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Structured Output Learning

e Data and their labels usually have structures that
need to be taken into account when making
predictions.

Semi-Supervised Learning for
Structured Prediction Models
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® Regularizer R defined on predictions of the model on

unlabeled data

- Many expressive constraints / regularizers can be defined
- Hard constraints make the optimization hard

Image Segmentation
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Part of Speech Tagging e Relaxation: relax hard constraint to a (soft) penalty

Y; — argmaxy f(Xj7Y7W) @ f(Xj7Yj7W) — 1laXy f(Xj7Y7W)

- Relaxed objective (Y, is a shorthand for the concatenation of all y; for
unlabeld images)

e Structured prediction models

y = argmax, f(x,y’, w)
- Max-margin training - structured hinge loss
w) + Ay, y")] = f(x,y", W)
- Maximum likelihood training - negative log likelihood loss
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- Decoupled Y, and w, optimization made easy

® Labeling structured data is very expensive, but
plenty of unlabeled data is available.

- Segmentation datasets: PASCAL VOC 2012 < 3k

- Classification datasets: ImageNet > 1 million

® Alternating optimization (coordinate descent)

Step 1. Fix w and optimize over Y,

win - R(Yy) — p > x5y w
j=L+1
- Recent advances in optimization for models with high order potentials
makes this step efficient.

- Unlabeled images: almost infinite

Step 2. Fix Y, and optimize over w
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Relation to Posterior Regularization

® Posterior Regularization: probabilistic models +
regularizers defined on posterior distributions
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® [emperature augmented formulation
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- No harder than standard structured output learning

® [-augmented PR equivalent to our formulation when 7=0
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Example High Order Reqgularizers

e Graph regularizer given a similarity metric based on x
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1,7:8:5>0
- The more similar two examples are in X space,
the more similar their y should be

- Hamming loss - R(Y ) decomposes into pairwise terms
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Solvable using efficient graph-cuts based solvers for pairwise models

e Cardinality regularizer

- Non-decomposable loss - solvable with efficient high order loss optimization
methods and dual decomposition h
Ro(Yu) =k (2, vie) .
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- Efficient solver for unary only models by sorting

~30% FG
- Decomposition methods for pairwise and higher order models

e Combining multiple high order regularizers
- Dual decomposition inference

Experiments

Horse Segmentation

® Settings

- Horse: train, test on Weizmann horses S
unlabeled data from CIFAR-10 0.92

- Bird: train on PASCAL, test on CUB, unlabeled 3088_

data from CUB 8oz
- See paper for a few more settings 50_84
- Base model: pairwise CRF with NN unaries 082

- Semi-supervised learning of NN parameters 0.80/
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Bird Transfer Learning
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e Models compared
- Initial: pure supervised training
- Self-Training: self-training baseline
- Graph: SSL with graph regularizer R
- Graph-Card: SSL with both graph and
cardinality regularizer Rz+R,
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