Mean Field Networks

UNIVERSITY OF TORONTO

Yujia Li, Richard S. Zemel

Pairwise MRF

Mean Field Inference

Feed Forward Operation

Minimize KL(q||p) for factorial q $E(\mathbf{x};\theta) = \sum_{s \in \mathcal{V}} f_s(x_s;\theta) + \sum_{(s,t) \in \mathcal{E}} f_{st}(x_s, x_t;\theta) \qquad q_s^*(x_s) = \frac{1}{Z_s} \exp\left(f_s(x_s;\theta) + \sum_{t \in \mathcal{N}(s)} \sum_{x_t} q_t(x_t) f_{st}(x_s, x_t;\theta)\right)$

Mean Field Network

Restrictions and Relaxations

(2) Parameters on all layers tied together.

Mean Field Networks as Stand-Alone Models

- A range of loss functions can be used
- Hinge loss, other more structured task loss
- Better models when trained discriminatively

θ

(1) Parameters in the network tied with the graphical model.

H

(3) Structure of the network tied with the graphical model.

Experiments

Denoising/Binary Labeling

CALL FORF APER

Base model: pairwise CRF trained with mean field inference runned for 30 steps.

MFNs as Inference Tools

MF-1	MF-3	MF-10	MF-30
-12779.05	-12881.50	-12904.43	-12908.54
MFN-1	MFN-3	MFN-10	MFN-30
-12837.87	-12893.52	-12908.80	-12909.34
		-	KL(q p]

MFNs as Stand-Alone Models

MF-30	MF-3	MFN-3-t	MFN-3
81.09%	80.65%	81.34%	81.51%

Test accuracy, MFN trained with element-wise hinge loss