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Many forms of graph-structured data and problems 

Molecules* 

*picture from Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints.  NIPS’15. 

Knowledge Bases 

More: social networks, graphical models, etc. 

Logical Reasoning Dynamic Data Structures 
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Learning Representations for Graphs 

Hand crafted features, graph fingerprints, etc. 
[Glem et al., 2006, Brockschmidt et al. 2015] 
 
Graph kernels 
[Shervashidze et al., 2011] 
 
Random walks on graphs 
[Perozzi et al., 2014] 
 
Graph Neural Networks (next slide) 
[Scarselli et al., 2009] 
 
Neural graph fingerprints, conv nets on graphs 
[Duvenaud et al., 2015, Bruna et al., 2013] 



Graph Neural Networks (GNNs) 

A propagation model to compute node 
representations. 
 
An output model to make predictions on nodes. 
 



Propagation Model 
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Node representation for node v  
at propagation step t:  h(t)

v

Propagate representations along edges,  
allow multiple edge types and propagation  
on both directions 

h(t)
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v02IN(v)

f(h(t�1)
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Example: f(h(t�1)
v0 , l(v0,v)) = A(l(v,v0))h(t�1)

v0 + b(l(v,v0))

Edge type and direction 



Output Model 

ov = g(h(T )
v ) For each node v, compute an output based on 

final node representation.  g can be a neural net. 



Learning as proposed by Scarselli et al.: 
 
Backpropagation through time is expensive. 
 
Restrict the propagation model so that the propagation 
function is a contraction map è unique fixed point.  Run 
the propagation until convergence. 
 
Training with Almeida-Pineda algorithm [Almeida, 1990; 
Pineda, 1987]. 



Gated Graph Neural Networks (GG-NNs) 

Unroll recurrence for a fixed number of steps and 
just use backpropagation through time with 
modern optimization methods. 
 
Also changed the propagation model a bit to use 
gating mechanisms like in LSTMs and GRUs. 



Benefits: 
 
No restriction on the propagation model, does not need to 
be a contraction map. 
 
Initialization matters now so problem specific information 
can be fed in as the input. 
 
Learning to compute representations within a fixed budget. 
 
Gating makes the propagation model better. 
 



Initialization 
 
Problem specific node annotations in 
 
Example reachability problem: can we go from A to B? 
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Initialization 
 
Problem specific node annotations in 
 
Example reachability problem: can we go from A to B? 
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It is easy to learn a propagation model 
that copies and adds the first bit to a node’s 
neighbor. 

It is easy to learn an output model that outputs 
yes if it sees the [n, n] pattern, otherwise no 

output yes 



Initialization 
 
Problem specific node annotations in 
 
Example reachability problem: can we go from A to B? 
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that copies and adds the first bit to a node’s 
neighbor. 

It is easy to learn an output model that outputs 
yes if it sees the [n, n] pattern, otherwise no 

output no 



Initialization 
 
Problem specific node annotations in 
 
In practice we pad node annotations with extra 0’s to add 
capacity to h, so  

h(0)
v

h(0)
v = [l>v ,0

>]>

Problem specific node annotations 



Propagation Model 
 
GNN propagation model with gating and other minor 
differences 

1
2

3

4
Unroll one step 

h(t�1)
1

h(t�1)
2

h(t�1)
3

h(t�1)
4

h(t)
1

h(t)
2

h(t)
3

h(t)
4

h(t�1)



Propagation Model 
 
GNN propagation model with gating and other minor 
differences 
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a(t) = Ah(t�1) + b

h(t)
v = tanh(Wa(t)v )

Propagation Model 
 
GNN propagation model with gating and other minor 
differences 
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Propagation Model 
 
GNN propagation model with gating and other minor 
differences 

Reset gate 

Update gate 



Output Models 
 
Per node output same as in GNNs 
 
Node selection output  
                                computes scores for each node, then take softmax 
over all nodes to select one. 

 
Graph level output 
Graph representation vector* 
 
This vector can be used to do graph level classification, regression, etc.  

ov = g(h(T )
v , lv)

hG =
X

v2G
�(i(h(T )

v , lv))� h(T )
v

*actual equation is slightly different from this, and more complicated. 



The whole network trainable with backprop 

Output 

Propagation 
Model 

Output 
Model 

Unroll T steps 

[0,1,0,0,0] 

[0,0,0,0,0] 

[0,0,0,0,0] 

[1,0,0,0,0] 

Initialization 

Annotate nodes with  
problem specific  

information 



GG-NNs in Action 

We first tested GG-NNs on some toy graph 
property tasks. 

Reachability Sharing 

Cyclicity Reaching Cyclicity 



More complicated toy tasks. 
 
Some bAbI tasks [Weston et al., 2015].  We used symbolic 
format of the data, so results not directly comparable with 
other people’s results. 

Example: bAbI Task 15 (Basic Deduction) 

D is A 
B is E 
A has_fear F 
G is F 
E has_fear H 
… 
eval B has_fear      H 

D 

A B 

E 
F G 
H 

is 

is 

is has_fear 

has_fear 

Each fact is one edge 

Straight forward  
conversion to graphs 

Node-selection output 



We tried GG-NNs on bAbI task 4, 15, 16 (all three are node-
selection), 18 (graph-level classification) and this model is able to 
solve all of them to 100% accuracy with only 50 training 
examples and less than 600 model parameters. 
 
Decided to use RNNs and LSTMs as reference baselines. 

RNN/LSTM trained on token streams 

Input: 
<D> <is> <A> <\n> <B> … 
<eval> <B> <has_fear> 
Output: <A> 

#parameters: RNN 5k, LSTM 30k 

950 training, 50 validation (1000 trainval) 
1000 test examples 

Start with using only 50 training  
examples, then keep using more  
until test accuracy reaches 95%  
or above. 



Number of training examples 
needed to reach this accuracy 



LSTM on Text 
(non-symbolic data)  
[Weston et al., 2015] 

61 (1000) 
21 (1000) 
23 (1000) 
52 (1000) 

Not directly comparable 



A few conclusions for the results on bAbI tasks: 
 
Symbolic format does make the tasks easier but still non-
trivial. 
 
We don’t claim GG-NNs can beat RNNs/LSTMs as we 
used more structures in the problems.  But at least this 
shows that exploiting structures in the problems can make 
things a lot easier. 



Gated Graph Sequence Neural Networks 

Many problems require a sequence of predictions 
on graphs. 

Shortest path from A to B? 

A D F 

B E 
C 

A – D – F – B 

What are the structures 
in this graph? 

A 

List(A,C) ∧ Tree(C) ∧ List(H, J) 

B C 

D E 

F G 

H 

I 

J 



Predictions in each step are made by GG-NNs. 
 
But we need to keep track of where we are in the prediction 
process. 

Shortest path from A to B? 

A D F 

B E 
C 

A – D – F – B 

The node annotations used in initialization 
should be different for different prediction 
steps 
 
A- (already predicted A),  
A-D- (already predicted A-D) and 
A-D-F- (already predicted A-D-F) 



Predictions in each step are made by GG-NNs. 
 
But we need to keep track of where we are in the prediction 
process. 

Need to keep track of which parts have 
been predicted and which parts have not. 

What are the structures 
in this graph? 

A 

List(A,C) ∧ Tree(C) ∧ List(H, J) 

B C 

D E 

F G 

H 

I 

J 



Solution 
 
Chain multiple prediction steps up using node annotations. 
 
Every prediction step produces an output, and produces 
new node annotations (per-node prediction) for the next 
step. 
 



GGS-NN architecture 
Trainable with backprop from end to end. 

l(1) h(1,0) h(2,0)l(2)
Node 

Annotation 
GG-NN 

Output 
GG-NN 

Output 
GG-NN 

… 

o

(1)
o

(2)

init init 

Problem specific 
node annotations 

Whatever the model decides to 
put there to keep track of the progress 

Prediction 
Step 1 

Prediction 
Step 2 

Note: the two GG-NNs can also share a single propagation net, more details in the paper. 



GGS-NNs on Simple Tasks 
 
bAbI task 19 (path finding): find the path from one node to 
another on a graph, guarantee there’s only one path. 
 
We created two bAbI-like but more challenging tasks: 
 
Shortest path: find the shortest among possibly multiple paths between 
two nodes on a graph. 
 
Eulerian circuit: find the Eulerian circuit of a 2-regular connected graph 
(a graph which is a cycle), a distractor graph is added to make it more 
challenging. 



When to stop 
 
At each prediction step, a separate output GG-NN is used 
to make a graph-level binary classification prediction on 
whether to continue or stop. 
 
RNNs/LSTMs keep predicting tokens until an <end> token 
is hit. 





GGS-NN for Program Verification 

What is program verification? 
Verify correctness of a program: given inputs which satisfy some 
preconditions, is the program guaranteed to produce outputs satisfying 
some postconditions? 
 
Need to formally describe what happens during the execution of 
a program.   
Analyze heap memory state, which is a graph. 
Formal descriptions of the heap memory using separation logic formulas. 
 
Give the separation logic formula to a theorem prover, to verify if 
it is indeed consistent with the program and if it is strong enough 
to complete the proof. 



The verification pipeline 

procedure	 Node Node
returns Node

if

var	
while

return

curr 6= null : elt 7! null
⇤lseg(lst, curr) ⇤ lseg(curr, null)

Theorem 
Prover 

Run the program,  
get heap memory 
graph examples 

Generate separation logic 
descriptions, using 
Machine Learning 

This is where the  
GGS-NN comes in! 



From heap graph to separation logic formula 
 
Follow the grammar, every step is either a graph-level 
classification or a node selection. 

Formula ! 9V ar.Formula | Heaplets
Heaplets ! Heaplet ⇤Heaplets | emp
Heaplet ! lseg(Expr,Expr, (�V ar ! Formula))

| tree(Expr, (�V ar ! Formula))
Expr ! null | V ar

𝐹𝑜𝑟𝑚𝑢𝑙𝑎  

∃𝑉𝑎𝑟. 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝐻𝑒𝑎𝑝𝑙𝑒𝑡𝑠 

𝐻𝑒𝑎𝑝𝑙𝑒𝑡 ∗ 𝐻𝑒𝑎𝑝𝑙𝑒𝑡𝑠 𝑒𝑚𝑝 

𝑙𝑠𝑒𝑔(𝐸𝑥𝑝𝑟, 𝐸𝑥𝑝𝑟, …) 𝑡𝑟𝑒𝑒(𝐸𝑥𝑝𝑟, …)

𝑛𝑢𝑙𝑙 𝑉𝑎𝑟 



Results 
 
We compared the GGS-NN model with an earlier approach 
[Brockschmidt et al., 2015] using heavily hand-engineered 
features using domain knowledge combined with standard 
classifiers. 
 
The data set has 160,000 heap graphs generated from 327 
separation logic formulas. 
 
The GGS-NN achieved 89.96% accuracy without any hand 
engineered features, vs. 89.11% accuracy of the previous 
approach. 



We have also integrated the GGS-NN model into a 
program verification pipeline.  It can successfully verify a 
test suite of list manipulating programs in a benchmark set. 
 
 Program Separation Logic Formula Found 

Traverse1 ls(lst, curr) * ls(curr, null) 

Traverse2 ls(lst, curr) * ls(curr, null) * curr != null * lst != null 

Concat a != null * a != b * b != curr * curr != null 
* ls(curr, null) * ls(a, curr) * ls(b, null) 

Copy ls(curr, null) * ls(lst, curr) * ls(cp, null) 

Dispose ls(lst, null) 

Insert curr != null * curr != elt * elt != null * elt != lst * lst != null 
* ls(elt, null) * ls(lst, curr) * ls(curr, null) 

Remove curr != null * lst != null * ls(lst, curr) * ls(curr, null) 

Our GGS-NN model is able to predict more complicated formulas than 
shown here. 



A more complicated example with nested data structures. 

ls(arg1, NULL,�t1 ! ls(t1, NULL,>))⇤
tree(arg2,�t2 ! 9e1.ls(t2, e1,>) ⇤ ls(e1, e1,>))



Future Directions 
 
Explore the model space, further understand this model 
 
Other applications 
 
Learning to construct the graph 
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