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Introduction

GAN training suffers from instability due to its saddle point formulation:
max
θ

minw f (θ,w)
θ and w are generator and discriminator parameters respectively, f is the
GAN loss. Typical GAN training alternates gradient updates to θ and w

θ → θ + ηθ∇θf (θ,w), w→ w− ηw∇wf (θ,w).
However, to solve the saddle point problem ideally for each θ we want to
solve for w∗(θ) = argminw f (θ,w), and then optimize maxθ f (θ,w∗(θ)).
For any w obtained from gradient updates, we have f (θ,w) ≥
f (θ,w∗(θ)), therefore the outer optimization becomes a maximization
of an upper bound, leading to instability.

In this paper we propose to dualize the inner part minw f (θ,w) into
maxλ g(θ, λ) which is always a lower bound on f (θ,w∗(θ)) and solve the
much more stable maximization problem

max
θ

max
λ
g(θ, λ).

This formulation allows us to:
• Solve the instability problem for GANs with linear discriminators.
• Improve stability for GANs with nonlinear discriminators.

GANs with Linear Discriminators

We start from linear discriminators that rely on a scoring function
F (w,x) = w>x. Any differentiable nonlinear feature φ(x) can be used
in place of x. The discriminator

Dw(x) = pw(y = 1|x) = σ(F (w,x)) = 1
1 + e−w>x.

The GAN loss on a batch of data {x1, ...,xn} and latent samples
{z1, ..., zn} is

minw
C

2
‖w‖2

2 + 1
2n

∑
i

log
(

1 + e−w>xi
)

+ 1
2n

∑
i

log
(

1 + ew>Gθ(zi)
)
.

The loss is convex in w, we can derive the standard dual problem to be

max
λ

g(θ, λ) = − 1
2C

∥∥∥∥∥∥
∑
i

λxixi −
∑
i

λziGθ(zi)
∥∥∥∥∥∥

2

2

+ 1
2n

∑
i

H(2nλxi) + 1
2n

∑
i

H(2nλzi),

s.t. ∀i, 0 ≤ λxi ≤
1

2n
, 0 ≤ λzi ≤

1
2n
.

H(u) = −u log u − (1 − u) log(1 − u) is the binary entropy, and the
optimal w∗ can be obtained from the optimal solution (λ∗z, λ∗x) for this
dual problem as

w∗ = 1
C

∑
i

λ∗xixi −
∑
i

λ∗ziGθ(zi)
 .

Properties:
• The ‖∑i λxixi −

∑
i λziGθ(zi)‖2

2 encourages moment matching.
• The entropy terms encourage the λ’s to be close to the mean.

For training we optimize maxθ maxλ g(θ, λ), which is very stable.

GANs with Non-Linear Discriminators

In general the scoring function F (w,x) may be nonlinear in w and typ-
ically implemented by a neural network. In this case the GAN loss

f (θ,w) = C

2
‖w‖2

2+ 1
2n

∑
i

log
(
1 + e−F (w,xi)

)
+ 1

2n
∑
i

log
(
1 + eF (w,Gθ(zi))

)
is not convex in w, therefore hard to dualize directly.

Proposed solution: approximate f locally around any point wk using
a model function mk,θ(s) ≈ f (θ,wk + s), then dualize mk,θ(s). The
optimization problem for the discriminator becomes

mins mk,θ(s) s.t. 1
2
‖s‖2

2 ≤ ∆k,

where 1
2‖s‖

2 ≤ ∆k is a trust-region constraint that ensures the quality of
the approximation. The overall algorithm is shown below:

GAN optimization with model function

Initialize θ, w0, k = 0 and iterate
1 One or few gradient ascent steps on f (θ,wk) w.r.t. θ
2 Find step s using minsmk,θ(s) s.t. 1

2‖s‖
2
2 ≤ ∆k

3 Update wk+1← wk + s
4 k ← k + 1

We explore two approximations:
(A). Cost function linearization: Linearize f as

mk,θ(s) = f (wk, θ) +∇wf (wk, θ)>s
We can solve for the optimal s∗ = −

√
2∆k

‖∇wf (wk,θ)‖2
∇wf (wk, θ) analytically.

This s∗ has the same form and direction as a gradient update used in
standard GANs.

(B). Score function linearization: Linearize F and keep the loss
F (wk + s,x) ≈ F̂ (s,x) = F (wk,x) + s>∇wF (wk,x), ∀x.

Model function is a more accurate approximation compared to (A).

mk,θ(s) =C

2
‖wk + s‖2

2 + 1
2n

∑
i

log
(

1 + e−F (wk,xi)−s>∇wF (wk,xi)
)

+ 1
2n

∑
i

log
(

1 + eF (wk,Gθ(zi))+s>∇wF (wk,Gθ(zi))
)
.

This m is convex in s and can be dualized. See paper for details.

With approximations the dual is not exact, but solving the dual may still
be better than taking gradient steps for the primal.

Experiments
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Nonlinear Discriminator, CIFAR-10
Score Type Std. GAN Score Lin Cost Lin Real Data

Inception (end) 5.61±0.09 5.40±0.12 5.43±0.10 10.72 ± 0.38
Our classifier (end) 3.85±0.08 3.52±0.09 4.42±0.09 8.03 ± 0.07

Inception (avg) 5.59±0.38 5.44±0.08 5.16±0.37 -
Our classifier (avg) 3.64±0.47 3.70±0.27 4.04±0.37 -
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