
Program Verification Application

This work on GGS-NN is motivated by the program verification
application, where we need to analyze dynamic data structures created in
the heap. On a very high level, in this application a machine learning
model analyzes the heap states (a graph with memory nodes and
pointers as edges) during the execution of a program and comes up with
logical formulas that describes the heap. These logical formulas are then
fed into a theorem prover to prove the correctness of the program.

Problem-specific node annotations are used to
initialize .

Output Model makes predictions from node
representations.

Training: unroll propagation process for fixed T steps
and backprop through time, trained end-to-end.

Gated Graph Neural Networks
We based our model on the Graph Neural Networks [1], but made a few
important changes.

Propagation model computes node representations.
Allow multiple edge types (indicated by different colors in the illustrations).
Propagation in both directions. Each node v has representation at propagation
step t.

Introduction
There are many graph-structured data and problems.

In this paper we study learning representations for
nodes and graphs and propose

Gated Graph Sequence Neural Networks

Yujia Li, Daniel Tarlow, Marc Brockschmidt, Richard Zemel

Gated Graph Neural Networks for making single
predictions on graphs.

Gated Graph Sequence Neural Networks for making
sequences of predictions on graphs.

Knowledge Graphs

c

b a d

<
< =

Logical Reasoning Dynamic Data Structures

1
2

3

4

h(t)
v

Unroll one step h(t�1)
1

h(t�1)
2

h(t�1)
3

h(t�1)
4

h(t)
1

h(t)
2

h(t)
3

h(t)
4

h(t�1)

B C
B

C
B’

C’
C’

B'

O
ut

go
in

g
E

dg
es

In

co
m

in
g

E
dg

es

A =


A(OUT)

A(IN)

�

a(t) =


a(OUT)

a(IN)

�
=

RNN-Style Update

a(t) = Ah(t�1) + b

rtv = �
⇣
Wra(t)v +Urh(t�1)

v

⌘

ztv = �
⇣
Wza(t)v +Uzh(t�1)

v

⌘

g
h(t)
v = tanh

⇣
Wa(t)v +U

⇣
rtv � h(t�1)

v

⌘⌘

h(t)
v = (1� ztv)� h(t�1)

v + ztv �
g
h(t)
v

GRU-Style Update

Propagation

Nonlinear Update

Reset Gate

Update Gate
a(t) = Ah(t�1) + b

h(t)
v = tanh(Wa(t)v +Uh(t�1)

v)

⇥ h(t�1)

Per-Node Output Node Selection Output Graph Level Output

hG =
X

v2G
�(i(h(T)

v , lv))� h(T)
v

o = g(hG)

h(0)

h(t)
v

u

v
u

v

[1,0]

[0,1]

[0,0]

[0,0]

Example: can we reach u from v? For this problem, we need to let the model
know that u and v are special and different. hu=[1,0], hv=[0,1], others [0,0].

u

v

[1,0]

[1,1]

[1,1]

[1,1]

Example
propagation

results Not hard to train a
classifier on node
representations to tell if u
reachable from v.

In practice we set (pad with zeros) to give the model extra capacity. h(0)
v =


lv
0

� node annotations

ov = g(h(T)
v , lv)

o = Softmaxv{g(h(T)
v , lv)}

One output for
each node.

One score for each node,
then select a node based

on score.
Compute a graph

representation vector, then do
standard tasks on it.

[1] restricted the propagation model to contraction map and used the Almeida-
Pineda [2,3] algorithm for training. We lifted this restriction and made node
initialization meaningful as the propagation model does not need to be a
contraction map. We proved that under the contraction map restriction the
model has problems modeling long-range interactions.

procedure	 Node Node
returns Node

if

var	
while

return

curr 6= null : elt 7! null
⇤lseg(lst, curr) ⇤ lseg(curr, null)

Theorem	
Prover	

Code Heap Graphs
Logical Formulas

Run GGS-NN

Follow the logical formula
grammar. Producing one
part at a time given the heap
graphs. It is therefore a
sequence prediction
problem on heap graphs.

Compared to an earlier approach based on
classifiers trained on hand-engineered
features designed by domain experts, the
GGS-NN approach automatically learns useful
features and does as well as the hand-
engineered approach. See paper for more
details.

Gated Graph Sequence Neural Networks
In some cases we need to make a sequence of decisions or generate a a
sequence of outputs for a graph. To solve these problems on graphs:
each prediction step can be implemented with a GG-NN, from step to
step it is important to keep track of the processed information and states.

Solution: after each prediction step, produce a per-node state vector to
be carried over to the next step.

The whole sequence model trainable is end-to-end.

When to stop: use a special <end> output or have an extra graph level output
model to decide whether to continue or not after each step.

l(1) h(1,0) Per-Node
Output

Suitable
Output Model

o

(1)

init

Problem specific
node annotations

Whatever the model decides to
put there to keep track of the progress

Prediction
Step 1

prop.

h(1,T) Per-Node
Output

Suitable
Output Model

init

Prediction
Step 2

prop.

h(2,T)l(2) h(2,0)

o

(2)

...

bAbI tasks and graph algorithms
We tested the GG-NN model on 4 toy graph property tasks, all of
them are solved perfectly with only a few tens of training
examples.

We also evaluated on bAbI [3] tasks 4, 15, 16, 18, 19 and
created two extra bAbI-like sequence prediction tasks on graphs.

We used the symbolic format of the bAbI data to get rid of the natural language
parsing, and exclusively focus on reasoning. A graph is easily constructed for each
story, predictions are made after reading the graph.

Reachability Sharing Cyclicity Reaching Cyclicity

Task RNN LSTM GG-NN

bAbI Task 4 97.3±1.9 (250) 97.4±2.0 (250) 100.0±0.0 (50)
bAbI Task 15 48.6±1.9 (950) 50.3±1.3 (950) 100.0±0.0 (50)
bAbI Task 16 33.0±1.9 (950) 37.5±0.9 (950) 100.0±0.0 (50)
bAbI Task 18 88.9±0.9 (950) 88.9±0.8 (950) 100.0±0.0 (50)

Example task (bAbI task 15):

D is A
B is E
A has_fear F
G is F
E has_fear H
…
eval B has_fear H

D

A B

E
F G
H

is

is

is has_fear

has_fear

Node selection output Single prediction problems. GG-NN solved all of them with only 50
training examples.

Sequence prediction problems. GGS-NN solved all of them with only very little training examples compared to RNNs and LSTMs that do
not make use of the graph structure.

References
[1] Scarselli et al.. The graph neural network model. IEEE Transactions on Neural Networks, 20(1):61–80, 2009
[2] Pineda, J. Generalization of back-propagation to recurrent neural networks. Physical review letters, 59(19):2229, 1987
[3] Almeida, B. A learning rule for asynchronous perceptrons with feedback in a combinatorial environment. In Artificial neural
networks, pp. 102–111. IEEE Press, 1990.
[4] Weston et al.. Towards AI-complete question answering: a set of prerequisite toy tasks. arXiv preprint arXiv:1502.05698, 2015.

a < b ^ b < c ^ c = d) a < d

l and h are concatenations of all
node annotations / representations

Sample problems: entity relation reasoning, link prediction, graph property prediction,
shortest-paths, etc.

and many
more…

Task RNN LSTM GGS-NN

bAbI Task 19 (path finding) 24.7±2.7 (950) 28.2±1.3 (950) 71.1±14.7 (50) 92.5±5.9 (100) 99.0±1.1 (250)

Shortest Path 9.7±1.7 (950) 10.5±1.2 (950) 100.0± 0.0 (50)

Eulerian Circuit 0.3±0.2 (950) 0.1±0.2 (950) 100.0± 0.0 (50)

Spanish

English

San Juan
Santo Domingo

Kingston

Puerto Rico

Jamaica

Dominican Republic

North America

