Generative Moment Matching Networks

Yujia Li, Kevin Swersky and Richard Zemel

Feb.12, 2015

* We want to learn generative models
— Generate nice samples
— Find structure in data
— Extract features for other tasks like classification
— Make use of unlabeled data

* Generative models in deep learning

— Undirected models
* Boltzmann machines, RBMs, DBMs
— Directed models
* Neural Autoregressive Distribution Estimator (NADE)
 Sigmoid belief nets
* Deep belief nets (hybrid)

* Recent advances in using neural nets to do inference for
these models

— Auto-Encoders used as generative models

* Methods for recovering density models from auto-encoders

e The model we consider here: Uniform Prior

— Uniform prior h
H v
p(h) = [U(ny)
j=1 v
— Deterministic mapping defined
by a neural net i
X = f (h7 W) Data space sample

— p(h) and x=f(h; w) jointly define a distribution of x

* Very easy to generate samples
— h ~ p(h), then pass h through the net to get x
— Not easy to estimate probability

* Similar models studied in (Mackay, 1995) and
(Magdon-Ismail and Atidya, 1998)

* Recently used in generative adversarial nets
(Goodfellow et al., 2014)

— Training formulated as minimax optimization

— Alternating optimization

* We train them with a simple objective MMD
— Can be interpreted as moment matching
— Trainable by direct backpropagation
— “Generative moment matching networks” (GMMN)

Moment Matching

e Moments:

— Mean (1%t order), variance (2" order), skewness (3™
order), ...

e Under mild conditions: if all moments of two
distributions p and q are the same, then p =q.

* Training generative models with moment
matching:
— Make model moments match data moments

* Define mapping function ¢

N

1
— Then N Z ¢(x;) is the sample moment

1=1

— Examples:

p(x) =x 15t order moment

d(x) = vec(x, xx)

= (T1y .00y Tg, T1T1, T1T2, oy TGL)

* Moment matching objective:

1st and 2Md order moments

— Data set {x{, ... X%}, model samples { X7, ..., X3 }

1 XA 1 X
Vi Z o(x7) — N Z ¢(X?)
i=1 j=1

2

Problem with this approach
— There are infinite many moments

— High order moments require exponentially many
terms in ¢: n-th order moments contain d" terms

Kernel trick

— ¢ may contain infinite many terms, but we don’t need
to write them down

D) - 1 DD 6
1 M M . J 9 M N T
:WZZ¢(Xi) ¢(Xj)_ WZZ(MX@)

1=1 7=1 1= lj 1

| M M | N
:WZZk(Xf,X ZZk N—z::

i=1 j=1 i=1 j=1

2

I Mz Z‘H
™=
||§2

e For a universal kernel like Gaussian

1
kx,y) = exp (5 x = v

— Using Taylor expansion, the implicit feature map gb(X)
contains terms of all orders (weighted differently)

— Polynomial kernels are not universal
« ¢(x) only contains terms up to the order of the kernel

 But this is still a much more compact representation than
writing out ¢(x) explicitly.

Lanior = 173 D0 D KxE,x) sz Nig_;;uxd x?)

1=1 j5=1 1=1 7=1

 This is an empirical estimate of the kernel
Maximum Mean Discrepancy (MMD) between
data and model distributions

An Alternative Interpretation ot MMD

* MMD originally came from the hypothesis
testing literature

— Suppose we have access to only samples from two
distributions X ~ P, and Y ~ P,

— Can we tell if P, = Pp?

— Two-sample test problem

Theorem: p and q are probability measures, then

p=qift
max Ep|f(x)] — Eqlf(2)]] =0

‘T'is the class of bounded continuous functions.

— If p # q, then we can always construct some f that
picks up the difference between p and q.

~ MMD = max [E,[f (z)] — Eq[f(x)]

— If MMD is small, we say p = q, otherwise p # q
— Problem: J is a huge class

* (Gretton et al., 2007) showed that J can be just a
RKHS associated with a universal kernel k and
we can use

MMD* £ |[E,[¢(2)] — Eq[o(2)]||*

— ¢(X) is the kernel feature map for k
— p=qiff MMD?=0

* An empirical estimate is

D? =SS) 3K o 30D

=1 73=1 2131

]

Using MMD to Learn GMMNs

* It's simple!
— Generate a set of thy, ..., hy} from uniform prior p(h)
— Compute corresponding X®= {x;, ..., X\ by x = f(h; w)

— Use MMD between X® and training set X9 as a loss
function, backprop through the MMD loss and the
neural net f to update w

Uniform Prior Samples Training Data

MMD
h X «—> X
I N
‘l' MMD T
X «—> X h
Samples Training Data Uniform Prior

S|oH

Fiid

GMMN in Auto-Encoder Code Space

e Auto-Encoders
— Easier to train

— Good at recovering a low-dimensional manifold in
high-dimensional space

— Disentangle factors of variations (Bengio et al., 2013)

— If we transform the distribution in the original input
space to a distribution in the code space then it looks
much nicer!

* Code space also helps MMD - as MMD is better
in lower-dimensional spaces (Ramdas et al.,
2015)

Training GMMN-+AE

Trained with layer-wise /\

pretraining + fine-tuning,
Dropout on encoder T ‘l'
layers during training X X
Input Data Reconstruction

Auto-Encoder

Training GMMN-+AE

Uniform Prior

h
GMMN ‘1'
‘l/ MMD
i ¢,

Input Data Reconstruction

Training GMMN-+AE

Uniform Prior

h

v

|

MMD

X > —> N

Input Data

Encoder

Generating Samples

Uniform Prior

h

€

Code Samples

Decoder

X € €—{ N

Input Samples

Practical Considerations

* Bandwidth parameter o in the kernel
— We can treat them as hyperparameters
— Or use heuristics to set them
— For most cases we used multiple kernels with fixed o

k(. y) = > ko (2.9)

— For example fix 0,=1, 2, 5, 10, ...
— Matching distributions at multiple scales
— Covers the range of possible o

* Square root loss
Lyvmp = v Lymp?

A A

iza

— Square root loss helps to drive the loss to zero

— Much larger gradients when close to 0

OL\vMD 1 0L\ iMD?2

aW N 2\/£MMD2 aW

— Easy to implement, simply scale the learning rate

* Minibatch training
— MMD requires O(N?) computation
— Linear time MMD variants available
— We can also use random features to get linear time

approximations
— But for all our experiments we simply did minibatch
training.
1 while Stopping criterion not met do
2 | Get a minibatch of data X¢ + {x¢ ,...,x%
3 Get a new set of samples X* + {x{,...,x7}
4 Compute gradient 59%“% on X% and X*
5 Take a gradient step to update w
6 end

 Datasets
— MNIST: 60,000 training images (55,000 train, 5,000
validation), 10,000 test images, 32x32 (standard)

— Toronto Face Dataset (TFD): ~100k images, 48x48,
same training/test sets as in (Goodfellow et al., 2014)

— Preprocessing: scale input image to [0,1]

e GMMN & GMMN+AE Architectures

— GMMN has 5 layers, 4 intermediate ReLU layers and
1 sigmoid output layer — same across all experiments

— MNIST AE: 2 encoder layers, 2 decoder layers, all
sigmoid

— TFD AE: 3 encoder layers, 3 decoder layers, all
sigmoid

Uniform Prior

h
v
ReLU GMMN+AE architecture

Y for MNIST
RelLU

2
ReLU

2
ReLU
2 MMD
Sigmoid [¢—>| Sigmoid

N

Sigmoid Sigmoid
Sigmoid

Input Data Reconstruction

* Evaluation
— Computing likelihood is hard

— Generating samples is easy, so
* We generated 10,000 samples from the model
» Use kernel density estimator to estimate the density
» Compute log-likelihood of data under this estimated density

— Same protocol used in previous work like
(Goodfellow et al., 2014)

e Results

Model MNIST TFD

DBN 138 + 2 1909 + 66
Stacked CAE 121 = 1.6 | 2110 £ 50
Deep GSN 214 + 1.1 | 1890 £ 29
Adversarial nets | 225 £ 2 2057 £+ 26

GMMN 147 = 2 2085 £ 25
GMMN+AE 282 =+ 2 | 2204 = 20

* DBN and Stacked CAE from (Bengio et al., 2013)
* Deep GSN from (Bengio et al., 2014)
* Adversarial nets from (Goodfellow et al., 2014)

* Significant step forward over baselines
* GMMN+AE much better than GMMN

Power of Bayesian Optimization

— Number of hidden units, learning rate, momentum,
dropout rate optimized on validation set using BO.

— Switched from manual tuning to Bayesian
Optimization a week before ICML deadline

MNIST TFD
GMMN | GMMN+AE | GMMN | GMMN+AE
2 weeks ago ~135 ~270 1900~2000 ~2100
Last week 147 282 2085 2204

Surprising architectures
— Example: GMMN on TFD

Uniform Prior Uniform Prior
10 260
v v
64 57
Y Y
256 1500
v Vv
256 1500
v v

1024 10
2 v
48x48 48x48

Manually tuned: 1900~2000 Bayesian Optimization: 2085

* Not so surprising settings:
— Auto-Encoder code space dimensionality much
smaller than data dimensionality

— Large dropout for the encoder

* Samples

717111513

(a) GMMN MNIST samples (b) GMMN TFD samples

15[6]710]) [=
anenE w =

016151005 [Wi
2] 715(0] ¢ I
i T

(c) GMMN+AE MNIST samples (d) GMMN+AE TFD samples

* Closest training examples to generated samples

611352 8&d134 D
61/131d 135S L4151

(e) GMMN nearest neighbors for MNIST samples

S6/999 8172307

S161/419198 1171309

(f) GMMN+AE nearest neighbors for MNIST samples

* Closest training examples to generated samples

B LA e oS
= &

B RN - by’ Ny
(g) GMMN nearest neighbors for TFD samples
LTS NEEE
NS AT EEEE

(h) GMMN+AE nearest neighbors for TFD samples

* Exploring the learned space

* Exploring the learned space

e Videos

How We Started to Work on This

* Fairness
* Domain adaptation
* Learning invariant features

* Learning features robust to noise

Future Directions

* Generate larger, more realistic images
* Generate image labels like segmentation masks
* Conditional generation

Take-Aways

* MMD ofters a much simpler objective for
training this type of networks

* Auto-Encoders can be readily bootstrapped into
part of a good generative model

Q&A

Generative Moment Matching Networks

Yujia Li, Kevin Swersky and Richard Zemel

Feb.12, 2015

