Graph Matching Networks for Learning the Similarity of Graph Structured Objects

Yujia Li, Chenjie Gu, Thomas Dullien, Oriol Vinyals, Pushmeet Kohli

Introduction

We want to learn a similarity / distance function between graphs.

Many applications:
- Similarity search in graph databases
- Copy detection for graph structured objects

Motivating problem:
- Binary function similarity search for detecting software vulnerabilities

Challenge:
- Reasoning about both graph structure as well as the graph semantics

Previous approaches:
- Graph hashes
- Graph kernels

Synthetic Task: Learning Graph Edit Distance

Learn a similarity metric that correlates with graph edit distance.
- Extreme case: distinguishing graph edit distance of 0 vs non-zero - graph isomorphism test.
- Graph edit distance is NP-hard in general.

Comparing graph matching model vs graph embedding model vs WL-kernel on random graphs to distinguish edit distance of 1s 2s.

<table>
<thead>
<tr>
<th>Graph Spec.</th>
<th>WL kernel</th>
<th>embedding model</th>
<th>matching model</th>
</tr>
</thead>
<tbody>
<tr>
<td>n = 20, p = 0.2</td>
<td>89.8 / 83.2</td>
<td>85.0 / 85.6</td>
<td>85.0 / 85.6</td>
</tr>
<tr>
<td>n = 30, p = 0.5</td>
<td>74.9 / 78.0</td>
<td>92.1 / 93.4</td>
<td>96.6 / 98.0</td>
</tr>
<tr>
<td>n = 50, p = 0.2</td>
<td>93.9 / 97.8</td>
<td>95.9 / 97.1</td>
<td>97.4 / 97.6</td>
</tr>
<tr>
<td>n = 50, p = 0.5</td>
<td>82.3 / 89.0</td>
<td>88.5 / 91.0</td>
<td>93.8 / 92.6</td>
</tr>
</tbody>
</table>

Measuring pair classification AUC / triplet accuracy.

Learning

Learn to make similar pairs have small distance (high similarity), and dissimilar pairs have high distance (small similarity).

Pairwise training:
\[L_{pair} = E(G, G_{adj}) \max(0, \gamma - t(1 - d(G, G_{adj}))) \]
\[t \in \{-1, +1\} : \text{label}, +1 \text{ for similar, otherwise -1}. \quad \gamma : \text{margin} \]

Triplet training:
\[L_{triplet} = E(G, G, G_{adj}) \max(0, d(G, G_{adj}) - d(G, G_{adj}^*) + \gamma) \]
\((G, G_{adj}) \text{ is a similar pair; } (G, G_{adj}^*) \text{ is a dissimilar pair} \quad \gamma : \text{margin} \]

Attention Visualizations

We never supervise the cross-graph attention, but the model still learns some interesting attention patterns.

Conclusions, Limitations and Future Work

Graph similarity can be learned with graph neural networks.

Graph Matching Networks perform better than embedding models.

GMN is more expensive compared to GNN embedding models, requiring \(O(V_1V_2)\) computation at each step.
- This provides us with an accuracy-computation trade-off

GMNs may be used jointly with GNNs embedding models in a retrieval system: GNN for fast filtering, GMN for refinement.

Future directions:
- Larger graphs
- More effective / scalable attention
- Different matching architectures
- Many more!

The Models

GNN embedding model

Map each graph to a vector representation, through a graph neural net using multiple message passing / graph convolution layers.

Graph matching networks

Cross-graph attention & comparison early in the message passing process.

The Models

Graph Similarity Model

\[v_j^{(t)} = \text{MLP}_{\text{prop}}(x_j); \quad v_j^{(t)} \in \mathbb{R}^{d} \]

\[v_j^{(t)} = \text{MLP}_{\text{prop}}(x_j); \quad v_k^{(t)} \in \mathbb{R}^{d} \]

\[h_j^{(t)} = \text{MLP}_{\text{prop}}(v_j^{(t)}); \quad h_k^{(t)} = \text{MLP}_{\text{prop}}(v_k^{(t)}) \]

\[h_j^{(t)} = \text{MLP}_{\text{prop}}(v_j^{(t)}); \quad h_k^{(t)} = \text{MLP}_{\text{prop}}(v_k^{(t)}) \]

\[h_j = \text{fc}(h_j^{(T)}) = \text{MLP}(\sum_{j \in G_1} \text{MLP}_{\text{prop}}(h_j^{(T)}) \otimes \text{MLP}(h_k^{(T)})) \]

Cross-graph attention-based matching:

\[\mathcal{A}_{jk} = \exp(h_j^{(T)}; h_k^{(T)}) \]

\[\sum_{j \in V_1} \exp(h_j^{(T)}; h_k^{(T)}) \]

\[\mathcal{B}_{jk} = \text{fc}(h_j^{(T)}; h_k^{(T)}) \]

\[\mu_{j,k} = \text{fc}(h_j^{(T)}; h_k^{(T)}) \]

\[\sum_{j \in V_1} \exp(h_j^{(T)}; h_k^{(T)}) \]

\[\sum_{j \in V_1} \exp(h_j^{(T)}; h_k^{(T)}) \]

\[\sum_{j \in V_1} \exp(h_j^{(T)}; h_k^{(T)}) \]