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Structured Output Learning

● Lots of real world applications require structured outputs
– Image segmentation, pose estimation, sequence labeling, etc.
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Structured Output Learning

● Lots of real world applications require structured outputs
– Image segmentation, pose estimation, sequence labeling, etc.

● Standard model – pairwise MRF/CRF

– Sparse connections – easier to learn and do inference

– Overly simplistic – only modeling up to 2nd order correlation in outputs

Unary
Potentials

Pairwise
Potentials

Figures from Weizmann horse dataset



  

Moving to More Expressive Models

● Densely connected CRFs [P. Krahenbuhl et al. NIPS’12]
– Still 2nd order connections but densely connected

● Robust High Order Potentials [P. Kohli et al. CVPR’08]
– Smoothness in a region

● Global Connectivity Potentials [S. Nowozin et al. CVPR’09]
– Require the output to be connected

● Pattern Potentials [C. Rother et al. CVPR’09]
– Consistency between the output and learned patterns



  

Pattern Potentials

● Penalize linearly if output deviates from a pattern

● Multiple base pattern potentials can be combined to 
form more expressive composite pattern potentials

Patterns

Weights

Pattern and weight figures: C. Rother et al. CVPR'09

Pairwise CRF



  

Restricted Boltzmann Machines (RBMs)

● RBM probabilistic model

– Sum out h, RBM becomes a high order potential on y

● Some success modeling object shape
– The Shape Boltzmann Machine [S. M. Ali Eslami et al., CVPR'12]

– Masked RBMs [N. Heess et al. ICANN'11]

Visible variables y

Hidden variables h



  

CHOPP

● Compositional High Order Pattern Potential (CHOPP)

Compatibility
with a pattern

Combine
all patterns

Interpolate between
RBMs and PPs



  

CHOPP-Augmented CRF

● Compositional High Order Pattern Potential (CHOPP)

● CHOPP-augmented CRF Energy function
Labels y

Hidden variables h

Input x

Standard CRF

CHOPP



  

“EM” Inference Algorithm

Hidden variables h

E-step: fix y compute h

Hidden variables h

M-step: fix h find optimal y

Labels yLabels y

Posterior 
inference

The impact of 
h factorizes

Just a pairwise CRF
Use Graph Cuts

● Making predictions



  

An Example for the “EM” Inference Algorithm
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An Example for the “EM” Inference Algorithm

Original
Image

Unary
Prediction

Ground
Truth

Unary+
Pairwise

Initialize EM
with this

Iteration #1 #2 #3 Convergence

y computed by Graph Cuts

Compute
h

Graph Cuts



  

Learning by Minimizing Expected Loss

● Contrastive Divergence does not work well
● Expected loss objective

● Estimate gradient using a set of samples from p(y|x)

Image x Sample
y ~ p(y|x)
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Learning by Minimizing Expected Loss

● Contrastive Divergence does not work well
● Expected loss objective

● Estimate gradient using a set of samples from p(y|x)

Image x Sample
y ~ p(y|x)

Ground
Truth

Compute
Loss

0.35

0.14
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Datasets and Settings

● Weizmann horse dataset
● PASCAL VOC 2011: image inside the bounding box

– Class “person” and class “bird”

● All images resized to 32x32
● T=1, Intersection Over Union (IOU) performance measure



  

Experiment I

● Train RBM independently (unsupervised)

● Adding an RBM always helps
– But not equally on different datasets



  

Experiment I Analysis: Dataset Variability

● Dataset variability measure

– Person & Birds are harder than horses

Real Datasets Synthetic Datasets

Clustering Intra-cluster entropy Weighted average



  

Experiment II and III

● Jointly learning RBM parameters by minimizing expected loss



  

Experiment II and III

● Jointly learning RBM parameters by minimizing expected loss

● Making the RBM hidden bias conditioned on the image



  

Examples
CHO
PPU+PGT

Most Improvement Average Improvement Least Improvement



  

Conclusion and Future Work

● Theoretical contribution
– Relationship between RBMs and Pattern Potentials

● Algorithmic contribution
– Inference and learning algorithms for CHOPP-augmented CRFs

● Empirical contribution
– Dataset variability measure

● Looking forward:
– Convolutional and deeper models

– Fully explore the variants of CHOPP

– Challenge: lack of labeled data
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Learned Patterns
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