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Introduction

GAN training suffers from instability due to its saddle point formulation:

max min (0, w)

f and w are generator and discriminator parameters respectively, f is the
GAN loss. Typical GAN training alternates gradient updates to 8 and w

0 — 0+ U@Vef(ea W)a

However, to solve the saddle point problem ideally for each 8 we want to
solve for w*(6) = argmin,, f(6, w), and then optimize maxy f (6, w*(0)).
For any w obtained from gradient updates, we have f(6,w) >

f(0,w*(0)), therefore the outer optimization becomes a maximization

W= W — 1wV f(0,w).

of an upper bound, leading to instability:.

In this paper we propose to dualize the inner part miny f(6, w) into
max) g(6, \) which is always a lower bound on f(6, w*(#)) and solve the
much more stable maximization problem

mAX MAx g(0, ).

This formulation allows us to:
= Solve the instability problem for GANs with linear discriminators.
« Improve stability for GANs with nonlinear discriminators.

(GANs with Linear Discriminators

We start from linear discriminators that rely on a scoring function
F(w,x) = w'x. Any differentiable nonlinear feature ¢(x) can be used
in place of x. The discriminator

Dy (x) = pw(y = 1|x) = o(F(W,x)) =
The GAN loss on a batch of data {xi,...,

{z1,...,2,} is
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The loss is convex in w, we can derive the standard dual problem to be
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H(u) = —ulogu — (1 — u)log(1l — u) is the binary entropy, and the
optimal w* can be obtained from the optimal solution (A¥, AX) for this
dual problem as
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Dualing GANs
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Properties:

« The |5 AdeXi — 3 A, Go(2:)||; encourages moment matching,
« The entropy terms encourage the A’'s to be close to the mean.

For training we optimize maxg maxy g(#, A), which is very stable.

(GANs with Non-Linear Discriminators

[n general the scoring function F'(w,x) may be nonlinear in w and typ-
ically implemented by a neural network. In this case the GAN loss

¢ 2 . —F(w,x; 1 F(w,Gy(z;
f((g,W) :§HWH2+%%:10g (1—|-€ (W, ))+%;10g (1—|—6 (W, Gl )))
is not convex in w, therefore hard to dualize directly:.

Proposed solution: approximate f locally around any point wy, using
a model function myg(s) ~ f(6,wyr + s), then dualize myg(s). The
optimization problem for the discriminator becomes

, 1
minmyg(s) s.t. §||SH§ < Ay,

where 3||s]|* < Ay is a trust-region constraint that ensures the quality of
the approximation. The overall algorithm is shown below:

GAN optimization with model function

Initialize 0, w, kK = 0 and iterate

® One or few gradient ascent steps on f(6, wy) w.r.t. ¢
® Find step s using ming my, o(s) s.t. 5[|s||3 < Ay

©® Update wi 1 < Wi+ s

o k< k+1

We explore two approximations:
(A). Cost function linearization:

— f(wka (9) - va(Wka ‘9>TS

mkjg(S)
We can solve for the optimal s* = iy \]{(23{9 HQVWf (Wg, ) analytically.

This s* has the same form and direction as a gradient update used in
standard GANs.

Linearize f as

(B). Score function linearization: Linearize F' and keep the loss
— F(wp,x)+s VoF (W, x), Vx.

Model function is a more accurate approximation compared to (A).

C 1 N |
mio(s) = [wi -+ il + - S log (14 e vex) s Vallvx)

b S log (1 N GF(W/{,GQ(ZZ-))+STVWF(W/{,G9(ZZ-))> |

QTLZ'

F(wy, +s,x) ~ F(s, x)

This m is convex in s and can be dualized. See paper for details.

With approximations the dual is not exact, but solving the dual may still
be better than taking gradient steps for the primal.

Yujia Li'*, Alexander Schwing’, Kuan-Chieh Wang!'# and Richard Zemel'

*Now at DeepMind

metrics

ILLINOIS

Experiments

Linear Discriminator, 5 Gaussians
Mini Batch

Full Batch

disc accuracy

metrics

I:’.l
#lteranuns

Value (unitless)

titerations

= T T T -
AV, primal obj —

Standard GAN

T T T 4 T
primal ob] —=—
disclaccuracy — x|

metrics
metrics

B0O0 100
#iterations

300 400
#titerations

H#iterations

Linear Discriminator, MNIST

r|ma| ob
accuracy
al approx

?9 s 20 .3J') 025 fl1708
996 ¢ O 036 2|4 |
oJ Lp ’7}6 9 & 2y
1.4 1 1.4 I
1.2 1.2

Q0 2000 2500 3000 3500
#iterations

Dual GAN

MNIST
Sensitivity to Hyperparams

B gan
dual

metrics

normalized counts

0 2000 2500 3000 3500 4000 4500 soo0  °0T o 1 5 3 4 5 & 7 8
#iterations discretized inception scores

Standard GAN Sensitivity to Hyperparams

Nonlmear Dlscrlmmator MNIST

r|mal ob
ISC accuracy
primal approx

metrics
- >
metrics
metrics

pnmal Obj

pnmal approx

sl 5 ] ]
'l b' Ll aI approx 1

WI'WMW m
|h'MIMMk||IH l i hﬂl ‘h INILH “I

0000000000000000000000000000000000000000000

#iterations

Score Lin.

0
000000000000000000000000000000000000000000000000000

#iterations #iterations

Cost Lin. Standard GAN
Nonlinear Discriminator, CIFAR-10
otd. GAN Score Lin Cost Lin  Real Data

Score Type

Inception (end)
Our classifier (end)
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