

Learning Unbiased Features

Overview

Suppose we have access to samples from two probability distributions $X \sim P_A$ and $Y \sim P_B$, how can we tell if $P_A = P_B$?

distributions apart.

Domain Adaptation

MMD as a regularizer for learning domain independent representations.

- Make hidden representations indistinguishable across domains to learn features that generalize beyond specific domains
- Training Loss = Classification Loss + λ MMD

					F	
	$D \rightarrow B$	$E \rightarrow B$	K→B	B→D	$E \rightarrow D$	K→D
Linear SVM	78.3 ± 1.4	71.0 ± 2.0	72.9 ± 2.4	79.0 ± 1.9	72.5 ± 2.9	73.6 ± 1.5
RBF SVM	77.7 ± 1.2	68.0 ± 1.9	73.2 ± 2.4	79.1 ± 2.3	70.7 ± 1.8	73.0 ± 1.6
TCA	77.5 ± 1.3	71.8 ± 1.4	68.8 ± 2.4	76.9 ± 1.4	72.5 ± 1.9	73.3 ± 2.4
NN	76.6 ± 1.8	70.0 ± 2.4	72.8 ± 1.5	78.3 ± 1.6	71.7 ± 2.7	72.7 ± 1.6
NN MMD*	76.5 ± 2.5	71.8 ± 2.1	72.8 ± 2.4	77.4 ± 2.4	74.3 ± 1.7	73.9 ± 2.4
NN MMD	$\textbf{78.5} \pm \textbf{1.5}$	$\textbf{73.7} \pm \textbf{2.0}$	75.7 ± 2.3	$\textbf{79.2} \pm \textbf{1.7}$	$\textbf{75.3} \pm \textbf{2.1}$	$\textbf{75.0} \pm \textbf{1.0}$
	B→E	D→E	K→E	В→К	D→K	$E \rightarrow K$
Linear SVM	72.4 ± 3.0	74.2 ± 1.4	82.7 ± 1.3	75.9 ± 1.8	77.0 ± 1.8	84.5 ± 1.0
RBF SVM	72.8 ± 2.5	76.3 ± 2.2	82.5 ± 1.4	75.8 ± 2.1	76.0 ± 2.2	82.0 ± 1.4
TCA	72.1 ± 2.6	75.9 ± 2.7	79.8 ± 1.4	76.8 ± 2.1	76.4 ± 1.7	80.2 ± 1.4
NN	70.1 ± 3.1	72.8 ± 2.4	82.3 ± 1.0	74.1 ± 1.6	75.8 ± 1.8	84.0 ± 1.5
NN MMD*	75.6 ± 2.9	78.4 ± 1.6	83.0 ± 1.2	77.9 ± 1.6	78.0 ± 1.9	84.7 ± 1.6
NN MMD	$\textbf{76.8} \pm \textbf{2.0}$	$\textbf{79.1} \pm \textbf{1.6}$	$\textbf{83.9}\pm\textbf{1.0}$	$\textbf{78.3} \pm \textbf{1.4}$	$\textbf{78.6} \pm \textbf{2.6}$	$\textbf{85.2} \pm \textbf{1.1}$

Yujia Li, Kevin Swersky, Richard Zemel

Learning Invariant Features

MMD as a regularizer to learn representations that are invariant to certain task irrelevant biases in the data.

Without MMD: 72% Test Accuracy

Learning Deep Generative Models

Use an MMD loss function to make the model distribution close to the data distribution. No adversary required! Trained entirely with backpropagation.

Noise-Insensitive Auto-Encoders

Use an MMD regularizer on the hidden representation of an auto-encoder so that the representation for corrupted data is indistinguishable from uncorrupted data. With infinitesimal Gaussian noise and linear kernel recovers the contractive auto-encoder penalty.

Evaluate by attempting to classify corrupted vs uncorrupted using the learned representation.

Model	AE	DAE	CAE	MMD	MMD+DAI
SVM Accuracy	78.6	82.5	77.9	61.1	72.9

Independent Samples

Independent Samples

Morphing between two samples

Morphing between two samples

