
Program Verification Application 
 

This work on GGS-NN is motivated by the program verification 
application, where we need to analyze dynamic data structures created in 
the heap.  On a very high level, in this application a machine learning 
model analyzes the heap states (a graph with memory nodes and 
pointers as edges) during the execution of a program and comes up with 
logical formulas that describes the heap.  These logical formulas are then 
fed into a theorem prover to prove the correctness of the program. 

Problem-specific node annotations are used to 
initialize      . 
 
 
 
 
 
 
 
Output Model makes predictions from node 
representations. 
 
 
 
 
 
 

Training: unroll propagation process for fixed T steps 
and backprop through time, trained end-to-end. 

Gated Graph Neural Networks 
We based our model on the Graph Neural Networks [1], but made a few 
important changes. 
 

Propagation model computes node representations. 
Allow multiple edge types (indicated by different colors in the illustrations).  
Propagation in both directions.  Each node v has representation       at propagation 
step t. 

 
 
 
 
 
 
 
 
 
 
 
 

Introduction 
There are many graph-structured data and problems. 
 
 
 
 
 
 
 

In this paper we study learning representations for 
nodes and graphs and propose 

Gated Graph Sequence Neural Networks 
 

Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel 

Gated Graph Neural Networks for making single 
predictions on graphs. 
 
Gated Graph Sequence Neural Networks for making 
sequences of predictions on graphs. 
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RNN-Style Update 
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GRU-Style Update 

Propagation 

Nonlinear Update 

Reset Gate 
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Per-Node Output Node Selection Output Graph Level Output 
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Example: can we reach u from v?  For this problem, we need to let the model 
know that u and v are special and different.  hu=[1,0], hv=[0,1], others [0,0]. 
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Example  
propagation 

results Not hard to train a 
classifier on node 
representations to tell if u 
reachable from v. 

In practice we set                     (pad with zeros) to give the model extra capacity. h(0)
v =


lv
0

� node annotations 

ov = g(h(T )
v , lv)

o = Softmaxv{g(h(T )
v , lv)}

One output for 
each node. 

One score for each node, 
then select a node based 

on score. 
Compute a graph 

representation vector, then do 
standard tasks on it. 

[1] restricted the propagation model to contraction map and used the Almeida-
Pineda [2,3] algorithm for training.  We lifted this restriction and made node 
initialization meaningful as the propagation model does not need to be a 
contraction map.  We proved that under the contraction map restriction the 
model has problems modeling long-range interactions. 

procedure	 Node Node
returns Node

if

var	
while

return

curr 6= null : elt 7! null
⇤lseg(lst, curr) ⇤ lseg(curr, null)

Theorem	
Prover	

Code Heap Graphs 
Logical Formulas 

Run GGS-NN 

Follow the logical formula 
grammar.  Producing one 
part at a time given the heap 
graphs.  It is therefore a 
sequence prediction 
problem on heap graphs. 

Compared to an earlier approach based on 
classifiers trained on hand-engineered 
features designed by domain experts, the 
GGS-NN approach automatically learns useful 
features and does as well as the hand-
engineered approach.  See paper for more 
details. 

Gated Graph Sequence Neural Networks 
In some cases we need to make a sequence of decisions or generate a a 
sequence of outputs for a graph.  To solve these problems on graphs:  
each prediction step can be implemented with a GG-NN, from step to 
step it is important to keep track of the processed information and states.  
 

Solution: after each prediction step, produce a per-node state vector to 
be carried over to the next step. 
 
 
 
 
 
 
 
 
 
The whole sequence model trainable is end-to-end.   
 

When to stop: use a special <end> output or have an extra graph level output 
model to decide whether to continue or not after each step. 
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bAbI tasks and graph algorithms 
We tested the GG-NN model on 4 toy graph property tasks, all of 
them are solved perfectly with only a few tens of training 
examples. 
 
 
 
We also evaluated on bAbI [3] tasks 4, 15, 16, 18, 19 and 
created two extra bAbI-like sequence prediction tasks on graphs. 
 

We used the symbolic format of the bAbI data to get rid of the natural language 
parsing, and exclusively focus on reasoning.  A graph is easily constructed for each 
story, predictions are made after reading the graph.  

 

Reachability Sharing Cyclicity Reaching Cyclicity 

Task RNN LSTM GG-NN

bAbI Task 4 97.3±1.9 (250) 97.4±2.0 (250) 100.0±0.0 (50)
bAbI Task 15 48.6±1.9 (950) 50.3±1.3 (950) 100.0±0.0 (50)
bAbI Task 16 33.0±1.9 (950) 37.5±0.9 (950) 100.0±0.0 (50)
bAbI Task 18 88.9±0.9 (950) 88.9±0.8 (950) 100.0±0.0 (50)

Example task (bAbI task 15): 

D is A 
B is E 
A has_fear F 
G is F 
E has_fear H 
… 
eval B has_fear      H 
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is 

is has_fear 

has_fear 

Node selection output Single prediction problems.  GG-NN solved all of them with only 50 
training examples. 

Sequence prediction problems.  GGS-NN solved all of them with only very little training examples compared to RNNs and LSTMs that do 
not make use of the graph structure. 
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a < b ^ b < c ^ c = d ) a < d

l and h are concatenations of all  
node annotations / representations 

Sample problems: entity relation reasoning, link prediction, graph property prediction, 
shortest-paths, etc. 

and many 
more… 

Task RNN LSTM GGS-NN

bAbI Task 19 (path finding) 24.7±2.7 (950) 28.2±1.3 (950) 71.1±14.7 (50) 92.5±5.9 (100) 99.0±1.1 (250)

Shortest Path 9.7±1.7 (950) 10.5±1.2 (950) 100.0± 0.0 (50)

Eulerian Circuit 0.3±0.2 (950) 0.1±0.2 (950) 100.0± 0.0 (50)
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