This is an immediate consequence of (S2).

We proceed to prove that the sum of two semisimple polynomials is semisimple.

Lemma 3.6. Suppose P1, P2 are simple polynomials with LT(P1) = LT(P2). Then P1 − P2 is
semisimple.

Proof. Since P1 and P2 are simple and Sup(P1) = Sup(P2), Lemma 3.2 shows that TSup(P1 −
P2) ⊆ Sup(P1). Since P1 − P2 ∈ I(Sup(P1)) = I(Sup(P2)), Lemma 3.4 shows that P1 − P2 is
semisimple.

Lemma 3.7. Suppose P1, P2 are semisimple and c1, c2 ∈ F. Then c1P1 + c2P2 is semisimple.

Proof. We first show that if S is any collection (multiset) of simple polynomials then
∑
S is

semisimple. If there are no two polynomials with the same leading monomial in S, then
∑
S is

clearly semisimple. Otherwise, take any two polynomials P1, P2 with the same leading monomial
m. If LM(P1 + P2) = m then it is easy to check that P1 + P2 is simple, and we replace P1, P2

5

with P1 + P2. If LM(P1 + P2) < m then Lemma 3.6 (applied to P1,−P2) shows that P1 + P2 is
semisimple, and we replace P1, P2 with the simple components of P1 +P2, all of which have smaller
leading monomials than m due to Lemma 3.1. Continue this way until no two polynomials in S
share a leading monomial.

To show that this process converges, we define a potential function which decreases after each
step. For a monomial m, let ι(m) be its index in the increasing order of monomials. We use the
potential function given by Φ(S) =

∑
P∈S ω

ι(LM(P)), where ω is the ordinal of the natural numbers.
It is routine to check that Φ decreases after each step: in the first case we replace 2ωd with ωd for
some d, and in the second case we replace ωd with

∑
i ω

di for some d, di, where di < d for all i.
Since the ordinal numbers are well-ordered, the process must terminate.

Finally, take S to be the collection of simple polynomials forming c1P1 and c2P2. We deduce
that

∑
S = c1P1 + c2P2 is semisimple.

Next, we prove that multiplying a semisimple polynomial by a variable yields another semisimple
polynomial.

Lemma 3.8. Suppose P is a semisimple polynomial and x is a variable. If deg(xP) ≤ D then xP
is semisimple.

Proof. In view of Lemma 3.7, we can assume that P is simple.
Suppose first that Objs(x) ⊆ Objs(LM(P)). Since P is simple, every monomial xm ∈ xP

satisfies Objs(xm) ⊆ Objs(LM(P)) ∪ Objs(Sup(P)). Therefore Sup(xm) ⊆ Sup(P) by (S3), and
so TSup(xP) ⊆ Sup(P). Since P is simple, xP ∈ I(Sup(P)), and so Lemma 3.4 shows that xP is
semisimple.

Suppose next that Objs(x) 6⊆ Objs(LM(P)), and in particular x doesn’t appear in LM(P). The
ordering of monomials satisfies the property that m1 ≥ m2 implies xm1 ≥ xm2 whenever x doesn’t
appear in m1, and this shows that LM(xP) = xLM(P). Therefore Sup(xP) ⊇ Sup(P) by (S3),
and so it is easy to verify that xP is simple.

Finally, we prove that 1 is not semisimple, making our only use of (S1).

Lemma 3.9. The polynomial 1 is not semisimple.

Proof. If 1 were semisimple, then Lemma 3.1 would show that there is some simple polynomial P
with LT(P) = 1. This is impossible since 1 /∈ I(Sup(1)) by (S1).

We are now ready to prove the main theorem of this section.

Theorem 3.10. Let D ∈ N be a parameter, let A be a set of polynomials of degree at most D over
the variables V, and let O be an arbitrary set. Suppose that there exist functions Objs : V → 2O,
ObjsA : A → 2O, and Sup: Objs(V≤D) → 2A, satisfying axioms (V), (S1–4). Then the set A
cannot be refuted in degree D.

Proof. Lemma 3.5, Lemma 3.7 and Lemma 3.8 show that everything derivable in degree D is
semisimple. Conversely, Lemma 3.9 shows that 1 is not semisimple, and so cannot be derived in
degree D.

6

4 Expanding formulas in conjunctive normal form

In this section, we instantiate the lower bound framework for the case of expanding formulas in
conjunctive normal form.

Let Φ be a formula in conjunctive normal form. We think of Φ as a set of monomials (clauses).
For a subset S ⊆ Φ, say that a variable x is a unique neighbor if x appears in exactly one clause in
S. We denote the set of unique neighbors of S by ∂S, the boundary of S.

For the rest of this section, suppose that there are parameters s, e > 0 such that every subset
S ⊆ Φ of size at most s satisfies |∂S| ≥ e|S|; this property is known as unique expansion. We will
use the framework of Section 3 with D = se/2. Without loss of generality, we can assume that
each clause of Φ contains at most se/2 literals.

We start with a simple property satisfied by the boundary operator.

Lemma 4.1. Let S1, S2 ⊆ Φ. Then ∂(S1 ∪ S2) ⊆ ∂(S1) ∪ ∂(S2).

Proof. Let x ∈ ∂(S1 ∪ S2). Then x appears in a unique clause C ∈ Si for some i ∈ {1, 2}. This
implies that x ∈ ∂Si. We conclude that ∂(S1 ∪ S2) ⊆ ∂(S1) ∪ ∂(S2).

Let V be a set of at most se/2 variables. A set S ⊆ Φ is relevant for V if |S| ≤ s and ∂S ⊆ V .

Lemma 4.2. Let V be a set of at most se/2 variables, and S ⊆ Φ. If S is relevant for V then
|S| ≤ s/2.

Proof. By the unique expansion property, |∂S| ≥ e|S|. Since S is relevant for V , |∂S| ≤ |V | ≤ se/2.
We deduce that |S| ≤ s/2.

Lemma 4.3. Let V be a set of at most se/2 variables, and S1, S2 ⊆ Φ. If S1, S2 are relevant for
V then S1 ∪ S2 is relevant for V .

Proof. Lemma 4.2 shows that |S1∪S2| ≤ s. Lemma 4.1 shows that ∂(S1∪S2) ⊆ ∂(S1)∪∂(S2) ⊆ V ,
and so S1 ∪ S2 is relevant for V .

We can now define the support.

Definition 4.4. Let V be a set of at most se/2 variables. We define Sup(V) as the union of all
sets S ⊆ Φ relevant for V .

Lemma 4.5. Let V be a set of at most se/2 variables. Then Sup(V) is relevant for V and
|Sup(V)| ≤ s/2.

Proof. The first part follows from Lemma 4.3, the second part from Lemma 4.2.

We now show that the support satisfies the prerequisites of Theorem 3.10. Since O = V, (VO)
trivially holds. We prove the rest of the prerequisites in order. The proof of (S4) uses the bound
|A| ≤ s/2 on all legal sets A given by Lemma 4.5.

Lemma 4.6. We have Sup(∅) = ∅.

Proof. Suppose that S is relevant for ∅. Then ∂S = ∅. Since |∂S| ≥ e|S| and e > 0, we conclude
that S = ∅.

7

Lemma 4.7. For every clause C ∈ Φ we have C ∈ Sup(C).

Proof. By assumption, |Objs(C)| ≤ se/2. Clearly ∂C ⊆ Objs(C), and so {C} is relevant for
Objs(C). Therefore C ∈ Sup(C).

Lemma 4.8. Suppose V1, V2 are sets of at most se/2 variables. If V1 ⊆ V2 ∪ObjsA(Sup(V2)) then
Sup(V1) ⊆ Sup(V2).

Proof. Lemma 4.5 shows that Sup(V1) is relevant for V1, and so ∂ Sup(V1) ⊆ V1 ⊆ V2∪ObjsA(Sup(V2)).
The lemma also shows that Sup(V2) is relevant for V2, and so ∂ Sup(V2) ⊆ V2. Moreover, the lemma
shows that |Sup(V1) ∪ Sup(V2)| ≤ s.

Let x ∈ ∂(Sup(V1)∪ Sup(V2)). If x is a unique neighbor of a clause from Sup(V2), then x ∈ V2.
Otherwise, x is a unique neighbor of a clause from Sup(V1), and so x /∈ ObjsA(Sup(V2)), and again
x ∈ V2. We conclude that Sup(V1)∪Sup(V2) is relevant for V2, and so Sup(V1)∪Sup(V2) ⊆ Sup(V2),
which implies Sup(V1) ⊆ Sup(V2).

Lemma 4.9. Let m be a monomial of degree at most se/2 which is reducible modulo I(A), for
some A ⊆ Φ of size at most s/2. If A ⊇ Sup(m) then m is reducible modulo I(Sup(m)).

Proof. The proof is by induction on |A \ Sup(m)|. If A ⊆ Sup(m) then we are done, so suppose
Sup(m) doesn’t contain A. By the definition of Sup(m), ∂ Sup(m) ⊆ Objs(m) while ∂A * Objs(m).
Thus there is a clause C ∈ A \ Sup(m) and a variable x ∈ Objs(C) \ Objs(m) which is a unique
neighbor, that is x /∈ Objs(A \ {C}).

Suppose x = b zeroes C. Take any polynomial P ∈ I(A) with LT(P) = m. Substituting x = b,
we get a polynomial Q ∈ I(A \ {C}) with LT(P) = m, and so m is reducible modulo I(A \ {C}).
The induction hypothesis shows that m is reducible modulo I(Sup(m)).

Having verified all the properties of the support, we conclude the following lower bound from
Theorem 3.10.

Theorem 4.10 ([2]). Suppose ϕ is a CNF such that any set S of up to s clauses satisfies |∂S| ≥
e|S|, for some s, e > 0. Then ϕ cannot be refuted in degree se/2.

5 Graph ordering principle

In this section, we instantiate the lower bound framework for the graph ordering principle, following
Galesi and Lauria [7]. Let G = (V,E) be an undirected graph. The neighborhood of a vertex i is
N(i) = {j : {i, j} ∈ E}. The neighborhood of a set S ⊆ V of vertices is N(S) =

⋃
i∈S N(i). The

boundary of S is Γ(S) = N(S) \ S. In other words, the boundary of S is the set of vertices outside
S which have a neighbor in S. While N(S ∪ T) = N(S) ∪ N(T), it is not true in general that
Γ(S ∪ T) = Γ(S) ∪ Γ(T).

The graph ordering principle is defined as follows. For every pair i, j ∈ V of different vertices
we have a variable xij . The variables xij define an order relation ≺ on V , xij = 0 meaning j ≺ i,
and xij = 1 meaning i ≺ j.

We have three kinds of axioms. For every pair i, j of different vertices, there is a complementarity
axiom σij : xij + xji = 1. For every triple i, j, k ∈ V of different vertices, there is a transitivity
axiom τi,j,k: xijxjkxki = 0. This axiom states that if i ≺ j ≺ k then i ≺ k. Let T denote the set

8

of trivial axioms, which include all complementarity and transitivity axioms. Together the trivial
axioms state that ≺ is a linear order.

For each i ∈ V , there is a minimality axiom Mi:
∏
j∈N(i) xij = 0. This axiom states that for

some j ∈ N(i), j ≺ i. In other words, no vertex is a local minimum. All axioms taken together are
contradictory since the global minimum is also a local minimum.

For the rest of the section, we assume that there are parameters s, e > 0 such that for every
set S ⊆ V of size at most s, |Γ(S)| ≥ e|S|; we call this the expansion property. This property is
similar to the property we used in Section 4. We will instantiate the framework of Section 3 with
D = se/4 and O = V .

For a set X of variables, let Objs(X) be the set of vertices mentioned in X. For example,
Objs(xij) = {i, j}. Note that |Objs(X)| ≤ 2|X|, and so |X| ≤ D implies |Objs(X)| ≤ se/2. Also,
define ObjsA(C) = ∅ for all trivial axioms C ∈ T , and ObjsA(Mi) = {i}. Our first order of business
is to show that Objs and ObjsA satisfy (VO).

Lemma 5.1. For each i ∈ V there is a substitution σi to the variables {xij , xji : j ∈ N(i)} that
satisfies Mj for each j ∈ N(i) (i.e., sets Mj to 0), falsifies Mi (i.e., sets it to 1), and doesn’t affect
the remaining minimality axioms. Furthermore, each trivial axiom is either satisfied or unaffected.

Proof. The substitution σi is of the form xij = 1 and xji = 0 for every j ∈ N(i). In other words,
σi states that i is a local minimum. It is easy to verify that all the required properties hold.

We will define an operator VSup (the vertex support) which takes a set of at most se/2 vertices
and returns a set of at most s/2 relevant vertices. For a set X of variables, we define VSup(X) =
VSup(Objs(X)). Similarly, for a monomial m, we define VSup(m) = VSup(Objs(m)). Given VSup,
we define Sup(X) = T ∪ {Mi : i ∈ VSup(X)}.

Our definition of VSup mimics the definition of the support in Section 4. Therefore we skip
some of the identical proofs.

Lemma 5.2. Let S1, S2 ⊆ V . Then Γ(S1 ∪ S2) ⊆ Γ(S1) ∪ Γ(S2).

Proof. Let x ∈ Γ(S1 ∪ S2). Thus x ∈ N(Si) for some i ∈ {1, 2}, and furthermore x /∈ S1 ∪ S2 and
so x /∈ Si. This implies that x ∈ Γ(Si). We conclude that Γ(S1 ∪ S2) ⊆ Γ(S1) ∪ Γ(S2).

Let T be a set of at most se/2 vertices. A set S ⊆ V is relevant for T if |S| ≤ s and Γ(S) ⊆ T .

Lemma 5.3. Let T be a set of at most se/2 vertices, and S ⊆ V . If S is relevant for T then
|S| ≤ s/2.

Lemma 5.4. Let T be a set of at most se/2 vertices, and S1, S2 ⊆ V . If S1, S2 are relevant for T
then S1 ∪ S2 is relevant for T .

We can now define the vertex support.

Definition 5.5. Let T be a set of at most se/2 vertices. We define VSup(T) as the union of all
sets S ⊆ V relevant for T .

Lemma 5.6. Let T be a set of at most se/2 vertices. Then VSup(T) is relevant for T and
|VSup(T)| ≤ s/2. Also, N(VSup(T)) ⊆ T ∪VSup(T).

Proof. The first part follows from Lemma 5.4. The second part follows from Lemma 5.3. The third
part follows from N(VSup(T)) ⊆ Γ(VSup(T)) ∪VSup(T) and the first part.

9

Recall that given the vertex support, we defined the support as Sup(X) = T ∪ {Mi : i ∈
VSup(X)}. We now show that the support satisfies the prerequisites of Theorem 3.10. When
proving (S3), we use the simple identity ObjsA(Sup(X)) = VSup(X). When proving (S4), we
use the property that every legal A contains at most s/2 minimality axioms, which follows from
Lemma 5.6 and the definition of Sup.

Lemma 5.7. We have 1 /∈ I(Sup(1)).

Proof. First, we claim that VSup(∅) = ∅. Indeed, if S is relevant for ∅, then Γ(S) = ∅, contradicting
the expansion property. Hence Sup(1) = Sup(∅) = T . Any linear order satisfies all trivial axioms,
showing that 1 /∈ I(Sup(1)).

Lemma 5.8. For every axiom C we have C ∈ Sup(C) and Objs(C) = Objs(LM(C)).

Proof. There are two cases. If C is a trivial axiom, then C ∈ Sup(C) by definition and Objs(C) =
Objs(LM(C)) by inspection. If C = Mi is a minimality axiom, then Sup(C) = Sup(Objs(LM(C)))
and Objs(LM(C)) = {i} ∪ Γ({i}). Therefore {i} is relevant for Objs(LM(C)), and we deduce that
i ∈ VSup(Objs(LM(C))) and so C ∈ Sup(C).

Lemma 5.9. Suppose X1, X2 are sets of at most se/4 variables. If Objs(X1) ⊆ Objs(X2) ∪
VSup(X2) then Sup(X1) ⊆ Sup(X2).

Proof. Let S1 = Objs(X1) and S2 = Objs(X2), so that S1 ⊆ S2 ∪ VSup(S2). We will show that
VSup(S1) ⊆ VSup(S2) by showing that VSup(S1)∪VSup(S2) is relevant for S2. Indeed, Lemma 5.3
shows that |VSup(S1) ∪ VSup(S2)| ≤ s. Lemma 5.2 shows that Γ(VSup(S1) ∪ VSup(S2)) ⊆
Γ(VSup(S1)) ∪ Γ(VSup(S2)) ⊆ S2 ∪VSup(S2). However, by definition Γ(VSup(S1) ∪VSup(S2)) is
disjoint from VSup(S2), and so Γ(VSup(S1) ∪ VSup(S2)) ⊆ S2. We conclude that Γ(VSup(S1) ∪
VSup(S2)) is relevant for S2.

Lemma 5.10. Let m be a monomial of degree at most se/4 which is reducible modulo I(T ∪M),
where M is a collection of at most s/2 minimality axioms. If T ∪M ⊇ Sup(m) then m is reducible
modulo I(Sup(m)).

Proof. Let M = {Mi : i ∈ S}, where |S| ≤ s/2. The proof is by induction on |S \ VSup(m)|. If
S = VSup(m) then there is nothing to prove. Otherwise, by definition of VSup, Γ(S) * Objs(m).
Therefore there exists an i ∈ S which has a neighbor j /∈ Objs(m) ∪ S. Let σj be the substitution
given by Lemma 5.1.

Since m is reducible modulo I(T ∪M) there is a polynomial P ∈ I(T ∪M) such that LT(P) = m.
The substitution σj satisfies some axioms including Mi, falsifies Mj , and leaves the rest unaffected.
Since j /∈ S, we deduce that P |σj ∈ I(T ∪ (M \ {Mi})). Since j /∈ Objs(m), LT(P |σj) = m.
Therefore we can apply the induction hypothesis.

Having verified all the properties of the support, we conclude the following lower bound from
Theorem 3.10.

Theorem 5.11 ([7]). Suppose G is a graph in which any set S of up to s vertices satisfies |Γ(S)| ≥
e|S|, for some s, e > 0. Then the graph ordering principle defined by G cannot be refuted in degree
se/4.

10

References

[1] Michael Alekhnovich, Eli Ben-Sasson, Alexander A. Razborov, and Avi Wigderson. Space
complexity in propositional calculus. SIAM Journal on Computing, 31(4):1184–1211, 2002.

[2] Misha Alekhnovich and Alexander Razborov. Lower bounds for polynomial calculus: non-
binomial case. Proceedings of the Steklov Institute of Mathematics, 242:18–35, 2003.

[3] Paul Beame, Russell Impagliazzo, Jan Kraj́ıček, Toniann Pitassi, and Pavel Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proceedings of the London Math-
ematical Society, 73(1):1–26, July 1996.

[4] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow—resolution made simple. Journal
of the ACM, 48(2):149–169, 2001.

[5] Matthew Clegg, Jeffery Edmonds, and Russell Impagliazzo. Using the Groebner basis algo-
rithms to find proofs of unsatisfiability. In Proceedings of the 28th Annual ACM Symposium
on Theory of Computing (STOC ’96), pages 174–183, May 1996.

[6] Nicola Galesi and Massimo Lauria. On the automatizability of polynomial calculus. Theory
of Computing Systems, 47(2):491–506, 2010.

[7] Nicola Galesi and Massimo Lauria. Optimality of size-degree tradeoffs for polynomial calculus.
ACM Transactions on Computational Logic, 12(1):4:1–4:22, 2010.

[8] Russell Impagliazzo, Pavel Pudlák, and Jǐŕı Sgall. Lower bounds for the polynomial calculus
and the Gröbner basis algorithm. Computational Complexity, 8(2):127–144, 1999.

[9] Mladen Mikša and Jakob Nordström. Long proofs of (seemingly) simple formulas. In Proceed-
ings of the 17th International Conference on Theory and Applications of Satisfiability Testing
(SAT 14), volume 8561 of Lecture Notes in Computer Science, pages 121–137. Springer, July
2014.

[10] Mladen Mikša and Jakob Nordström. A generalized method for proving polynomial calculus
degree lower bounds. In Proceedings of the 30th Annual Computational Complexity Conference
(CCC ’15), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs), pages 467–
487, June 2015.

11

