Generative Moment Matching Networks

Yujia Li, Kevin Swersky and Richard Zemel

Feb.12, 2015
• We want to learn generative models
 – Generate nice samples
 – Find structure in data
 – Extract features for other tasks like classification
 – Make use of unlabeled data
• Generative models in deep learning
 – Undirected models
 • Boltzmann machines, RBMs, DBMs
 – Directed models
 • Neural Autoregressive Distribution Estimator (NADE)
 • Sigmoid belief nets
 • Deep belief nets (hybrid)
 • Recent advances in using neural nets to do inference for these models
 – Auto-Encoders used as generative models
 • Methods for recovering density models from auto-encoders
• The model we consider here:
 – Uniform prior
 \[p(h) = \prod_{j=1}^{H} U(h_j) \]
 – Deterministic mapping defined by a neural net
 \[x = f(h; w) \]
 – p(h) and x=f(h; w) jointly define a distribution of x

• Very easy to generate samples
 – h \sim p(h), then pass h through the net to get x
 – Not easy to estimate probability
• Similar models studied in (Mackay, 1995) and (Magdon-Ismail and Atidya, 1998)

• Recently used in generative adversarial nets (Goodfellow et al., 2014)
 – Training formulated as minimax optimization
 – Alternating optimization

• We train them with a simple objective MMD
 – Can be interpreted as moment matching
 – Trainable by direct backpropagation
 – “Generative moment matching networks” (GMMN)
Moment Matching

• Moments:
 – Mean (1st order), variance (2nd order), skewness (3rd order), ...

• Under mild conditions: if all moments of two distributions \(p \) and \(q \) are the same, then \(p = q \).

• Training generative models with moment matching:
 – Make model moments match data moments
• Define mapping function ϕ

 – Then $\frac{1}{N} \sum_{i=1}^{N} \phi(x_i)$ is the sample moment

 – Examples:

 \[
 \phi(x) = x \quad \text{1st order moment}
 \]

 \[
 \phi(x) = \text{vec}(x, xx^\top) \quad \text{1st and 2nd order moments}
 \]

 \[
 = (x_1, \ldots, x_d, x_1 x_1, x_1 x_2, \ldots, x_d x_d)
 \]

• Moment matching objective:

 – Data set $\{x_1^d, \ldots, x_N^d\}$, model samples $\{x_1^s, \ldots, x_M^s\}$

 \[
 \left\| \frac{1}{M} \sum_{i=1}^{M} \phi(x_i^s) - \frac{1}{N} \sum_{j=1}^{N} \phi(x_j^d) \right\|^2
 \]
• Problem with this approach
 – There are infinite many moments
 – High order moments require exponentially many terms in ϕ: n-th order moments contain d^n terms

• Kernel trick
 – ϕ may contain infinite many terms, but we don’t need to write them down

$$
\left\| \frac{1}{M} \sum_{i=1}^{M} \phi(x^s_i) - \frac{1}{N} \sum_{j=1}^{N} \phi(x^d_j) \right\|^2
= \frac{1}{M^2} \sum_{i=1}^{M} \sum_{j=1}^{M} \phi(x^s_i)^\top \phi(x^s_j) - \frac{2}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} \phi(x^s_i)^\top \phi(x^d_j) + \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \phi(x^d_i)^\top \phi(x^d_j)
$$

$$
= \frac{1}{M^2} \sum_{i=1}^{M} \sum_{j=1}^{M} k(x^s_i, x^s_j) - \frac{2}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x^s_i, x^d_j) + \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} k(x^d_i, x^d_j)
$$
• For a universal kernel like Gaussian

\[k(x, y) = \exp \left(-\frac{1}{2\sigma} \|x - y\|^2 \right) \]

– Using Taylor expansion, the implicit feature map \(\phi(x) \)
contains terms of all orders (weighted differently)

– Polynomial kernels are not universal
 • \(\phi(x) \) only contains terms up to the order of the kernel
 • But this is still a much more compact representation than writing out \(\phi(x) \) explicitly.
\[\mathcal{L}_{\text{MMD}}^2 = \frac{1}{M^2} \sum_{i=1}^{M} \sum_{j=1}^{M} k(x_i^s, x_j^s) - \frac{2}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x_i^s, x_j^d) + \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} k(x_i^d, x_j^d) \]

- This is an empirical estimate of the kernel Maximum Mean Discrepancy (MMD) between data and model distributions.
An Alternative Interpretation of MMD

• MMD originally came from the hypothesis testing literature

 – Suppose we have access to only samples from two distributions \(X \sim P_A \) and \(Y \sim P_B \)

 – Can we tell if \(P_A = P_B \)?

 – Two-sample test problem
• Theorem: If p and q are probability measures, then
\[p = q \iff \max_{f \in \mathcal{F}} |\mathbb{E}_p[f(x)] - \mathbb{E}_q[f(x)]| = 0 \]

\(\mathcal{F} \) is the class of bounded continuous functions.

– If \(p \neq q \), then we can always construct some \(f \) that picks up the difference between \(p \) and \(q \).

– MMD = \[\max_{f \in \mathcal{F}} |\mathbb{E}_p[f(x)] - \mathbb{E}_q[f(x)]| \]

– If MMD is small, we say \(p = q \), otherwise \(p \neq q \)

– Problem: \(\mathcal{F} \) is a huge class
• (Gretton et al., 2007) showed that \mathcal{F} can be just a RKHS associated with a universal kernel k and we can use

$$
\text{MMD}^2 \triangleq \| \mathbb{E}_p[\phi(x)] - \mathbb{E}_q[\phi(x)] \|^2
$$

– $\phi(x)$ is the kernel feature map for k
– $p = q$ iff $\text{MMD}^2 = 0$

• An empirical estimate is

$$
\text{MMD}^2 = \frac{1}{M^2} \sum_{i=1}^{M} \sum_{j=1}^{M} k(x^p_i, x^p_j) - \frac{2}{MN} \sum_{i=1}^{M} \sum_{j=1}^{N} k(x^p_i, x^q_j) + \frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} k(x^q_i, x^q_j)
$$
Using MMD to Learn GMMNs

• It’s simple!

 – Generate a set of \{h_1, \ldots, h_M\} from uniform prior \(p(h)\)

 – Compute corresponding \(X^s = \{x_1, \ldots, x_M\}\) by \(x = f(h; w)\)

 – Use MMD between \(X^s\) and training set \(X^d\) as a loss function, backprop through the MMD loss and the neural net \(f\) to update \(w\)
Uniform Prior

Samples

Training Data

MMD

Samples

Training Data

Or

MMD

Uniform Prior

h

x

x

x
Auto-Encoders
 – Easier to train
 – Good at recovering a low-dimensional manifold in high-dimensional space
 – Disentangle factors of variations (Bengio et al., 2013)
 – If we transform the distribution in the original input space to a distribution in the code space then it looks much nicer!

Code space also helps MMD – as MMD is better in lower-dimensional spaces (Ramdas et al., 2015)
Training GMMN+AE

Trained with layer-wise pretraining + fine-tuning,

Dropout on encoder layers during training

Input Data | Reconstruction

Auto-Encoder
Training GMMN+AE

GMMN

Uniform Prior

\[h \]

\[\text{MMD} \]

\[z \]

\[x \]

\[x' \]

Input Data

Reconstruction
Training GMMN+AE

Uniform Prior

Encoder

MMD

Input Data
Generating Samples

Uniform Prior

Code Samples

Decoder

Input Samples
Practical Considerations

• Bandwidth parameter σ in the kernel
 – We can treat them as hyperparameters
 – Or use heuristics to set them
 – For most cases we used multiple kernels with fixed σ
 $$k(x, y) = \sum_i k_{\sigma_i}(x, y)$$
 – For example fix $\sigma_i = 1, 2, 5, 10, \ldots$
 – Matching distributions at multiple scales
 – Covers the range of possible σ
- **Square root loss**

\[
L_{\text{MMD}} = \sqrt{L_{\text{MMD}}^2}
\]

- Square root loss helps to drive the loss to zero
- Much larger gradients when close to 0

\[
\frac{\partial L_{\text{MMD}}}{\partial w} = \frac{1}{2\sqrt{L_{\text{MMD}}^2}} \frac{\partial L_{\text{MMD}}^2}{\partial w}
\]

- Easy to implement, simply scale the learning rate
• Minibatch training
 – MMD requires $O(N^2)$ computation
 – Linear time MMD variants available
 – We can also use random features to get linear time approximations
 – But for all our experiments we simply did minibatch training.

```
1   while Stopping criterion not met do
2      Get a minibatch of data $X^d \leftarrow \{x_{i_1}^d, \ldots, x_{i_b}^d\}$
3      Get a new set of samples $X^s \leftarrow \{x_1^s, \ldots, x_b^s\}$
4      Compute gradient $\frac{\partial L_{MMD}}{\partial w}$ on $X^d$ and $X^s$
5      Take a gradient step to update $w$
6   end
```
Experiments

• Datasets
 – MNIST: 60,000 training images (55,000 train, 5,000 validation), 10,000 test images, 32x32 (standard)
 – Toronto Face Dataset (TFD): ~100k images, 48x48, same training/test sets as in (Goodfellow et al., 2014)
 – Preprocessing: scale input image to [0,1]
• **GMMN & GMMN+AE Architectures**

 – GMMN has 5 layers, 4 intermediate ReLU layers and 1 sigmoid output layer – same across all experiments
 – MNIST AE: 2 encoder layers, 2 decoder layers, all sigmoid
 – TFD AE: 3 encoder layers, 3 decoder layers, all sigmoid
Uniform Prior

GMMN+AE architecture for MNIST

Sigmoid

ReLU

ReLU

ReLU

ReLU

Sigmoid

MMD

Input Data

Reconstruction

Sigmoid

Sigmoid

Sigmoid

Sigmoid
• Evaluation
 – Computing likelihood is hard
 – Generating samples is easy, so
 • We generated 10,000 samples from the model
 • Use kernel density estimator to estimate the density
 • Compute log-likelihood of data under this estimated density
 – Same protocol used in previous work like (Goodfellow et al., 2014)
• Results

<table>
<thead>
<tr>
<th>Model</th>
<th>MNIST</th>
<th>TFD</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBN</td>
<td>138 ± 2</td>
<td>1909 ± 66</td>
</tr>
<tr>
<td>Stacked CAE</td>
<td>121 ± 1.6</td>
<td>2110 ± 50</td>
</tr>
<tr>
<td>Deep GSN</td>
<td>214 ± 1.1</td>
<td>1890 ± 29</td>
</tr>
<tr>
<td>Adversarial nets</td>
<td>225 ± 2</td>
<td>2057 ± 26</td>
</tr>
<tr>
<td>GMMN</td>
<td>147 ± 2</td>
<td>2085 ± 25</td>
</tr>
<tr>
<td>GMMN+AE</td>
<td>282 ± 2</td>
<td>2204 ± 20</td>
</tr>
</tbody>
</table>

• DBN and Stacked CAE from (Bengio et al., 2013)
• Deep GSN from (Bengio et al., 2014)
• Adversarial nets from (Goodfellow et al., 2014)

• Significant step forward over baselines
• GMMN+AE much better than GMMN
• Power of Bayesian Optimization
 – Number of hidden units, learning rate, momentum, dropout rate optimized on validation set using BO.
 – Switched from manual tuning to Bayesian Optimization a week before ICML deadline

<table>
<thead>
<tr>
<th></th>
<th>MNIST</th>
<th>TFD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GMMN</td>
<td>GMMN+AE</td>
</tr>
<tr>
<td>2 weeks ago</td>
<td>~135</td>
<td>~270</td>
</tr>
<tr>
<td>Last week</td>
<td>147</td>
<td>282</td>
</tr>
</tbody>
</table>
• Surprising architectures
 – Example: GMMN on TFD

Uniform Prior:
- 10
- 64
- 256
- 256
- 1024
- 48x48

Manually tuned: 1900~2000

Uniform Prior:
- 260
- 57
- 1500
- 1500
- 10
- 48x48

Bayesian Optimization: 2085
• Not so surprising settings:
 – Auto-Encoder code space dimensionality much smaller than data dimensionality
 – Large dropout for the encoder
• Samples

(a) GMMN MNIST samples

(b) GMMN TFD samples

(c) GMMN+AE MNIST samples

(d) GMMN+AE TFD samples
• Closest training examples to generated samples

(e) GMMN nearest neighbors for MNIST samples

(f) GMMN+AE nearest neighbors for MNIST samples
• Closest training examples to generated samples

(g) GMMN nearest neighbors for TFD samples

(h) GMMN+AE nearest neighbors for TFD samples
• Exploring the learned space
• Exploring the learned space
• Videos
How We Started to Work on This

• Fairness
• Domain adaptation
• Learning invariant features
• Learning features robust to noise
Future Directions

- Generate larger, more realistic images
- Generate image labels like segmentation masks
- Conditional generation
Take-Aways

• MMD offers a much simpler objective for training this type of networks

• Auto-Encoders can be readily bootstrapped into part of a good generative model
Q & A

Generative Moment Matching Networks

Yujia Li, Kevin Swersky and Richard Zemel

Feb.12, 2015