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1 Introduction

This lecture follows the paper “Seven Trees in One” [1], with some material
taken from [3] (see also [2]).

We will consider classes of binary trees — in fact, polynomials in binary
trees. But first, what is a binary tree? Our binary trees (excluding the empty
tree) have a recursive definition: a single vertex ◦ is a binary tree, and if T1, T2

are binary trees, then (T1, T2) is also a binary tree. We can write this formally
as follows:

T = 1 + T 2.

But what does this mean?
First, let us try to understand the expression 1 + T 2. This means “either 1

or T 2”. Next, 1 represents some atom. And what does T 2 stand for? These are
just pairs of binary trees. So each tree is equivalent to either an atom or to a
pair of binary trees. The question is, equivalent in what sense?

Before answering this question, let us try to hypothesize what polynomials
we can expect to be equal. We can calculate as follows (for example in C[T ]):

T 3 = T · T 2 = T (T − 1) = T 2 − T = −1.

So T is a 6th-degree primitive root of unity (certainly T 6= −1). Written dif-
ferently, T 6 = 1, but we wouldn’t expect that to be true. However it seems
reasonable to expect

T 7 = T.

Hence, seven trees in one.
The simplest semantics one can think of is that P = Q if there is a bijection

between the sets P and Q. However, this definition is quite boring since for any
non-constant P we have |P | = |T |, and so P = Q for any infinitenon-constant
polynomials P,Q. What can we do then?

∗After a paper [1] by Andreas Blass
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2 Definition of equality

Let us try a more sophisticated definition of equality. We will say that P = Q
if there is an algorithm that takes P and produces Q. We can think of P as
a sum of monomials, and the algorithms takes as input the monomial number
and an appropriate tuple of trees. Its output is also a monomial number and
an appropriate tuple. The trees themselves have the following API:

1. Determine whether a tree is a leaf (single vertex) or of the form (T1, T2).

2. In case a tree is of the form (T1, T2), get T1 and T2.

3. Produce a single vertex.

4. Given trees T1, T2, produce a tree (T1, T2).

Does this definition help us? Consider the following bijection between T and
T + 1:

1. The input ◦ is mapped to the 1.

2. A left-winding path of length l > 0 is mapped to a left-winding path of
length l − 1.

3. Any other tree is mapped to itself.

It is easy to check that this is a bijection. Clearly, it can also be implemented
algorthmically. So we have

T = T + 1.

From this it follows that

T 2 = T · T = T (T + 1) = T 2 + T = T 2 + (T + 1)

= (T 2 + T ) + 1 = T 2 + 1 = T,

T + T = T 2 + T + 1 = T 2 + T = T 2 = T.

From these three equations we can deduce again that P = Q for any non-
constant P,Q.

The algorithm described above terminates because any left-winding path
must terminate (all the trees we considered were finite). Suppose now that we
also allow infinite binary trees — for example, all subtrees of the usual infinite
binary tree. Now our previous algorithm gets stuck for an infinite left-winding
path. But is it meaningful to allow infinite trees? If we look carefully at our
definition, we see that when the time comes to output a tree, we simply take
several subtrees of the input (“pointers”) and combine them. It doesn’t matter
whether these are finite or not. It turns out that the implied definition will give
us everything that we want.
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2.1 The definition

We define P ≡C Q if there is an algorithm from P to Q which always stops,
and produces a bijection, for the class of infinite binary trees (subtrees of the
usual infinite binary tree). Note that this class also includes all the finite binary
trees.

2.2 Elementary properties of equality

We now prove a few properties of ≡C , culminating in the fact that it is an
equivalence relation.

Lemma 1 (Compactness). Any algorithm proving P ≡C Q has bounded running
time.

Proof. We can look at the running of the algorithm as a tree of computation.
At each vertex there is a query of the form “◦ or (T1, T2)?”, and in the leaves we
actually output something. Suppose now that the running time is unbounded.
We thus have a binary tree with unbounded depth, so by König’s lemma it must
contain an infinite path (this path can be built by starting with the root and
choosing always the edge leading to a subtree with unbounded depth). This
inifinite path corresponds to a non-terminating computation, since we can actu-
ally produce an infinite binary tree conforming to this recipe (this corresponds
to the infinite left-winding path in the example discussed earlier).

Lemma 2 (Uniqueness of labels). In any algorthim proving P ≡C Q, during
any output step each input “pointer” is used at most once.

The pointers mentioned in the lemma are just the unexplored parts of the
tree at the time of output. For example, suppose the input is T , we queried the
input and it turns out it’s of the form (T1, T2) (we call this a tagged tree). We
then queried T1 and it turns out that T1 is a leaf. So the general form of the
tree at this point is (◦, T2), and the lemma is claiming that if we output at this
point, then we use T2 at most once.

Proof. We consider first the special case Q = T .
At each output step, the output is a tagged tree, viz. a finite binary tree

whose leaves are either ◦ or pointers. We can consider the collection O of all
of them. This collection must represent each possible binary tree exactly once.
Moreover, by lemma 1 this collection is finite, so there is some bound D on the
depth of all trees in O.

Now suppose O contains some binary tree B with repeated labels. Choose
one of the repeated labels S, and instantiate B by replacing S with a left winding
path of length D, and all other labels by a vertex. Denote this tree B0, so that
B0 is an instance of B. Now attach to the end of each of these paths a right
winding path, of different length for each. Denote this new tree B1. This B1

must be an instantiation of some C ∈ O. The set of labels whose descendants
are the left-then-right winding paths must consist of different labels because
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their descendants are some left-then-right winding paths with the right winding
part of different lengths. Moreover, these labels cannot appear anywhere else
since these paths are of length D, and there are no other vertices that deep in
B1. We see immediately that, in fact, B0 is also an instantiation of C, so that
the mapping is not injective. This proves the lemma for Q = T .

Clearly the same method of proof works for any monomial T k (trivially for
T 0 = 1). A general polynomial is a disjoint sum of monomials, and considering
each of them separately we again find the lemma correct.

Theorem 3. The relation ≡C is an equivalence relation.

Proof. We have to prove three things: reflexivity, symmetry and transitivity.
Reflexivity is easy: clearly P ≡C P by simply copying the input. Transitivity

is also simple: if you have an algorithm transforming P to Q, and another one
transforming Q to R, you can run the first algorithm without emitting any
output, and then run the second algorithm on the interim results virtually —
some of the queries you will be able to answer right away, and some of them
you simply “forward” to the actual input.

The hardest part is proving symmetry. Suppose there is some algorithm
transforming P to Q. We can look at this algorithm as a collection of trans-
formations A → B, where A and B are tuples of tagged trees (labelled with
monomial numbers). For each monomial in P or Q, the relevant A’s or B’s
form a partition of that monomial.

To build an algorithm transforming Q to P , we need to determine for each
input what B covers it. The way to do this is as follows. Given a tuple of
trees, we will “explore” the trees by querying the structure of each member of
the tuple up to some depth k, where k is the maximum depth of a B tree (by
lemma 1 there is a finite number of them). Given this structure, we can associate
the proper B for the input, and apply the appropriate transformation B → A.
The resulting algorithm always terminates and is a bijection transforming Q to
P .

3 When are two polynomials equal

We now have a definition for equality, but how do we know whether two polyno-
mials are equal? In order to answer that, we have to find some invariant which
every transformation algorithm keeps. First, we introduce a normal form for
algorithms:

Lemma 4. Each algorithm proving that P ≡C Q can be transformed into an
algorithm which at each output step uses only pointers which were not queried.
Moreover, it must use each of them exactly once.

An example of an algorithm not consistent with this normal form is an
algorithm transforming T to T by first exploring the root of its input, and then
copying the root pointer to the output.
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Proof. Suppose that in some output step we use some pointer T1 which was
queried. We can represent the knowledge about the subtree rooted in T1 as a
tagged tree, and replace T1 in the output with that tagged tree. This way we
only use pointers which were not queried. We must use each of these pointers
because otherwise the mapping won’t be injective, and by lemma 2 we can’t use
any of them more than once.

Theorem 5. If P ≡C Q then there is a set of rules (i, A)→ (j, B) such that:

1. i is an index of some monomial T d ∈ P ,

2. A is a d-tuple of tagged trees,

3. j is an index of some monomial T e ∈ Q,

4. B is an e-tuple of tagged trees,

5. A and B have the same number of tags,

6. For each index i of a monomial in T d ∈ P , the set of all A’s appearing
in rules of the form (i, A)→ · forms a partition of T d which results from
repeated queries of T d,

7. For each index j of a monomial in T e ∈ Q, the set of all B’s appearing
in rules of the form · → (j, B) forms a partition of T e.

Such a set of rules (without the requirement that the A’s result from repeated
querying) is called a very elementary bijection in [1].

Proof. This follows immediately from lemma 4.

Let’s summarize what we know about the set of rules:

1. For each monomial T d ∈ P , the different A’s form a partition of T d which
results from repeated querying of T d.

2. For each monomial T e ∈ Q, the different B’s form a partition of T e.

3. In each rule, the number of tags in A and B is the same.

What can we say about a partition of T d? Let’s look onat a simple example.
We know that ◦ and (T1, T2) partition the monomial T . It would be natural to
express that as T = 1 + T 2. This inspires the following definitions:

1. The weight w(A) of a tuple A of tagged trees with i tags is T i.

2. The weight w(S) of a set S of tuples is the sum of the weights of the
individual tuples.

Looking at the process of repeated querying, we immediately deduce the
following lemma:
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Lemma 6. For of any set § = {(i, A)} partitioning a polyonimal P and resulting
from repeated querying, we have w(S) = P in the semiring RT = N[T ]/(T =
1 + T 2).

The semiring N[T ]/(T = 1 + T 2) is defined by identifying two polynomials
which can be proven equal using the normal axioms of semirings together with
the equation T = 1 + T 2.

Proof. Each step of querying has the effect of substituting 1 + T 2 for T in the
intermediate expression for the total weight, so it does not change the total
weight modulo T = 1 + T 2. The lemma follows since the weight before making
any queries is exactly P .

The lemma was easy because the partition was obtained by repeated query-
ing. But in fact, we can prove it for any partition as follows.

Lemma 7. The weight of any finite set {(i, A)} partitioning a polynomial P is
equal to P in the semiring RT = N[T ]/(T = 1 + T 2).

Proof. Let d be the maximum depth of any tree in the partition. For any tuple
A of tagged trees, we can use repeated querying to form a partition Wd(A), all
of whose tags (if any) are at depth exactly d. By lemma 6, w(A) = w(Wd(A)).
In particular, w({i, A}) = w (

⋃
{i,Wd(A)}). The right hand side is independent

of the partition, so by lemma 6 it must equal P .

We immediately deduce the following theorem.

Theorem 8. If P ≡C Q then P = Q in the semiring RT = N[t]/(T = 1 + T 2).

Proof. Consider the normal form given by theorem 5. Since in each rule (i, A)→
(j, B) we have w(A) = w(B), from lemma 7 we deduce that in RT we have
P = w({(i, A)}) = w({(j, B)}) = Q.

Is the converse also true? To answer this, we have to provide a formal
description for when two polynomial are equal in RT .

Lemma 9. All equations in the semiring RT can be deduced from the following
axiom schemes and deduction rules, where all the variables are fully parenthe-
sized terms using the atoms 1, T and the operators +, ·:

1. Equality: A = B, A = B ` B = A, A = B ∧B = C ` A = C.

2. Compatibility: A = B ` A+ C = B + C, A = B ` AC = BC.

3. Addition: A+B = B +A, (A+B) + C = A+ (B + C).

4. Multiplication: AB = BA, (AB)C = A(BC).

5. Distributivity: A(B + C) = AB +AC.

6. The special axiom T = 1 + T 2.
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Proof. This can be taken as a definition of the semiring modulo the relation.

We can easily adjust the definition of ≡C to accomodate these fully paran-
thesized terms:

1. 1 means an atom.

2. T means a binary tree (accessible with the old API).

3. A+B means either an instance of A or an instance of B.

4. A ·B means an instance of A together with an instance of B.

We can think of an algorithm as being presented its input and presenting its
output in this form. The original definition is now a special case given some
explicit encoding of the polynomials involved.

It is now easy to see that any derivation of P = Q in RT translates to an
algorithm in our sense, since all the axiom schemes and derivation rules are valid
for ≡C .

Theorem 10. We have P ≡C Q if and only if P = Q in RT .

Proof. We already know one direction from theorem 8. For the other direction,
we only need to verify that all the axiom schemes (and the axiom T = 1 + T 2)
and derivation rules are valid if we replace equality in RT by ≡C . We have
already proved all axioms for equality in theorem 3. All the rest is very simple
to verify.

4 Deciding equality in RT

In the previous section we have reduced the question of equivalence in the sense
of ≡C to equality in the semiring RT . It is easy to give necessary conditions for
equality there: if we take any semiring with an element x satisfying x = 1 + x2,
then P ≡ Q (mod RT ) implies that P (x) = Q(x) in the new semiring. There
are two canonical examples, which we have already seen in the introduction.

Lemma 11. If P ≡ Q (mod RT ) then P (α) = Q(α) for α = e2πi/6 and
P (ℵ0) = Q(ℵ0).

Proof. In the ring C, α satisfies α = 1+α2, as we have seen in the introduction.
In the semiring of cardinals, ℵ0 = 1 + α2

0.

It follows that T = Tn can only be true if n ≡ 1 (mod 6). What about the
converse? We will see that the two conditions mentioned in lemma 11 are in
fact also sufficient. There are two cases. If P = n for some n ∈ N then the
conditions imply that also Q = n so that trivially P = Q. Otherwise, P and
Q must both be non-constant polynomials satisfying P (α) = Q(α). What does
this imply?
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Lemma 12. If P (α) = Q(α) then for some polynomial R, P + X = Q + X
(mod T = 1 + T 2).

Proof. Let us consider P,Q as elements of Q[T ]. Since (P −Q)(α) = 0, P −Q
must be divisible by the minimal polynomial of α (over the rationals), namely
T 2 − T + 1. Employing the division algorithm, we see that the quotient S has
integral coefficients. Let us write it as S = S+−S− where S+, S− have positive
coefficients, so that we have

P −Q = (T 2 + 1− T )(S+ − S−).

If we expand this and put all negative terms in the other side of the equation,
we get

P + TS+ + (T 2 + 1)S− = Q+ (T 2 + 1)S+ + TS−.

Since all the polynomials have positive coefficients, this equation is actually true
in the semiring N[T ]. Moreover, calculating in RT we get

P + TS+ + (T 2 + 1)S− = Q+ (T 2 + 1)S+ + TS−

≡ Q+ TS+ + (T 2 + 1)S− (mod T = 1 + T 2).

The lemma follows with X = TS+ + (T 2 + 1)S−.

In order to complete the proof, we need to find out a way to cancel elements
in RT . We cannot always do that, for example T ≡ 1 + T 2 ≡ 1 + T + T 3 but
1 + T 3 6≡ 0. However, if both P and Q are non-constant, it turns out that
cancellation does work.

We begin with consequences of the simple observation T ≡ T + (1 + T 3)
mentioned above.

Lemma 13. Define [0] = 1+T 3. This element satisfies the following properties
in RT :

1. T + [0] = T .

2. P + [0] = P for non-constant P .

3. T · [0] = [0].

4. P · [0] = [0] for all P 6= 0.

Proof. The first equation follows by the computation mentioned earlier:

T + [0] = T + 1 + T 3 = 1 + T 2 = T.

Given any non-constant P , we can take any non-constant monomial of it,
and repeatedly apply the rule T k = T k+1 + T k−1 until we reach T . Then we
can add or remove [0], and take our steps back. For example,

T 2 = T 3 + T + [0] = T 2 + [0] .
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This proves the second equation.
The third equation is another simple calculation:

T · [0] = T (1 + T 3) = T + T 4 = 1 + T 2 + T 4 = 1 + T 3 = [0] .

The fourth equation follows from distributivity.

Using this new kind of infinite zero, we can define inverses. Since 1+T 3 = [0],
we can think of T 3 as an inverse of 1, and use it to define all other inverses.

Lemma 14. Define [−1] = T 3 and for any P 6= 0, [−P ] = [−1]P . These
elements satisfy the following properties in RT :

1. 1 + [−1] = [0].

2. P + [−P ] = [0].

Proof. Both parts are easy calculations:

1 + [−1] = 1 + T 3 = [0] ,
P + [−P ] = P + P · [−1] = P (1 + [−1]) = P · [0] = [0] .

We can now prove a cancellation lemma:

Lemma 15 (Cancellation). If P + X ≡ Q + X (mod RT ) for non-constant
P,Q then P ≡ Q (mod RT ).

Proof. We can assume X 6= 0. The proof is extremely easy:

P = P + [0] = P +X + [−X] = Q+X + [−X] = Q+ [0] = Q.

It follows that the two conditions mentioned as necessary in lemma 11 are
also sufficient.

Theorem 16. We have P ≡ Q (mod T = 1 + T 2) if and only if P (α) = Q(α)
for α = e2πi/6 and P (ℵ0) = Q(ℵ0).

Proof. We have already proved that these conditions are necessary in lemma 11.
Now suppose both are true. By substituting ℵ0, we se that either both P and Q
are constant, or both are non-constant. If both are constant then by substituting
α we see that this constant must be the same and so P = Q trivially. If both
are non-constant this is true by combining lemmas 12 and 15.

Corollary 17. We have P ≡C Q if and only if P (α) = Q(α) for α = e2πi/6

and P (ℵ0) = Q(ℵ0).

This implies that indeed T 7 ≡C T , just as we wanted in the introduction.
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5 Notes

Let us note the correspondence between our sources and our presentation. The
original paper [1] starts by defining very elementary bijections, which are very
similar to the normal form of theorem 5, and proving that their existence is
equivalent to equality in RT . It then uses a normal form argument to prove
theorem 16.

Our proof of theorem 16 is taken from [3], where the cancellation lemma
is proved for general equations T = P (T ), where P (T ) ∈ N[T ] must satisfy
P (0) 6= 0 and degP ≥ 2. Moreover, assuming T − P (T ) is primitive (its
coefficients have no common factor) and has no repeated complex roots, then a
form of theorem 16 is true (we have to test all complex roots). The paper [2]
additionally describes a criterion of equality for linear P .

The paper [1] is motivated by a 1990 comment by the eminent category
theorist Lawvere. The papers [3] and [2] are follow-ups by formal type theorists.

The definition of ≡C is our own idea, and it is geared toward proving com-
pactness. We feel it is more natural than that of very elementary bijections.
The original paper [1] goes on to prove another equivalent definition, basically
existence of a proof that P = Q in some intuinionstic logic with added axioms
describing the properties of binary trees. Unfortunately the proof uses topos
theory, and is not accessible to the general mathematical public.

5.1 Future research

We have seen two definitions of equality. Under one of them all polynomials
collapse to the uninteresting semiring N[T ]/(T = 1 + T ), and under another to
the interesting one N[T ]/(T = 1+T 2). There are semirings which are in between
the two, for example we can add the axiom T = T + 2 without collapsing
everything to N[T ]/(T = 1 + T ). The question is whether we can supply a
definition of equality which would produce such an intermediate semiring.

One way of doing that would be to restrict the set of binary trees on which
the algorithm must stop in the definition of ≡C . In order to prove compactness
we only need all trees with finitely many computable infinite paths (a single
one would do for the proof, but we need the set to satisfy T = 1 + T 2). What
happens if we define equality in this sense?
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