
Gated Graph Sequence Neural Networks

Yujia Li*

Joint work with
Danny Tarlow+, Marc Brockschmidt+ and Rich Zemel*

*University of Toronto

+Microsoft Research Cambridge

Many forms of graph-structured data and problems

Molecules*

*picture from Duvenaud et al. Convolutional Networks on Graphs for Learning Molecular Fingerprints. NIPS’15.

Knowledge Bases

More: social networks, graphical models, etc.

Logical Reasoning Dynamic Data Structures

<
<

=

smallerthan(a, b) ^ smallerthan(b, c)
) smallerthan(a, c)

<

Learning Representations for Graphs

Hand crafted features, graph fingerprints, etc.
[Glem et al., 2006, Brockschmidt et al. 2015]

Graph kernels
[Shervashidze et al., 2011]

Random walks on graphs
[Perozzi et al., 2014]

Graph Neural Networks (next slide)
[Scarselli et al., 2009]

Neural graph fingerprints, conv nets on graphs
[Duvenaud et al., 2015, Bruna et al., 2013]

Graph Neural Networks (GNNs)

A propagation model to compute node
representations.

An output model to make predictions on nodes.

Propagation Model

1
2

3

4

Node representation for node v
at propagation step t: h(t)

v

Propagate representations along edges,
allow multiple edge types and propagation
on both directions

h(t)
v =

X

v02IN(v)

f(h(t�1)
v0 , l(v0,v)) +

X

v02OUT(v)

f(h(t�1)
v0 , l(v,v0))

Example: f(h(t�1)
v0 , l(v0,v)) = A(l(v,v0))h(t�1)

v0 + b(l(v,v0))

Edge type and direction

Output Model

ov = g(h(T)
v) For each node v, compute an output based on

final node representation. g can be a neural net.

Learning as proposed by Scarselli et al.:

Backpropagation through time is expensive.

Restrict the propagation model so that the propagation
function is a contraction map è unique fixed point. Run
the propagation until convergence.

Training with Almeida-Pineda algorithm [Almeida, 1990;
Pineda, 1987].

Gated Graph Neural Networks (GG-NNs)

Unroll recurrence for a fixed number of steps and
just use backpropagation through time with
modern optimization methods.

Also changed the propagation model a bit to use
gating mechanisms like in LSTMs and GRUs.

Benefits:

No restriction on the propagation model, does not need to
be a contraction map.

Initialization matters now so problem specific information
can be fed in as the input.

Learning to compute representations within a fixed budget.

Gating makes the propagation model better.

Initialization

Problem specific node annotations in

Example reachability problem: can we go from A to B?

h(0)
v

1
2

3

4

[1,0]

[0,1]

[0,0]

[0,0]

Initialization

Problem specific node annotations in

Example reachability problem: can we go from A to B?

h(0)
v

1
2

3

4

[1,0]

[1,1]

[1,0]

[1,0]

It is easy to learn a propagation model
that copies and adds the first bit to a node’s
neighbor.

It is easy to learn an output model that outputs
yes if it sees the [n, n] pattern, otherwise no

output yes

Initialization

Problem specific node annotations in

Example reachability problem: can we go from A to B?

h(0)
v

1
2

3

4

[0,1]

[1,0]

[1,0]

[1,0]

It is easy to learn a propagation model
that copies and adds the first bit to a node’s
neighbor.

It is easy to learn an output model that outputs
yes if it sees the [n, n] pattern, otherwise no

output no

Initialization

Problem specific node annotations in

In practice we pad node annotations with extra 0’s to add
capacity to h, so

h(0)
v

h(0)
v = [l>v ,0

>]>

Problem specific node annotations

Propagation Model

GNN propagation model with gating and other minor
differences

1
2

3

4
Unroll one step

h(t�1)
1

h(t�1)
2

h(t�1)
3

h(t�1)
4

h(t)
1

h(t)
2

h(t)
3

h(t)
4

h(t�1)

Propagation Model

GNN propagation model with gating and other minor
differences

h(t�1)
1

h(t�1)
2

h(t�1)
3

h(t�1)
4

h(t)
1

h(t)
2

h(t)
3

h(t)
4

h(t�1)

B C
B

C
B’

C’
C’

B'

h(t�1)x

O
ut

go
in

g
E

dg
es

In

co
m

in
g

E
dg

es

A =


A(OUT)

A(IN)

�

a(t) =


a(OUT)

a(IN)

�
=

a(t) = Ah(t�1) + b

h(t)
v = tanh(Wa(t)v)

Propagation Model

GNN propagation model with gating and other minor
differences

a(t) = Ah(t�1) + b

rtv = �
⇣
Wra(t)v +Urh(t�1)

v

⌘

ztv = �
⇣
Wza(t)v +Uzh(t�1)

v

⌘

g
h(t)
v = tanh

⇣
Wa(t)v +U

⇣
rtv � h(t�1)

v

⌘⌘

h(t)
v = (1� ztv)� h(t�1)

v + ztv �
g
h(t)
v

Propagation Model

GNN propagation model with gating and other minor
differences

Reset gate

Update gate

Output Models

Per node output same as in GNNs

Node selection output
 computes scores for each node, then take softmax
over all nodes to select one.

Graph level output
Graph representation vector*

This vector can be used to do graph level classification, regression, etc.

ov = g(h(T)
v , lv)

hG =
X

v2G
�(i(h(T)

v , lv))� h(T)
v

*actual equation is slightly different from this, and more complicated.

The whole network trainable with backprop

Output

Propagation
Model

Output
Model

Unroll T steps

[0,1,0,0,0]

[0,0,0,0,0]

[0,0,0,0,0]

[1,0,0,0,0]

Initialization

Annotate nodes with
problem specific

information

GG-NNs in Action

We first tested GG-NNs on some toy graph
property tasks.

Reachability Sharing

Cyclicity Reaching Cyclicity

More complicated toy tasks.

Some bAbI tasks [Weston et al., 2015]. We used symbolic
format of the data, so results not directly comparable with
other people’s results.

Example: bAbI Task 15 (Basic Deduction)

D is A
B is E
A has_fear F
G is F
E has_fear H
…
eval B has_fear H

D

A B

E
F G
H

is

is

is has_fear

has_fear

Each fact is one edge

Straight forward
conversion to graphs

Node-selection output

We tried GG-NNs on bAbI task 4, 15, 16 (all three are node-
selection), 18 (graph-level classification) and this model is able to
solve all of them to 100% accuracy with only 50 training
examples and less than 600 model parameters.

Decided to use RNNs and LSTMs as reference baselines.

RNN/LSTM trained on token streams

Input:
<D> <is> <A> <\n> …
<eval> <has_fear>
Output: <A>

#parameters: RNN 5k, LSTM 30k

950 training, 50 validation (1000 trainval)
1000 test examples

Start with using only 50 training
examples, then keep using more
until test accuracy reaches 95%
or above.

Number of training examples
needed to reach this accuracy

LSTM on Text
(non-symbolic data)
[Weston et al., 2015]

61 (1000)
21 (1000)
23 (1000)
52 (1000)

Not directly comparable

A few conclusions for the results on bAbI tasks:

Symbolic format does make the tasks easier but still non-
trivial.

We don’t claim GG-NNs can beat RNNs/LSTMs as we
used more structures in the problems. But at least this
shows that exploiting structures in the problems can make
things a lot easier.

Gated Graph Sequence Neural Networks

Many problems require a sequence of predictions
on graphs.

Shortest path from A to B?

A D F

B E
C

A – D – F – B

What are the structures
in this graph?

A

List(A,C) ∧ Tree(C) ∧ List(H, J)

B C

D E

F G

H

I

J

Predictions in each step are made by GG-NNs.

But we need to keep track of where we are in the prediction
process.

Shortest path from A to B?

A D F

B E
C

A – D – F – B

The node annotations used in initialization
should be different for different prediction
steps

A- (already predicted A),
A-D- (already predicted A-D) and
A-D-F- (already predicted A-D-F)

Predictions in each step are made by GG-NNs.

But we need to keep track of where we are in the prediction
process.

Need to keep track of which parts have
been predicted and which parts have not.

What are the structures
in this graph?

A

List(A,C) ∧ Tree(C) ∧ List(H, J)

B C

D E

F G

H

I

J

Solution

Chain multiple prediction steps up using node annotations.

Every prediction step produces an output, and produces
new node annotations (per-node prediction) for the next
step.

GGS-NN architecture
Trainable with backprop from end to end.

l(1) h(1,0) h(2,0)l(2)
Node

Annotation
GG-NN

Output
GG-NN

Output
GG-NN

…

o

(1)
o

(2)

init init

Problem specific
node annotations

Whatever the model decides to
put there to keep track of the progress

Prediction
Step 1

Prediction
Step 2

Note: the two GG-NNs can also share a single propagation net, more details in the paper.

GGS-NNs on Simple Tasks

bAbI task 19 (path finding): find the path from one node to
another on a graph, guarantee there’s only one path.

We created two bAbI-like but more challenging tasks:

Shortest path: find the shortest among possibly multiple paths between
two nodes on a graph.

Eulerian circuit: find the Eulerian circuit of a 2-regular connected graph
(a graph which is a cycle), a distractor graph is added to make it more
challenging.

When to stop

At each prediction step, a separate output GG-NN is used
to make a graph-level binary classification prediction on
whether to continue or stop.

RNNs/LSTMs keep predicting tokens until an <end> token
is hit.

GGS-NN for Program Verification

What is program verification?
Verify correctness of a program: given inputs which satisfy some
preconditions, is the program guaranteed to produce outputs satisfying
some postconditions?

Need to formally describe what happens during the execution of
a program.
Analyze heap memory state, which is a graph.
Formal descriptions of the heap memory using separation logic formulas.

Give the separation logic formula to a theorem prover, to verify if
it is indeed consistent with the program and if it is strong enough
to complete the proof.

The verification pipeline

procedure	 Node Node
returns Node

if

var	
while

return

curr 6= null : elt 7! null
⇤lseg(lst, curr) ⇤ lseg(curr, null)

Theorem
Prover

Run the program,
get heap memory
graph examples

Generate separation logic
descriptions, using
Machine Learning

This is where the
GGS-NN comes in!

From heap graph to separation logic formula

Follow the grammar, every step is either a graph-level
classification or a node selection.

Formula ! 9V ar.Formula | Heaplets
Heaplets ! Heaplet ⇤Heaplets | emp
Heaplet ! lseg(Expr,Expr, (�V ar ! Formula))

| tree(Expr, (�V ar ! Formula))
Expr ! null | V ar

𝐹𝑜𝑟𝑚𝑢𝑙𝑎

∃𝑉𝑎𝑟. 𝐹𝑜𝑟𝑚𝑢𝑙𝑎 𝐻𝑒𝑎𝑝𝑙𝑒𝑡𝑠

𝐻𝑒𝑎𝑝𝑙𝑒𝑡 ∗ 𝐻𝑒𝑎𝑝𝑙𝑒𝑡𝑠 𝑒𝑚𝑝

𝑙𝑠𝑒𝑔(𝐸𝑥𝑝𝑟, 𝐸𝑥𝑝𝑟, …) 𝑡𝑟𝑒𝑒(𝐸𝑥𝑝𝑟, …)

𝑛𝑢𝑙𝑙 𝑉𝑎𝑟

Results

We compared the GGS-NN model with an earlier approach
[Brockschmidt et al., 2015] using heavily hand-engineered
features using domain knowledge combined with standard
classifiers.

The data set has 160,000 heap graphs generated from 327
separation logic formulas.

The GGS-NN achieved 89.96% accuracy without any hand
engineered features, vs. 89.11% accuracy of the previous
approach.

We have also integrated the GGS-NN model into a
program verification pipeline. It can successfully verify a
test suite of list manipulating programs in a benchmark set.

 Program Separation Logic Formula Found

Traverse1 ls(lst, curr) * ls(curr, null)

Traverse2 ls(lst, curr) * ls(curr, null) * curr != null * lst != null

Concat a != null * a != b * b != curr * curr != null
* ls(curr, null) * ls(a, curr) * ls(b, null)

Copy ls(curr, null) * ls(lst, curr) * ls(cp, null)

Dispose ls(lst, null)

Insert curr != null * curr != elt * elt != null * elt != lst * lst != null
* ls(elt, null) * ls(lst, curr) * ls(curr, null)

Remove curr != null * lst != null * ls(lst, curr) * ls(curr, null)

Our GGS-NN model is able to predict more complicated formulas than
shown here.

A more complicated example with nested data structures.

ls(arg1, NULL,�t1 ! ls(t1, NULL,>))⇤
tree(arg2,�t2 ! 9e1.ls(t2, e1,>) ⇤ ls(e1, e1,>))

Future Directions

Explore the model space, further understand this model

Other applications

Learning to construct the graph

Gated Graph Sequence Neural Networks

Q & A

Yujia Li*

Joint work with
Danny Tarlow+, Marc Brockschmidt+ and Rich Zemel*

*University of Toronto

+Microsoft Research Cambridge

