

Structured Output Learning

 Data and their labels usually have structures that need to be taken into account when making predictions.

Image Segmentation

NNP	VBZ	DT	JJ	NN	-
Beijing	is	а	beautiful	city	
Part of Speech Tagging					

Structured prediction models

$$\mathbf{y} = \operatorname{argmax}_{\mathbf{y}'} f(\mathbf{x}, \mathbf{y}', \mathbf{w})$$

- Max-margin training structured hinge loss $\mathcal{L} = \max_{\mathbf{y}} \left[f(\mathbf{x}, \mathbf{y}, \mathbf{w}) + \Delta(\mathbf{y}, \mathbf{y}^*) \right] - f(\mathbf{x}, \mathbf{y}^*, \mathbf{w})$
- Maximum likelihood training negative log likelihood loss $\mathcal{L} = -\log p(\mathbf{y}^* | \mathbf{x}, \mathbf{w})$
- Labeling structured data is very expensive, but plenty of unlabeled data is available.
 - Segmentation datasets: PASCAL VOC 2012 < 3k
 - Classification datasets: ImageNet > 1 million
 - Unlabeled images: almost infinite

Relation to Posterior Regularization

 Posterior Regularization: probabilistic models + regularizers defined on posterior distributions $\min_{\mathbf{w},q} \quad \sum_{i=1}^{L} \mathcal{L}(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w}) + \lambda R(q) + \mu \sum_{j=L+1}^{L+U} \mathrm{KL}(q_j(\mathbf{y})||p_{\mathbf{w}}(\mathbf{y}|\mathbf{x}_j)|)$ Temperature augmented formulation $p_{\mathbf{w}}(\mathbf{y}|\mathbf{x},T) = \frac{1}{Z_T^p} \exp\left(\frac{f(\mathbf{x},\mathbf{y},\mathbf{w})}{T}\right) \qquad q(\mathbf{y},T) = \frac{1}{Z_T^q} \exp\left(\frac{f(\mathbf{x},\mathbf{y},\mathbf{w})}{T}\right)$

High Order Regularization for Semi-Supervised Learning of **Structured Output Problems**

Yujia Li, Richard S. Zemel

Structured Output Learning
Data and their labels usually have structures that
need to be taken into account when making
predictions.
Sequenciation
NP VBZ DT JJ NN .
Beijing is a beaufield city .
Part of Speech Tagging
Structured Prediction Models
J Labeled data
$$\{x_i, y_i\}_{i=1}^{L}$$
, U unlabeled data $\{x_i\}_{i=1}^{L+L}$,
 $w_i = \sum_{i=1}^{L} U(x_i; y_i; w) + R(\{y_i\}_{i=1}^{L+L})$
 $st_i = y_i = argmax_{j}, f(x_i; y_i; w) + R(\{y_i\}_{i=1}^{L+L})$
Structured prediction models
 $y = argmax_{j}, f(x_i; y', w)$
Structured prediction models
 $y = argmax_{j}, f(x_i; y', w) + G(y_i; y', w)$
Maximum likelihood training - negative log likelihood loss
 $\mathcal{L} = \max_{j \in j} y(y'|x_i, w)$
Adapting traching - structured hinge loss
 $\mathcal{L} = \max_{j \in j} y(y'|x_i, w) + G(y_i; y', w) = f(x_i; y', w)$
Adapting traching - structured hinge loss
 $\mathcal{L} = \max_{j \in j} y(y'|x_i, w) + G(y_i; y', w) = f(x_i; y', w)$
Adapting traching - structured data is very expensive, but
plently of unlabeled data is wallable.
Segmentation datasets: mageN4 > 1 million
Dostenior Regularization: models + 1 million
Dostenior Regularization: probabilistic models +
regularizers defined on postenior distributions
 $w_{int} = \sum_{i=1}^{L} L(x_i; y_i, w) + M(w) = \sum_{j=1}^{L} KL(w_{ij}(y_j)) |w_{ij}(y_{ij}(y_j))$
Image Sequence to formulation
 $w_{int}(y_{ij}, y_{ij}(x_{ij}, y_{ij})) = (y_{ij}, y_{ij}(x_{ij}, y_{ij}, w)) = 0$
Dostenior Regularization: models
Structured Prediction datasets: fingeNet > 1 million
 $w_{int}(y_{ij}, y_{ij}(x_{ij}, y_{ij})) = (y_{ij}, y_{ij}(x_{ij}, y_{ij})) = 0$
Dostenior Regularization: probabilistic models
 $w_{int}(x_{ij}, y_{ij}, w_{ij}) = (x_{ij}, y_{ij}, w_{ij}) = 0$
Dostenior Regularization: $x_{ij}(x_{ij}, y_{ij}, w_{ij}) = 0$
Dostenior Regularization: $x_{ij}(x_{ij}, y$

– margin ioss

Example High Order Regularizers

• Graph regularizer given a similarity metric based on **x**

$$R_G(\mathbf{Y}_U) = \lambda \sum_{i,j:s_{ij}>0} s_{ij} \Delta(\mathbf{y}_i, \mathbf{y}_j)$$

- The more similar two examples are in **x** space, the more similar their **y** should be
- Hamming loss $R(\mathbf{Y}_U)$ decomposes into pairwise terms

$$\min_{\mathbf{Y}_U} \quad \lambda \sum_{i,j:s_{ij}>0} s_{ij} \sum_c \Delta(y_{ic}, y_{jc}) - \mu \sum_{j=L+1}^{L+0} \sum_{j=L+1}^{L+0} \delta(y_{ic}, y_{jc}) - \mu \sum_{j=L+1}^{L+0} \sum_{j=L+1}^{L+0} \delta(y_{ic}, y_{jc}) - \mu \sum_{j=L+1}^{L+0} \delta(y_{jc}, y_{jc}) - \mu \sum_{j=L+1}$$

- methods and dual decomposition $h \downarrow$
- Cardinality regularizer

$$R_{C}(\mathbf{Y}_{U}) = \gamma h\left(\sum_{j,c} y_{jc}\right)$$
$$\min_{\mathbf{Y}_{U}} \gamma h\left(\sum_{j,c} y_{jc}\right) - \lambda$$

- Efficient solver for unary only models by sorting
- Combining multiple high order regularizers - Dual decomposition inference

Experiments

• Settings

- Horse: train, test on Weizmann horses unlabeled data from CIFAR-10
- Bird: train on PASCAL, test on CUB, unlabeled data from CUB
- See paper for a few more settings
- Base model: pairwise CRF with NN unaries
- Semi-supervised learning of NN parameters
- Models compared
 - Initial: pure supervised training
 - Self-Training: self-training baseline
 - Graph: SSL with graph regularizer R_G
 - Graph-Card: SSL with both graph and cardinality regularizer $R_G + R_C$

L+U

Solvable using efficient graph-cuts based solvers for pairwise models

 $f(\mathbf{x}_j, \mathbf{y}_j, \mathbf{w})$

~30% FG

- Non-decomposable loss - solvable with efficient high order loss optimization

$$L+U = f(\mathbf{x} \cdot \mathbf{y} \cdot \mathbf{w})$$

$$\sum_{j=L+1}^{L+U} f(\mathbf{x}_i, \mathbf{y}_i, \mathbf{w})$$

- Decomposition methods for pairwise and higher order models

