Learning Unbiased Features

Yujia Li, Kevin Swersky and Rich Zemel

University of Toronto

Canadian Institute for Advanced Research

 Suppose we have access to only samples from two distributions X ~ P_A and Y ~ P_B.

- Can we tell if $P_A = P_R$?
 - Two-sample test problem

 Suppose we have access to only samples from two distributions X ~ P_A and Y ~ P_B.

- Can we tell if $P_A = P_B$?
 - Two-sample test problem
- Maximum Mean Discrepancy [Gretton et al. 2006]
 is among the best performing measure of
 discrepancy between distributions for twosample test.

MMD

$$\left\| \frac{1}{N} \sum_{n=1}^{N} \phi(X_n) - \frac{1}{M} \sum_{m=1}^{M} \phi(Y_m) \right\|^2$$

$$= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} \phi(X_n)^{\top} \phi(X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} \phi(Y_m)^{\top} \phi(Y_{m'}) - \frac{2}{NM} \sum_{n=1}^{N} \sum_{m=1}^{M} \phi(X_n)^{\top} \phi(Y_m)$$

$$= \frac{1}{N^2} \sum_{n=1}^{N} \sum_{n'=1}^{N} k(X_n, X_{n'}) + \frac{1}{M^2} \sum_{m=1}^{M} \sum_{m'=1}^{M} k(Y_m, Y_{m'}) - \frac{2}{MN} \sum_{n=1}^{N} \sum_{m=1}^{N} k(X_n, Y_m)$$

- $\{X_n\} \sim P_A, \{Y_m\} \sim P_B$
- ϕ : feature map
- k: universal kernel

What can we use it for?

The opposite direction: learning to make two distributions indistinguishable → small MMD!

What can we use it for?

The opposite direction: learning to make two distributions indistinguishable → small MMD!

Natural fit: domain adaptation

 Make feature representations for source and target domain data indistinguishable

Domain Adaptation/Transfer Learning with MMD

- Correcting Sample Selection Bias by Unlabeled Data [Huang et al. NIPS 2006]
- Transfer Learning via Dimensionality Reduction [Pan et al. AAAI 2008]
- Domain Adaptation via Transfer Component Analysis [Pan et al. IJCAI 2009]
- Connecting the Dots with Landmarks: Discriminatively Learning Domain-Invariant Features for Unsupervised Domain Adaptation [Gong et al. ICML 2013]
- Reshaping Visual Datasets for Domain Adaptation [Gong et al. NIPS 2013]
- Transfer Feature Learning with Joint Distribution Adaptation [Long et al. ICCV 2013]
- Unsupervised Domain Adaptation by Domain Invariant Projection [Baktashmotlagh, ICCV 2013]
- Many more...
- Flexible Transfer Learning under Support and Model Shift [Wang and Schneider, This workshop]

Domain Adaptation

Classification Loss

Source domain Target domain

Sentiment classification

- Product reviews (text, tf-idf on words & bigrams)
- Labeled data from source domain, unlabeled data from target domain

$$Loss = Loss_{class} + \lambda MMD$$

Domain Adaptation

	$D \rightarrow B$	$E{ ightarrow}B$	К→В	$B \rightarrow D$	$E{ ightarrow}D$	$K \rightarrow D$
Linear SVM	78.3 ± 1.4	71.0 ± 2.0	72.9 ± 2.4	79.0 ± 1.9	72.5 ± 2.9	73.6 ± 1.5
RBF SVM	77.7 ± 1.2	68.0 ± 1.9	73.2 ± 2.4	79.1 ± 2.3	70.7 ± 1.8	73.0 ± 1.6
TCA	77.5 ± 1.3	71.8 ± 1.4	68.8 ± 2.4	76.9 ± 1.4	72.5 ± 1.9	73.3 ± 2.4
NN	76.6 ± 1.8	70.0 ± 2.4	72.8 ± 1.5	78.3 ± 1.6	71.7 ± 2.7	72.7 ± 1.6
NN MMD*	76.5 ± 2.5	71.8 ± 2.1	72.8 ± 2.4	77.4 ± 2.4	74.3 ± 1.7	73.9 ± 2.4
NN MMD	$\textbf{78.5}\pm\textbf{1.5}$	$\textbf{73.7}\pm\textbf{2.0}$	$\textbf{75.7}\pm\textbf{2.3}$	$\textbf{79.2}\pm\textbf{1.7}$	$\textbf{75.3}\pm\textbf{2.1}$	75.0 ± 1.0
	В→Е	$D \rightarrow E$	$K \rightarrow E$	В→К	$D \rightarrow K$	$E{ ightarrow}K$
Linear SVM	72.4 ± 3.0	74.2 ± 1.4	82.7 ± 1.3	75.9 ± 1.8	77.0 ± 1.8	84.5 ± 1.0
RBF SVM	72.8 ± 2.5	76.3 ± 2.2	82.5 ± 1.4	75.8 ± 2.1	76.0 ± 2.2	82.0 ± 1.4
TCA	72.1 ± 2.6	75.9 ± 2.7	79.8 ± 1.4	76.8 ± 2.1	76.4 ± 1.7	80.2 ± 1.4
NN	70.1 ± 3.1	72.8 ± 2.4	82.3 ± 1.0	74.1 ± 1.6	75.8 ± 1.8	84.0 ± 1.5
NN MMD*	75.6 ± 2.9	78.4 ± 1.6	83.0 ± 1.2	77.9 ± 1.6	78.0 ± 1.9	84.7 ± 1.6
NN MMD	76.8 ± 2.0	79.1 ± 1.6	83.9 ± 1.0	78.3 ± 1.4	$\textbf{78.6} \pm \textbf{2.6}$	85.2 ± 1.1

- 4 domains:
 - D: dvd, B: books, E: electronics, K: kitchen products
- NN MMD*: not-weighted word count feature, weaker than tf-idf

- If we have labeled data from all domains, factoring out unwanted domain bias still leads to better generalization.
- In general, we can use MMD to make the learned representations invariant to unwanted transformation / variation / bias.

Face identification under different lighting

Multiple lighting conditions: Matching each to the mean

$$\sum_{s=1}^{S} \left\| \frac{1}{N_s} \sum_{i:d_i=s} \phi(h_i) - \frac{1}{N} \sum_{n} \phi(h_n) \right\|^2$$

- Without MMD, test accuracy 72%
 - PCA projection of 2nd hidden layer

Projection of training data (100% accuracy)
Digits: person identity index, color: lighting condition

- With MMD, test accuracy 82%
 - PCA projection of 2nd hidden layer

Projection of training data (100% accuracy)
Digits: person identity index, color: lighting condition

Noise-Insensitive Auto-Encoders

- Make auto-encoders robust to noise
 - Push hidden representation for noisy data close to that of clean data with MMD regularizer

- Small corruption + linear kernel recovers contractive auto-encoder (CAE)
- But we can use more powerful kernels!

Noise-Insensitive Auto-Encoders

- MMD with Gaussian kernel is less sensitive to noise than with linear kernel (CAE).
 - SVM trained to distinguish representation for noisy data from clean data

Model	AE	DAE	CAE	MMD	MMD+DAE
SVM Accuracy	78.6	82.5	77.9	61.1	72.9

(a) AE

(b) DAE

(c) CAE

(d) MMD

Learning Deep Generative Models

Make model samples close to data samples

Learning Deep Generative Models

 Direct backpropagation through MMD, no adversary required!

Independent Samples

Morphing between two samples

Model trained on MNIST

Learning Deep Generative Models

 Direct backpropagation through MMD, no adversary required!

Independent Samples

Morphing between two samples

Model trained on Frey Face dataset

Q & A

Learning Unbiased Features

Yujia Li, Kevin Swersky and Rich Zemel

University of Toronto

Canadian Institute for Advanced Research