DISCOVERING AND USING SEMANTICS FOR
DATABASE SCHEMAS

by

Yuan An

A thesis submitted in conformity with
the requirements for the degree

Doctor of Philosophy

Department of Computer Science

University of Toronto

(©Copyright by YUAN AN 2007

Discovering and Using Semantics for Database Schemas
Yuan An

Doctor of Philosophy

Department of Computer Science

University of Toronto

2007

ABSTRACT
This dissertation studies the problem of discovering and using semantissudotured and semi-
structured data, such as relational databases and XML documents. tl8sriscaptured in terms

of mappings from a database schema to conceptual schemas/ontologies.

Data semantics lies at the heart of data integration — the problem of shatingadass disparate
sources. To address this problem, database researchers haveagraphost of solutions including
federated databases, data warehousing, mediator-wrapper-tzaddtdgration systems, peer-to-
peer data management systems, and more recently data spaces. In thecS&etacommunity, the
solution to the problem of providing machine understandable data for bedtemide information
retrieval and exchange is to annotate web data using formal domain ontolégiestral issue in

all of these solutions is the problem of capturing the semantics of the data ttegeated.

This dissertation describes our solutions for discovering semantics farag@ using the se-
mantics to facilitate the discovery of schema mappings. First, we develop a samiaic tool,
MAPONTO, for discovering semantics for a database schema in termsw#maginceptual model
(hereafter CM). The tool takes as inputs a relational or XML databasensz, a CM covering the
same domain as the database, and a set of simple element correspofibencehema elements
to datatype properties in the CM. It then generates a set of logical forthadadefine a mapping
from the schema to the CM. The key is to align the integrity constraints in the sciwim#he
semantic constructs in the CM, guided by standard database design pen8plond, we extend
MAPONTO with a semantic approach to finding schema mapping expressibaspproach lever-
ages the semantics of schemas expressed in terms of CMs. We preszimherpal results demon-
strating that MAPONTO saves significant human effort in discovering émeasitics of database

schemas and it outperforms the traditional mapping techniques for buildmgler schema map-

ping expressions in terms of both recall and precision. The developrhBIABONTO provides a
suite of practical tools for recovering semantics for database-residéatind generating improved

schema mapping results for data integration.

ACKNOWLEDGMENTS

| benefited enormously from the members of the supervisory committee for By ptogram.
They are Prof. John Mylopoulos, Prof. Alex Borgida, Prof. Renékeiand Prof. Sheila Mcll-
raith. |1 am deeply grateful for their supervisions, criticisms, collaborati@mcouragement, pa-

tience, tolerance, supports, and academic advice to my research andtiting af this dissertation.

| am particularly grateful to my supervisor, Prof. John Mylopoulos, \whe been consistently
supportive and encouraging. | feel extremely fortunate that wheteteshthe Ph.D. program in the
Department of Computer Science at the University of Toronto five andylkalfs ago, | had John
as my supervisor. The very friendly, open, helpful, and encouragimgonment in the Knowledge
Management Lab led by John provided me the most positive conditions iiog dderesting and
innovative research and pursuing a Ph.D. degree. | would say thatlit mig happen for me to

achieve this if | did not have the opportunity to work with John.

| am greatly indebted to Prof. Alex Borgida, my co-supervisor. It wasale&sdemic advice
to my research and numerous positive suggestions to my writings that led mertome one
hurdle after another for sharpening my skills and gaining abilities. | coutdremaember how
many times we had spent an entire morning, an entire afternoon, or an eafiie d meeting
room discussing research problems and developing algorithms togethex. wAs very patient
in answering my emails regarding various kinds of questions ranging fskimg references to
checking a lousy mathematical proof. His sharp, precise, and almosysalvearect comments

inspired me tremendously and reshaped my mind in great deal.

| am deeply grateful to Prof. Renee Miller whose seminal work on schenmgininspired
me to develop the core idea presented in this dissertation. | benefited greatliRénee’s graduate
seminar course on Data Integration in the Department of Computer Sciettoe Ehiversity of
Toronto. When | just started the Ph.D. program, | had been attracted ligflilnential work done
by Renee. During the years of study, | was always be able to seekeaatvitsuggestions from her.
I would like to thank Renee for acting as the chair of the supervisory committeally appreciate

those positive comments and invaluable suggestions after each committee meeting.

| am also deeply grateful to Prof. Sheila Mcllraith whose expertise in Al profound un-
derstanding about knowledge representation and reasoning helped nogempy work in many
aspects. | benefited greatly from her through different occasiohgding advisory meetings, com-

mittee meetings, and the teaching in a graduate course.

I would like to thank Prof. Enrico Franconi for being the external examiri¢his dissertation.

His appraisal provided many suggestions for me to improve this dissertation.

| also would like to thank my colleagues in the Knowledge Management Lab ingéparDment
of Computer Science at the University of Toronto. | feel very fortunathave the opportunities

working with many of them.

I would like to thank the publisher, Springer-Verlag. With the kind permissib®mringer
Science and Business Media, | am able to include the following material in ttgerthiion and
allow the National Library to make use of the dissertation. The material to bieategis the Section
5 and 6 of the paper entitled “Discovering the Semantics of Relational Taltasytih Mappings”,
Journal on Data Semantics VII, pages 1-32, LNCS 4244, 2006 Autupnnder-Verlag. This

material appears in Chapter 4 of this dissertation.

| would like to thank my parents for getting me started and their continued suppontpartic-
ularly grateful to my wife, Yina, for her endless patience, boundlesgatyand tolerating the long

journey in achieving the goal of finishing this dissertation and earning tte. Elegree.

Finally, to my son, Jacob Yuchen An, a precious treasure from God,iffisisrthtion is dedicated.

I hope that he will soon be reading this.

Contents

11
1.2
1.3
1.4

15
1.6

2.1

2.2
2.3
2.4
2.5
2.6

3.1

Introduction
Motivation
Objectives e
Challenges in Building Mappings

Overview of the Dissertation

1.4.1 Discovering Semantic Mappings from Database Schemas to CMs

1.4.2 Discovering Mappings between Database Schemas
Contributions of the Dissertation

Organization of the Dissertation

Related Work

Schema Mapping for Data Integration and Exchange

2.1.1 Ontology-Based Information Integration.
Finding Correspondences: Schema and Ontology Matching
Model Management
Database Reverse Engineering(DBRE)
Query Processing Over Mappings o o it i e

Conceptual Modeling and Data Semantics

Problem Description
Schemasand CMs. e

3.1.1 Relational Model and Relational Schema
3.1.2 XML Data Model and XML Schema
3.1.3 CMsandtheCMGraph

Vi

3.2 Mapping Discovery Problems 9
3.2.1 The Problem of Mapping Relational SchemastoCMs
3.2.2 The Problem of Mapping XML schemastoCMs
3.2.3 The Problem of Mapping Database Schemas to Database Schemas.. .54.

3.3 SuUmMmMary e e e e

Discovering Semantic Mappings from Relational Schemas to CMs 58

41 TheProblem. e

4.2 Principles of Mapping Discovery 63

4.3 Semantic Mapping Discovery Algorithms
4.3.1 ER: Anlinitial Subsetof ERnotions 65
4.3.2 ER:Reified Relationships
4.3.3 Replication e
4.3.4 Extended ER: Adding Class Specialization
4.35 0uterdoins e e

4.4 Experimental Evaluation e

45 Finding GAVMappings o o e e

4.6 DISCUSSION e

47 SUMMANY . . o o e e e e e e e e

Discovering Semantic Mappings from XML Schemas to CMs 100

51 TheProblem. 010

5.2 Mapping Discovery Algorithm L 041
5.21 Principles e 105
5.2.2 Algorithm 114

5.3 Experimental Evaluation 611

5.4 DISCUSSION o e 012

55 Summary e 121

Discovering Schema Mapping Expressions Using Schema Semantics 231

6.1 TheProblem. 312

6.2 Representing Semantics for Schemas 126.

6.3 Motivating Examples 128

Vii

6.4 Comparisons and Contributions 331
6.5 Mapping Discovery Algorithm 361
6.5.1 BasicCriteria e 137
6.5.2 BasicConceptualModel, 139
6.5.3 Reified Relationships 146
6.5.4 Obtaining Relational Expressions 149
6.6 Experimental Evaluation 115
6.7 DISCUSSION 515
6.8 Summary e e e 156
Conclusions and Future Directions 157
7.1 MainContributions 157
7.2 Future Directions e 016

viii

List of Tables

4.1 er2relDesign Mapping. e e e e 67
4.2 er2rel Design for Reified Relationship. 82
4.3 Characteristics of Schemas and CMs for the Experiments. 91
4.4 Performance Summary for Generating Mappings from Relational Tab{&lgls. . 92
5.1 Characteristics of Test XML SchemasandCMs 118
6.1 Characteristicsof TestData 152

List of Figures

11
1.2
1.3

2.1
2.2
2.3
2.4

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

The Problem Setting of Semantic SchemaMapping

Discovering the Semanticsof ATable 11
Discovering the Mapping between Schemas 14
Deriving Schema Mapping Expressions for Data Exchange 20
Deriving Schema Mapping by a RIC-based Technique 24
An Extended Entity-Relationship Diagram 39
AUMLClass Diagram e 40
ARelational Table 43
An XML Schema Description 45
An XML Schema Graph 47
Schema Graph and ElementGraphs 48
Schema Graphand ElementTrees 48
ACMGraphinUML Notation 50
Relational table, CM, and Correspondences. 59
AnER)Example. 66
Finding Correct Skeleton Trees and Anchors. 71
ThegetSkeleton Function 73
ThegetTree Function. 74
Independently Developed Tableand CM. 75
TheencodeTree Function 75
Semantic Tree FAPept Table. 76
N-ary Relationship Reified. 81

4,10 AWeak Entity and Its Owner Entity. 58
4.11 Specialization Hierarchy. e 86
4.12 MAPONTOPluginof Protege. 90
5.1 The Schema Graph Corresponding to the bibliographicDTD 103
5.2 Relational Tables Generated by the Hybrid Inline Algorithm . 103
5.3 ASampleCMgraph. e 106
5.4 The ldentified SemanticTree 08 1
55 ASmallCMandAnelementTree, 109
56 AnElementTreeand ACM 111
5.7 AnElement Tree witha CollectionTag 112
5.8 Average Recall and Precision for 9 Mapping Cases 119
5.9 Average Labor Savings for 9 MappingCases. 120
6.1 Simple Correspondences between Source and Target 124
6.2 Semanticsof Tables 712
6.3 Handling Multiple and Recursive Relationships 128

6.4 Schemas, CMs, RICs, and Correspondenceso... . . 129
6.5 Using Rich SemanticsinCM, 132
6.6 Finding MaximalObjects 134
6.7 FindingQuery Trees 351
6.8 Marked Class Nodes and Pre-selected s-trees 138
6.9 InputtoExample6.5.2 141
6.10 UsingKey Information for Identifyingthe Root 143
6.11 Reified Relationship Diagram. 147
6.12 A Discovered TreeoveraCMGraph 149
6.13 Average Precision 154
6.14 Average Recall 154

Xi

Chapter 1

Introduction

This dissertation studies the problem of discovering and using semantissdotured and semi-
structure data, such as relational databases and XML documents. Datat®s is captured through
mappings from a database schema to domain ontologies/conceptual schethés dissertation,
we will use the term “conceptual model” (abbreviated as CM) to refer tomaailo ontology or a

conceptual schema.

1.1 Motivation

To address data integration — the problem of sharing data across tispauvaces — database re-
searchers have proposed a host of solutions including federateohdesa[CE87, SL90], data
warehousing [Kim96, BE97, CD97], mediator-wrapper-based dataratteg systems [Wie92a,
Ull00], peer-to-peer data management systems [BGK HIST03], and more recently data spaces
[FHMO5, HFMO06]. A key component of any of these solutions is the defimitb mappings be-
tween different data sources which are often heterogeneous antuedr Thesanappingsre-
solve the structural and semantic heterogeneity between sources de imf@amation sharing
[Hal05]. Since large amounts of data reside in structured and semi-sedcatabases, such as re-
lational tables and XML documents, building mappings between databaseathas also become

a very active research area in the database community in the past twesi¢Bat86, LNE89,

SP94, MHH00, NM0O1a, DDHO01, MBRO1, PVM2, MGMRO02, DR02, BSZ03, DLD04, Kol05,
MBDHO5]. Despite these efforts, building schema mappings remains a ifécyld problem. The
reason is that building schema mappings requires understanding the senodisiihemas. The
semantics of a schema specifies what objects and relationships in the sudjiectare denoted by
the symbols and structures in the schema. Understanding the semanticsrofsadh onlyapprox-
imatedby looking at linguistic, structural, and statistical evidence in schemas anththexlying
data. For computerized mapping tools, the evidence is often ambiguous &fiitiest for discov-

ering the expected mappings.

In this dissertation, we employ conceptual models (CMs) such as ontolagiesaaceptual
schemas to capture semantics for database schemas, and then use thisséoriarprove tradi-
tional schema mapping tools. Capturing and using the semantics of data [\Waio§%6, BM04]
is a long-standing problem in the database community. In the early daysusagonantic data
models were proposed to capture more “world knowledge” than the relatiordel, after the re-
lational model was adopted as the main structure for managing data. Duddov@erce reasons,
semantic data models did not prevail in building database management systemS),Dnstead
they found a place in the database design process. Databases weffasiftbescribed in terms of
some kind of semantic data model, e.g., Entity-Relationship model, and thenteohweo the syn-
tactic structures manipulated by the underlying DBMS. The semantics of datiatalaase system
was distributed into its operational environment, i.e., its database administrdtds application
programs. This had worked well for a closed and relatively stable tpeahenvironment. For in-
tegrating and exchanging data in an ever-more distributed, dynamic, anceopironment, legacy
data that is inherent in this practice becomes the major obstacle since the sembletiacy data

are often inaccessible, hindering the creation of mappings betweerediffdaitabases.

Recently, the Semantic Web was proposed for improving information gathemchéntegration
on the Web [BLHLO1]. Data on the Semantic Web promises to be machinesiaddable by
being attached through semantic annotations. These annotations caetehésrmal ontologies
with, hopefully, widely accepted vocabulary and definitions. Similarly, wieebe that annotating

database-resident data with ontologies or conceptual schemas will alswvéaarta integration and

exchange across disparate databases. This dissertation will congidefoa annotating (capturing
semantics for) relational and XML databases, and an approach fay th&irannotation (semantics)

to improve traditional schema mapping tools.

For our purposes, a conceptual schema is normally designed for aufartipplication, while
an ontology is intended to describe the kinds of concepts that exist in a domitiout particular
applications in mind. Despite this difference, both are capable of definmgrg&s of a domain.
Focusing on their commonalities for expressing semantics, we use a gemeraptual modeling
language (CML) with features common to the Unified Modeling Language ()Jkhe Extended
Entity-Relationship model (EER), and the Web Ontology Language (OVetdscribing a CM.

In order to capture semantics for a database schema with a CM, we neezhte grappings
between the database schema and the CM. These mappings can be defiesdratime, when
a designer transforms a conceptual model into a database sctogrdo{vnapproach). Alterna-
tively, abottom-upapproach recovers the mapping from a database to a CM, even whendrey
developed independently. Thep-downapproach leads to a new, yet-to-be-defined, database design
methodology. In this dissertation, we study thatom-upapproach for recovering the semantics of

legacy data.

Formally, we use formulas of the form:

7(X) - &(X,Y) (1.1)

to represent the mapping from a database schema to a CM, Wiié&rgis a formula denoting a
basic organizational unit, e.g., a relational table, in the database schema(im?) is a con-
junctive formula over the predicates representing the concepts, relsipsnand datatype proper-
ties/attributes in the CM. As usual, variables on the left-hand side (LHS) ofrtpkcation (“—")
are universally quantified, and variables on the right-hand side (RH&hvado not appear on the
LHS are existentially quantified. Such formulas have been used in bothftrenation Manifold
data integration system [LSK96] and the DWQ data warehousing system{G{&] to define a

mapping from a relational data source to a CM expressed in terms of aif&stiLogic. The

following example illustrates the use of this kind of a mapping formula for exprgsa plausible

semantics for a relational table.

Example 1.1.1.The following mapping formula might describe the semantics of the relational table

student(snum, sname, dept) in a relational database schema:

Vsnum, sname, dept.
(student(snum, sname, dept) — Jx1, xz9. Student(z1)A hasNumber(z1,snum)A
hasName(x1, sname)A Department(za)A

hasDeptNumber(xs,dept)A registeredin(zy,x2)).

In the formula, the termstudent(snum, sname, dept) on the LHS of “~” represents the relational
table and its columns. The RHS is a conjunctive formula over predicatesdfiaé dhe concepts
Student and Department, and the attributes and binary relationshisNumber, hasName,

hasDeptNumber andregisteredin. These predicates will come from a CM.

It is difficult, time-consuming, and error-prone to manually create the magpnmgulas from
a database schema to a CM, especially since the specifier must be familiar thitihdantended
semantics of the database schema and the contents of the CM. With a gromagdiér in-
formation integration, it becomes essential to make the mapping discoveryeéiniich process
tool-supported. The first problem we will consider in this dissertation is #eldp an automatic

tool for creating mappings from database schemas to CMs.

An automatic tool for defining mappings from database schemas to CMs wiadtlygbenefit
to ontology-based information integration [WV\01], where manual creation of mappings from
data sources to a globally-shared ontology was one of the major bottlerddoksover, the repre-
sentation of semantics for database schemas in terms of CMs providesaatuajip for improving

traditional solutions for a second problem: that of schema mapping.

A schema mapping expression describes a relationship between a sodi@eaaget database.

For example, the following is a schema mapping expression from a solstiemal database with

two tablesDept(deptNum, mgrNum, location) and Emp(eid, deptNum) to a target relational

database with one tabEEmpLoc(eid, mgrNum, location):

Veid, dept Num, mgr Num, location. (Emp(eid, dept Num) A
Dept(dept Num, mgr Num, location) — EmpLoc(eid, mgr Num, location)).

It is extremely difficult to find schema mapping expressions involving multipldiogiain both
the source and the target schemas. Traditional schema mapping solutipnSlie [MHHOOQ]) take
as input a source schema, a target schema, and some additional inforfratiotihe user. The
task then is to find an association among some elements in the source schemaaaadcéation
among some elements in the target schema such that the pair of associatiafosni¢do the
information supplied by the user. For schemas without explicit semantichkjtasdas to look into
the structures and constraints of the schemas for clues. These syrnitaesiae often ambiguous
and sometimes give unsatisfactory results. On the other hand, if semardateofas are available,
it is possible to significantly increase the capabilities of traditional schema npgoils. The other
goal of this dissertation is to then utilize the semantics of schemas expressemsnofeCMs to
produce improved results for schema mapping. The setting is depicted ireRidurNote that in
order to accommodate a wide range of situations, we do not assume thataschie inter-related

at the CM level.

Note that the problem of discovering mappings from schemas to CMs isfiigdr similar to
that of discovering mappings between database schemas. Howeveratha the later is finding
queries/rules for integrating/translating/exchanging data, while mappimgnschto CMs is aimed
at understanding and expressing the semantics of a schema in terms eh&ylv Nevertheless,
both require paying special attentions to various semantic constructs inhtemaand CM lan-
guages.

We elaborate on the goals of this dissertation in the next section of this ch@feiqaresent the
challenges and research issues for fulfilling these goals in Section 1Séction 1.4, we overview
the dissertation and illustrate the reasoning processes that underlidudiorso We summarize the

contributions that are made in this dissertation in Section 1.5. Finally, we outlirerdhaization

CM 1 CM 2
Semantic Mapping Semantic Mapping
Source Schema @ pe====eme. Vem an an an o Target Schema

Find the schema mapping

Figure 1.1: The Problem Setting of Semantic Schema Mapping

of the dissertation in Section 1.6.

1.2 Objectives

The first objective of this dissertation is to develop a tool to discover sersdatidatabase schemas.
Since we use mappings to represent semantics for database schemas,ishaitoed at automati-
cally discovering semantic mapping from a legacy data source to an existings@kh a schema
and a CM, the mapping discovery process shdnifler the “correct” semantic mapping by system-
atically analyzing various elements in the schema and the CM. Although a fullgnated tool may

not be feasible, the solution should require as little human intervention aiblgoss

Secondly, we aim to develop a framework for using the semantics of datablasmas expressed
in terms of mappings to CMs. Within the framework, we want to develop a solutiodi$covering
direct mappings between database schemas. The solution should takiagdw semantics avail-
able in schemas and in the associated CMs. Compared to traditional schenmiagnappniques
proposed in the literature, the solution should improve significantly the traditieclaniques. To
embrace broad applicability, the solution should not assume the existenag dif@ct connection

at the semantic level.

Finally, we will implement the proposed algorithms and apply them to real wortabdae
schemas and CMs. Through experiments, our goal is to test the perfigrofiour solutions and

gain experience in building semi-automatic mapping discovery tools.

To fulfill these goals, we proceed with the following steps:

1. Identify different mapping discovery problems. Describe the inpdtarput of each prob-
lem and the basic principles underlying proposed solutions. Set up tlediakiréor a solution

to be aimed at.

2. Develop a solution for discovering semantic mappings from relationabasgaschemas to

CMs. Test the solution using practical schemas and CMs.

3. Propose a mapping formalism for connecting XML schemas to CMs. Deeetolution for
discovering semantic mappings from XML schemas to CMs. Test the solutilog pisctical

schemas and CMs.

4. Develop a solution for discovering direct database schema mappings prefence of se-
mantic mappings from these schemas to CMs. Test the performance of thersbiucom-

paring it to traditional schema mapping techniques.

1.3 Challenges in Building Mappings

Using CMs to explicate semantics of logical schemas requiretchingmodeling constructs in
models described in different modeling languages. In general, mappngdal S to a model
T requires deciding not only whether there is an elemeint S that corresponds to an element
t in 7, but also whether a set of elemerfisin S describes the same set of real world objects
and relationships among these objects as described by a set of eldmaris This problem is

challenging for several reasons.

First, since semantics of a legacy database have been factored ouh&oomning system and

distributed to its operational environment, to know what the data really meaesyould have to

'Here, we use the term “model” generically to refer to either a databasenscbr a CM.

talk to the original creators of the database and/or check out carefulppthiecations that access
and update the data. In most cases, however, the creators are ifadilavand the database along
with its applications has evolved dramatically. Moreover, understanding tlaminte of legacy

applications is a well-known intractable problem, much like the problem of datarscs.

Second, semantics is often inferred from clues in schemas and in CMsptesaof clues in a
schema are its integrity constraints and its structure. Clues in a CM includecamms between
concepts and constraints imposed on the connections. But the informatiogsandhues is often
incomplete. For example, a foreign key constraint in a relational databbheena might represent
an ordinary relationship, alfsA relationship, an identifying relationship for a weak entity, or an

aggregate relationship. Each one of these has its own specific semantics.

Third, although a CM tends to describe a subject matter more directly ancalhatiiman a
database schema, the size of a CM is often large (e.g., hundreds coacdptsousands links)
and relationships between concepts are complex and tangled. Given a §iMple and intuitive
structure, e.g., a shortest spanning tree, in the CM may not be a goddaiarfdr the semantics of
a schema. (see an example in later chapter). More work on understaedgigtics of schemas in

terms of CMs is needed.

Fourth, even though the semantics of individual schemas in terms of CMwaitable, finding
the direct mapping from one schema to the other schema faces the samegelsadleriscovering
semantics for the schemas. For exampldS#ahierarchy may be collapsed upward and represented
in a single table in one relational schema, while there could be individual tfalleach subclass in
the hierarchy in another relational schema. Therefore, subclassitatiledatter schema need to be
connected by some operators in order to be mapped to the table in the fnstesdim general, there
are too many ways to connect tables in a relational schema even when thaissmfindividual
tables are present. Worse, a mapping relationship is a pair of connecti@spéctive schemas. If
the CMs are not inter-related, it is still difficult to find matched pairs of catinas at the schema

level. But, hopefully, the CMs would provide more evidence for a betteirgair

Finally, mappings are often subjective, depending on the applicationefbiner users need to

be involved in the mapping process. Nevertheless, for an automatic toolnhoteevention should

be kept at a minimum.

1.4 Overview of the Dissertation

We now offer an overview of the dissertation and outline our solutions tortitdgm of discovering
semantic mappings from logical schemas to CMs and the problem of disapgefirma mappings
between logical schemas. The fundamental problem can be descrifudidwas: given two models
S and7 about the same subject matter, for an associgtén S, find an associatiods in 7 such

thatds andd are “semantically similar” in terms of modeling the subject matter.

As indicated earlier, the problem is inherently difficult to automate, so inteeaetid semi-
automatic tools are assumed to be the solution. Such atool, e.g., Clio [MHHOG¢myglby a two-
phase process: First, spec#fiynple correspondencégtween “atomic elements” in the two models.
There are many schema matching tools that support this phase curreat§gion 2.2). Second,
derive an association among a set of elementS and an association among a set of elements in
7 such that the pair of associations could give rise to a meaningful relajiohstween the two
models. Several systems that accomplish this have been developed oxeaithésee Section 2.1).
Up to the writing of this dissertation, Clio [MHHOO] is widely considered as thst ibeol which
quite successfully derives schema mapping formulas from a set of simpéspondences for the

problem of data exchange [FKMPO3].

Inspired by Clio, we will develop the solutions to our problems by also emplothegwo-
step process: first, let the user provide a set of simple correspaglbrtveen elements in the
two models being mapped, and second, derive a set of candidate mappimgds for the user
to examine. The element correspondences we consider are simple paisni¢ elements that
can be generated by most of existing schema matching tools; for exampleespomdence could
be specified from a table column in a relational schema to a datatype propertZih In this
dissertation, we focus on the second step, that is, deriving mappingssfnaple correspondences

for the problems we consider.

10

A mapping between two models consists of a set of relationships betweeisisss in the two
models. An association in a model describes a connection among a set oftslémiae model.
Intuitively, a mapping relationship should be an equivalent relationshiphwinieans that the two
associations being related are equivalent in terms of modeling a subject. nhaier specifically,
for two modelsS and7 about the same subject matter, we say that there is a mapping relationship
between an associatigiz in S and an associatiof; in 7 if both §s andd; describe the same
set of objects and the same particular connection among objects in the aetilagdo the subject
matter. In regard to a mapping discovery solution, this definition directs usdasémantically
equivalent associations in two models. Unfortunately, with limited informatiofladla, an au-
tomatic mapping discovery tool only can approximate the semantically equivzdsatiations by
“semantically similar” associations. For example, if a tool recognizes thatsotetion in mode$
describes two entitieBroject andEmployee, and themanagerOf relationship between these two
entities, then it would attempt to discover an association in m@dehich also describeBroject
andEmployee, and a “semantically similar” relationship toanagerOf, such asontactPerson.

The semantic similarity would be supported by the fact that both relationshédsietional from
Project to Employee and arepartOf relationships. In this dissertation, we assume that the names

of schema elements are merely syntactic strings indistinguishable in our saolutions

Given a set of correspondences between elements in two models, dumrsothus are to find
0s andé7 such that they are “semantically similar”. In measuring the performanceraiodutions,
we will test them against real-world applications and use externally prdviderect mappings as
“gold standard”. In the next two subsections, we illustrate our solutionségns of examples.
In Chapter 2 entitled “Related Work” and the following chapters dedicatedaalévelopment
of solutions to our problems, we present the differences between auiosg and the existing

technique in Clio and explain how we advance the state of the art.

11
1.4.1 Discovering Semantic Mappings from Database Schemas€Ms

In discovering a semantic mapping from a database sclifetnaa CM O, we craft our heuristics
based on a careful study of standard database design procesgriattonstructs of the schema
modeling language with those of conceptual modeling language. Suppashdmas was derived
from a conceptual model, then we can use associations(into estimate the associations §n
from which the basic organization units Sfwere derived. The following example illustrates the

reasoning process for discovering a semantic mapping from a relatreahs to a CM.

Example 1.4.1.Figure 1.2 shows a relational takppeoject(num, supervisor) and the enterprise

CM.
0.* 1% works_on 0.1
_5 Employee 4 11 Department Worksite
& . .. -
S -hasSsn works, for -hasDeptNumber’,,._ =>hasNumber
e -hasName N\ L -hasName -~ 1.1 0.*|-hasName
> . . -
a hasAddress \\ 0.1l P controls
-hasAge < - 7
0.1 1..1 nanages
/
\\
7/
>\
NN
I 4 A

project(num, supervisor)

Figure 1.2: Discovering the Semantics of A Table

Suppose we wish to discover the semantics of the tpligect(num, supervisor) with key
num in terms of the enterprise CM. Suppose that by looking at column names afiMlggaph,
the user draws the simple correspondences shown as dashed arfogesénl.2. This indicates, for
example, that theaum column corresponds to thesNumber property of theWorksite concept.
Using prefixesS andO to distinguish tables in the relational schema and concepts in the CM (both

of which will eventually be thought of as predicates), we present thespondences as follows:

S:project.num«~O:Worksite.hasNumber

S:project.supervisor«~O:Employee.hasSsn

12

The information in the table indicates that for each valuba$Number (and hence instance of
Worksite), the tableproject associates at most one value lasSsn (instance ofEmployee).
Hence the association betwe@forksite and Employee induced by theproject table should be
functional fromWorksite to Employee. Consequently, the association will be the manager of
the department controlling the worksite, and our solution will return the coetpassociation
controls—omanages™, wherecontrols~ andmanages™ are the inverse afontrols andmanages,

respectively.

On the other hand, if both colummsim andsupervisor were key for theproject table, values
in columnnum were intended to be associated with multiple values in colgoervisor, and
conversely — otherwise the table would had been specified to have a snwllekerefore, a
functional association would likely not reflect a proper semantics of the.tdin this case, the
association would be the workers of the department controlling the worksitepur solution will

return the composed associatioontrols —oworks_for—.

At the end, the solution produces a list of plausible mapping formulas, whitinelude the

following formula, expressing a possible semantics for the table:

S:project(num, supervisor) — O:Worksite(z1), O:hasNumber(z;,num),
O:Department(z2), O:Employee(zs),
O:hasSsn(x3,supervisor), O.controls(xa,z1),

O:manages(zs,r2).

We have chosen to flesh out the above reasoning principles in a systematiemrbg consider-
ing the behavior of our proposed solution on database schemas desmnedMs, e.g., Extended
Entity Relationship (EER) diagrams. Database design methodology is a teehidgily covered
in undergraduate database courses. For relational schema, weordfes aser2rel schema de-
sign One benefit of this approach is that it allows us to prove that our algorttiough heuristic
in general, is in some sense “correct” for a certain class of schemasout¥e; in practice such

schemas may be “denormalized” in order to improve efficiency, and ontg pathe CM may be

13

realized in the database. Our solution uses the general principles dedr@i@ve even in such
cases, with relatively good results in practice. In Chapter 4, we foctisegoroblem of discovering
semantics for relational schemas. We first identify that the existing techiriqQio [PVMT02]
does not provide the expected results to our problem. We then proceeddiop a novel solution.
In Chapter 5, we study the problem of discovering semantics for XMLreelse We differentiate
the solution for this problem from that for the problem of relational cas@alticular, the solution
for XML schemas will make use of the parent-child hierarchical relatiorssivpich carry much
semantics. In addition, the analysis of the occurrence constraints impogkd parent-child rela-
tionships is one of the aspects that make our solution different from thes@ichnique for XML

schema mapping [PVNO2], where chase on nested-referential integrity constraints lies atrés co

1.4.2 Discovering Mappings between Database Schemas

Unlike existing approaches for finding mappings between database sshamaolution assumes
the presence of the semantics of each schema, expressed in terms ofiagnapCM. Given a
relational schem& associated with a CM through a semantic mappirgand a relational schema
7T associated with a CM through a semantic mappihg Let L be the set of correspondences
linking a setL(S) of columns inS to a setL(7) of columns in7. To find an associations
among columns irL(S) and an associatiofiy among columns irL(7") such thatys andd; are
semantically similar in modeling a subject matter, we will leverage the semanticsezhtol s

andX7.

Example 1.4.2. Consider the source relational schema given on the left side of Figureltl.3
contains a single tablefficeEquipment(equiplD, faxNo, printerName). The semantics of the
source schema is encoded by associating the table with the CM above it. Qghtrside, there is

a target schema containing three tablesichine(serialNo), faxMachine(serialNo, faxNo), and
printer(serialNo, printerName); the dashed arrows indicate referential integrity constraints over
schema elements. The semantics of these tables are encoded by asso@atimgtiththe target

CM. Underlined column names mean that the column is part of a primary key tdlihee And we

14

use a keywordkey in a CM to indicate that the attribute with this keyword is an identifier for the

entity it is associated with. Let us assume that attributes of entities are silgéshand simple.

TARGET:

Machine

serialNo: key

SOURCE: I—isa —T— isa —I

OfficeEquipment
FaxMachine Printer
equiplID: key
faxNo serialNo: key serialNo: key
printerName faxNo printerName
officeEquipment: machine

equiplD serialNo &= =
faxNo — | faxMachine :

——

printerName v
1
\ \‘axNo

\Z printer
serialNg == == ===
rinterName

Figure 1.3: Discovering the Mapping between Schemas

J

.)
serialNg == == == |
)

|

’

To discover a mapping between the source and target schemas, thpagiesthe simple ele-
ment correspondences anduvs. If the semantics of the target CM indicates thatitBA hierarchy
is overlapping, our solution will use tHSA links to connect the three entities and generate the

following mapping formula by translating the CM connection into the formula:

M: Nequipl D, faxNo, printer Name.(officeEquipment(equipl D, faxNo, printer Name)
— machine(serial N o)\ faxMachine(serial No, fax N o)A\

printer(serial N o, printer Name)).

The solution first finds correspondences between elements in the CMgiby lip the orig-
inal correspondences at the logical schema level to the CM level. It simédwy following the
semantic mappings from the logical schemas to the CMs. The resulted ardesiees indicate

that the attributdaxNo of the entityOfficeEquipment in the source CM corresponds to the at-

15

tribute faxNo of the entityFaxMachine in the target CM and the attributgrinterName of the
entity OfficeEquipment in the source CM corresponds to the attribptanterName of the entity
Printer in the target CM. Next, the solution attempts to find an association in the sourcee€M
tween attributesaxNo and printerName and an association in the target CM between attributes
faxNo and printerName such that the two associations are “semantically similar”. In the source
CM, the two attributes are associated with the single eQifjceEquipment, while in the target
faxNo andprinterName are associated with entiti€axMachine andPrinter, respectively. Since
FaxMachine andPrinter are subclasses dachine, thelSA hierarchy could be collapsed upward
so that all attributes of subclasses are associated with the superclessoideptual transformation
would result in an “semantically equivalent” CM to the source CM. Thegsftre solution maps

the single entity in the source to th®A hierarchy in the target.

In contrast, a logical approach that attempts to join all of the target tableth&rge order to
establish the mapping to the source table [P\MO] may produce too many join expressions in
general. Therefore, a logical approach usually follows one directichdam referential constraints
for joining tables. As aresult, the expected mapping is very likely not to bevtsed (see Example
2.1.1). In Chapter 6, we show a number of scenarios where existing sdutmnot discover the
expected mapping expressions. We then propose a semantic approactotergrhema mapping

discovery.

1.5 Contributions of the Dissertation

First, manual creation of mapping formulas expressing semantics of a satatl@ema in terms
of a CM is inefficient and ineffective. Although there are a number ah{gautomatic tools for

deriving complex mapping formulas between database schemas (e.g., Clldq0iHVMT02]),

it is not clear whether the techniques employed by the schema mapping to@ppaopriate to

the problem of discovering semantics for schemas. Second, we olikat\axisting solutions for

mapping creation often do not provide the underlying meaning of the mappéygatie deriving,

16

and the user has to delve into the very details of the algorithms to understantgptivations of the
mapping derivation processes. Third, we observe that existing solutsuradly do not provide any
sense of “correctness” about a proposed mapping. It is the usspsmsibility to decide whether
a mapping solution is effective to her scenario. Fourth, since semanticgaijate schemas are
not available, existing solutions to schema mapping often only explore theriafimn encoded in
schema constraints or carried by the data. It is not clear how to leverageremtics encoded
in the semantic mappings from schemas to CMs. Finally, it is not clear whethdedsile and
beneficial to use the semantics for deriving schema mappings. By explEmmh@nswering the

above questions, we make the following contributions in this dissertation:

e The problem of data semantics is formulated in terms of mappings and mapping-disco
ery. We take that semantics of data sources can be explicated by settieghapte map-
pings from the schemas describing data to CMs. We therefore identify &ersion of data
mapping problem: That of discovering mapping formulas expressing semantiatabase
schemas from the schemas, interpreting CMs, and simple user inputs — etenrespon-

dences.

e We describe the underlying meaning of the mapping we are looking for, anobaerve
that existing solutions to schema mapping discovery do not satisfy ourigtestrand the
techniques employed by these solutions ignore important knowledge in datinmgod/\e
then propose algorithms that are enhanced to take into account informatiottlae schemas,

the CMs, and standard database design guidelines.

e In discovering semantics of database schemas, we identify an importardlasseof prob-
lems that are often encountered in practice. We give formal results prthan the otherwise
heuristic algorithm is correct for this class of problems. Thus a user a@sity édentify the

effectiveness of the mapping solution for their scenarios.

e Another important contribution of this dissertation is that we demonstrate thatplieagion
of semantics of database schemas benefits to the long-standing andimytyeasportant

problem of sharing data across disparate data sources. We studylihenpiof discovering

17

schema mapping expressions using data semantics even though difideesivdrces are not
connected at the semantic level. We suggest that the semantics of datimsas should
be established and maintained for managing information in an open, distribatedynamic

environment.

e To test the effectiveness and usefulness of our solutions in practeenplemented the
algorithms in a prototype tool and applied it to a variety of data sets. We afgutmols
producing complex artifacts, it may be reasonable to measure succgsstint the number
of cases where the tool produced the exact answer desired, biiyalke ease with which
incorrect answers can be modified to produce correct ones. Oustsotcessful because it

can reduce the amount of human effort required to perform a givén tas

1.6 Organization of the Dissertation

The content of this dissertation is organized such that each chapter tigelglaelf-contained.
Chapters 1, 2, and 3 present the problems and the main ideas for solgegtiodlems in this dis-
sertation, along with relations to existing work. The remaining chaptersidesi®tailed solutions

to specific problems.

In particular, Chapter 2 contrasts our approach with related work in thatliter. Chapter 3 in-
troduces some formal notations and describes three specific mappingetispcoblems. Chapter
4 studies a solution to the problem of discovering semantics for relationaktabtegives evalu-
ation results. Chapter 5 presents a mapping formalism for capturing senfantidslL schemas
and develops an algorithm for finding such semantics. This chapter aladésdest results of the
algorithm on real data. Chapter 6 proposes a framework for using datangics for discovering
schema mapping expressions. This chapter studies a semantic solutiondmatge schema map-
pings and presents the experimental results on mapping performance iarggonpwith traditional

techniques. Finally, Chapter 7 summarizes the entire work and points to fasea&rch directions.

Some of the results have been published in conference proceedinigsiarals. Specifically, the

AAAI-2006 paper [AMBO06] summarizes solutions for building semantic maggiinom databases

18

to CMs. The ODBASE-2005 paper [ABM05b] and the JoDS journal p#BMO06] detail the
solution to discovering semantics of relational tables. The ISWC-2005 pap&105a] presents
an algorithm for discovering semantic mappings from XML schemas to CMsllfithe ICDE-
2007 paper [ABMMO07] contains results on using data semantics for disicgvschema mapping

expressions.

Chapter 2

Related Work

In this chapter we review work that is related to our research on disogveemantic mappings
from database schemas to CMs, also on discovering schema mapping essegidntic mappings.
We will discuss in relevant sections how our work advances the state a@frthéVe start by re-
viewing previous solutions for discovering mappings in Section 2.1. Moshefolutions were
designed for mappings between database schemas. We show why tleenppbbemantic mapping
in this dissertation is new, and we contrast our solution to previous tectmi®irece element cor-
respondences play a critical role in our solution as well as in many presmusons, we survey
tools for generating element correspondences in Section 2.2. Mapp@fisaclass citizens in the
framework of model management. We review this piece of work in Section 2e8ditiérentiate
our work on discovering semantics for database schema from the watktameverse engineering
in Section 2.4. In Section 2.5, we briefly survey achievements made in querggsing over map-
pings. Finally, we discuss conceptual modeling, which is related to the pnatfielata semantics

in Section 2.6.

2.1 Schema Mapping for Data Integration and Exchange

Most approaches to discovering mappings focused on database sgkema on ontologie§chema

mappingis the problem of finding a “meaningful” relationship fronsaurcedatabase schemato a

19

20

targetdatabase schema. The relationship is expressed in terms of logical foandlgdse mapping
is often used for data integration, exchange, and translation. The fojaxample is adopted from
the original paper of the Clio schema mapping tool [MHHOO]. Figure 2.1 slepsource relational
schemas$ containing two tablesaddress andengineer, and a referential integrity constraint
between the two tables. The figure also shows a target relational schiemith a single table,
employee. To translate a data instance $fto a data instance &f as guided by the correspon-
dences, vo, v3, anduvy, which indicate, for instance, that the data objects undeaduk column
of the address table become the objects under #ddr column of theemployee table, one can
use the following First Order Logic formula to represent a “meaningfuBtienship between the

source and the target:

Yid, addr, name, sal.(address(id, addr)A engineer(id, name, sal)

— employee(id, name, sal, addr)).

This mapping can be used to createesmployee tuple by joining together aangineer tuple

and anaddress tuple. Of course, there are other possible mapping formulas between the two

schemas.
Schema S v
address id addr
) employee id name sal | addr

4
engineer id name sal /

Figure 2.1: Deriving Schema Mapping Expressions for Data Exchange

Mappings are fundamental to many applications. To study them in a genpmicadion-
independent way, Madhavan et al. [MB2] proposed a general framework for mappings between
domain models, where a domain model denotes a representation of a domaimrrebldnguage,
such as a relational schema in the relational formalism. Given two domain nibdéils a lan-

guageL,) andTs (in £3), a mapping betwee; and7> may include a helper domain modg|

21

(in languageLs), and consists of a set of formulas each of which is oW&r 15), (11, T3), or (13,

T5). A mapping formula over a pair of domain models (73) is of the forme; op ez, wheree;
ande, are expressions ovéi andTs, respectively, andp is a well-defined operator. For example,
bothe; andes can be query expressions over two relational datadBsaad7». The query results

of e; ande, should be compatible, ammp can be a subset relationship between the two queries.
The semantics of the mapping is given by the interpretations of all domain mogelgad such
that these interpretations together satisfy all the mapping formulas. Thesatko propose and
study three properties of mappinggiery answerabilityconcerning whether a mapping is adequate
for answering certain queriemapping inferenceconcerning whether a mapping is minimal; and

mapping compositigreconcerning the composition of two mappings.

The primary use of mapping is falata integration Data integration often combines data from
disparate sources and provides users with a unified view of these @aidd]. The typical architec-
ture of a data integration system consists of a global schema, a set obdatass(local schemas),
and mappings between the sources and the global schema. The soovigs {he real data, while
the global schema is an integrated and reconciled view of the real datae atetwo ways for
providing the global view: a materialized view [Wid95] and a virtual view [WABP In the ma-
terialized view approach, a.k.data warehousingsource data are integrated and materialized in a
database under the global schema. In the virtual view approach, dad@nren the sources. The
global schema is connected through mappings to the source schemas sethgiieries against
the global view can be answered by reformulating them into queries oustesdatabases. In both
approaches, mappings between the global schema and the sourcessahetha main vehicle for

integration.

Formally, a data integration system is a trigle, S, M), wheregG is the global schema in a
languagelg, S is the source schema in a languagie, and M is the mapping betwees andS.
The mapping consists of a set of assertions of the fappas— Qg andQg — Qs, whereQs
andQg are queries of the same arity, respectively over the source sciemd the global schema
G. The semantics of a mapping is specified by a legal global database sgtigfgimapping

with respect to a source database. In particular, there are two basaaapps for specifying the

22

mapping: local-as-view (LAV) [LSK96] and global-as-view (GAV) [UIIPO

The mapping in the LAV approach associates to each elesngiithe source schen@a query
Qg overG. Hence, a LAV mapping consists of a set of assertions of the ferm: QQg. In the GAV
approach, the mapping associates to each elemanty a queryQs overS. Therefore, a GAV
mapping consists of a set of assertions of the fajym:» Qs. From the modeling point of view, the
LAV approach is based on the idea that the content of each sourckl $feocharacterized in terms
of a view over the global schema, while in the GAV approach the idea is thaothtent of each
element of the global schema should be characterized in terms of a viewhev&wurces. In prin-
ciple, the LAV approach favors extensibility, while the GAV favors querygessing. Examples of
LAV system are Information Manifold [LSK96] and the XML data integratigistem in [MFKO1].
Examples of GAV system are TSIMMIS [GMP®7] and Garlic [GHS 95].

To specify the semantics of the operater” in the mapping formul&@ s — Qg, three possibil-
ities have been considered in the literats@)nd completeandexact A soundmappingls C Qg
means that the answers provided by the quggyis contained in the answers provide by the query
Qg. A completemapping@s 2 Qg means that the answers provided by the quggycontains the
answers provide by the que@yg. Finally, anexactmapping means that these two set of answers

are equivalent, i.e., both sound and complete.

In general, a mapping formul@ds — Qg relates an expression/quepy to an expression/query
Qg. This is the so-called global-local-as-view (GLAV) approach [FLM9®jore precisely, in
a GLAV mapping as introduced in [FLM99{)s is a conjunctive query over the source schema
and(Qg is a conjunctive query over the global schema. Such a formalism is useddtical data
exchange systems [FKMP03, FKP03, ALO5, Kol05], where the mappicglisd asource-to-target
tuple generating dependency (s-t tgdih particular, a data exchange setting consists of a source
schemas, a target schem@, a set of target dependencies, and a set of s-t tgds. Each s-t tgd is o

the form [FKMPO3]

VZ(¢s(T) — FyYr (T, 7)), (2.1)

23

where¢s(Z) is a conjunction of atomic formulas ovérandi 7 (Z,7) is a conjunction of atomic

formulas over7 .

Given two database schemas — either a global schema and a source sctiendata integration
setting, or a source schema and a target schema in the data exchangefsettimgthe mapping
between the two schemas is a difficult problem. Nevertheless, peoplethsea 0 develop tools
for helping users in deriving schema mappings. Example tools are Traihg€98], Clio [MHHOO,
PVM*02], HePToX [BCH 05], MQG [KB99], and the XML data integration system presented in
[KX05]. As we said before, such a tool usually adopts a two-step pradrirst, specify some
simple correspondences between schema elements; there are seletaht@upport this task, and
we will survey them in the next section. Then derive plausible declarat®eping expressions
for users to select from. The selection process may be assisted usingubkdata stored in the
database [YMHFO1]. The primary principle of the current solutions tovohgy mappings is using
integrity constraints (especially referential integrity constraints) in a schemssemble “logically
connected elements”. These logical associations, together with the elesnexspondences, then
give rise to mappings between schemas. We refer to the current solui®esaaential-Integrity-

Constraint-basedabbreviatedRIC-based techniques.

The following example illustrates how the typical RIC-based technique appéaClio [PVM'02]

derives schema mappings.

Example 2.1.1.Figure 2.2 shows a pair of relational schemas which are reproducedimFigure

1.3.

A dashed arrow represents a referential integrity constraint (RIC)aifereign key referencing
a key. As shown in the figure, there are two RICs, written textually,agaxMachine.serialNo
C machine.serialNo andrs: printer.serialNo C machine.serialNo. To generate a declarative
mapping expression, the RIC-based Clio technique [P0R] employs an extension of the rela-
tional chase algorithm to first assemble logically connected elements intdled-lcayical rela-
tions/associations. The result of chasing the tédot&lachine(serialNo, faxNo) using the RIG

can be represented by the following algebraic expression:

SOURCE:

officeEquipment:
equiplD

faxNo — |

printerName \

24

TARGET:

machine
serialNo

faxMachine
SerialNO e e

axNo

prlnte.r r,
serialNo = == == =t
rinterName

o=

"

1

[— |

Vo

Figure 2.2: Deriving Schema Mapping by a RIC-based Technique

Ty : faxMachine(serialNo, faxNo)samachine(serialNo).

Since no further chase steps can be appliéd t@.e., 77 cannot be expanded furthef), is a logical

relation. Likewise, the result of chasing the taplinter(serialNo, printerName) using the RIC

ro is the logical relation:

T5: printer(serialNo, pri

nterName)ssmachine(serialNo).

In the source, the logical relation {4 : officeEquipment(equiplD, faxNo, printerName).

A mapping is a pair of a source and

a target logical relations such that thegears some

correspondences specified by the user. The({3ir7}) coversv; and the pairS;, Tz) coversvs.

Therefore, the RIC-based technique generates the following two maggitidates in the form of

s-ttgd:

My: YequipI D, faxNo, printer Name.(officeEquipment(equipI D, faxNo, printer N ame)

— dserial No. faxMachine(serial No, faxNo)Amachine(serial N 0)).

My Yequipl D, faxNo, printer Name.(officeEquipment(equipl D, faxNo, printer N ame)

— dserial No. printe

r(serial No, printer Name)Amachine(serial N 0)).

25

In principle, an RIC-based technique first looks for logical relationsaicheschema, and then
pairs up logical relations in different schemas to cover the given quoreences. In contrast, our
solution focuses on discovering a pair of “semantically similar” associatidgthstiae assistance of
the semantics of schemas expressed in terms of CMs. As a result, our selatilohgreatly reduce

the number of mapping candidates by eliminating many suspicious pairings.

Schema Integration A relevant problem to schema mappingsishema integrationvhich is the
problem of building a database schema by unifying a set of individuasah, for example, cre-
ating a global schema from a set of local schemas for a data integratimmsy8 commonality
existing in both schema mapping and schema integration is resolving heteatgglereeto different
schemas. The works in [KLK91], [KCGS93], and [SK92] have shelitlign classifying a variety
of conflicts causing heterogeneity. Batini [BLN86] presented a congmstie survey on schema
integration in the late 1980s. Methods surveyed in [BLN86] are a mixturecbhigues involving
exploring and resolving conflicts from naming to structures. In contrgstc@pietra [SP94] used
the Real World Statas the semantics of the elements and pieces of structures of schemas for inte-
gration. To measure the “relativism” of data structures, i.e., the ability to steudtta in different
ways, Hull [Hul84] introduced the notion dfiformation capacityand Miller [MIR93] studied the

problem of information capacity preservation in schema integration.

Mapping Adaptation, Composition, and Inversion As mapping becomes a fundamental com-
ponent in modern information management systems, other problems cogceraitaging and
manipulating mappings are also attracting increasing attention. Specificallyjngagaptation
[VMPO3, YPO05] is the problem of maintaining the validity of mappings undeesth evolution
by reusing the original mappings. Mapping composition [MH03, FKPT04M8B] is concerned
with generating a direct mapping between two data sources by composing ibenggthat relate
both data sources to an intermediary data source. Related to mapping composigaing map-
pings [Fag06] is aimed at constructing an inverse of a mapping. Finally,inggare represented
in the form of second-order s-t tgds [FKPTO04] for mapping compositod, mappings are nested

[FHHT06] for grouping target instances during the actual data translatioegsoc

26
2.1.1 Ontology-Based Information Integration

As ontologies have gained growing attention over the past decade, mapig pave used an ontol-
ogy as the global schema for a data integration system, building so-callelbgy-based informa-
tion integration systeme.g., Carnot [CHS91], SIMS [AKS96], OBSERVER [MIKS96], Imfoa-
tion Manifold [LSK96], InfoSleuth [BBB 97], PICSEL [GLR99], and DWQ [CGLO01a]. In these
systems, mappings are specified from data sources to an ontology acingjaisal schema. As
in the traditional data integration systems, two types of formalisms for specifysmappings are
commonly used: local-as-view (LAV) and global-as-view (GAV). The Limalism relates each
element in sources to a query over the ontology, while the GAV formalisntiadss each element
of the ontology to a query over the sources. Since an ontology is refjasda standard concep-
tualization of a domain and tends to be stable, the LAV formalism prevails. SimilaetbAl
formalism in the traditional data integration systems, a typical mapping formuaiatss an ele-
ment in sources to a conjunctive formula over concepts and relationstapsoimtology as shown in
the Formula 1.1. A major difference, however, exists. An ontology is usaallybject-oriented de-
scription, while a data source often is relational, therefore value-orieAtegtonciliation between
objects and tuples of values sometimes is needed in mapping specification. TR¢@DVL01a]
data integration system originally used the notiormdbrnmento express the correspondence be-

tween a tuple of values and the object it represents.

The DWQ system is aimed at integrating data from different sources into aiatized data
warehouse through an ontology. Mappings from data sources andattehouse to the ontology
enable the automatic creation of the mediator for loading data into the warehbliseontology
is described in an enriched Entity-Relationship model. Both sources andcatiebouse are linked
to the ontology by adorned mapping formulas. In particular, an adornegingaformula is an
expression of the form

T(f) - q(f7 :17) ‘ ag, ..., Qp (22)

where the head’(%) defines a table in a relational source in terms of a n@imand its arity, i.e.,

the number of columns, the bodyz, 7/) describes the content of the table in terms of an ontology,

27

anday, ..., ay, constitutes the adornment in which eaghis an annotation on variables appearing

in Z. The bodyg(Z, %) is a union of conjunctions of atoms. Each atom is a concept, a relationship,
or an attribute appearing in the ontology. In the adornment, there are twe®dfjp@notations. For
eachX € Z, an annotationX ::V specifies the domain of a column of the talhleFor each tuple of
variablesz C ¥ that is used for identifying ifi’ an objecty” € § mentioned iny(Z,), an annotation

is of the formIdentify([Z],Y).

Example 2.1.2. Suppose a university ontology contains two conc8pident andProfessor, and
a relationshighasAdvisor between the two concepts. BdBtudent andProfessor as subclasses
of Person inherit three attributesssn for social security numbedob for date of birth, anachame.
Suppose a data sourSg contains the information about the students and their supervisors, in terms
of arelational tablsupervisor(sname, sdob, pname, pdob), wheresname is for student’s name,
sdob for student’s birth dategpname for supervisor's name, angblob for supervisor’s birth date.
A data sourceS; contains the information about the professors and their supervisech&tude
terms of a relational tablsupervision(sSsn, pSsn), wheresSsn andpSsh are for student’s and
professor’s social security numbers, respectively. We assume thia sourceS; persons (both
students and professors) are identified by their name and date of biité v, persons are iden-
tified by their social security number. Using adorned formulas, we carifggibe mappings from

the sources to the ontology as follows:

28

supervisor(sname, sdob, pname, pdob) — Student(X3), Professor(X5),
hasAdvisor(X1, X»),
name(X1, sname), dob(X1, sdob),
name(Xs, pname), dob(Xas, pdob)
| sname, pname :: NameString,
sdob, pdob :: Date,
Identify([sname, sdob], X1),
Identify([pname, pdob], X5).
supervision(sSsn, pSsn) — Student(X3), Professor(X5),
hasAdvisor(X1, X5),
ssn(Xy, sSsn), ssn(Xa, pSsn),
| sSsn,pSsn:: SSNString,
Identify([sSsn], X1),

Identify([pSsn], X2).
[]

Aside from the mappings linking data sources and the warehouse to the gypttiere are
other reconciliation correspondences for resolving heterogeneityestiog the mediator in the
DWQ system. Three types of correspondences are used, na@wlyersion, Matching, and
Merging correspondences. As the number of the data sources increasestaludjies become
more complex, it is desirable to have automatic tools for generating the mappmglé&s and the
reconciliation correspondences. Such a tool not only is useful fdD¥HE integration system, but
also is applicable to a wide variety of scenarios involving mapping databastdto One of the
major contributions of this dissertation is the development of such an automdtiortdescovering
the semantic mapping, similar to the mappings in Example 2.1.2, from a databaseatoleCM,

e.g., an ontology.

It is natural to ask whether we can apply the RIC-based techniquesite tee semantic map-

pings from database schemas to CMs, when a CM is viewed as a relatitabasi consisting

29

of tables for concepts, attributes, and relationships. Our investigatiaws tlat the RIC-based
techniques do not produce the desired results in many cases. This isduertly the fact that the
semantic mapping asks for “semantically similar” associations in terms of modeligecsmat-
ter. Another reason is that the RIC-based techniques sometimes miss dsseidtions in a single
schema. Concrete examples will be shown in following chapters. The bwlrafork in this dis-
sertation focuses on the problem of discovering such a pair of “semingaailar’ associations

for different mapping tasks, based partly on the principles of conceppindeling.

In addition to tools for schema mapping, a considerable body of work egistlisicovering map-
pings between ontologies [KS03a, PS05]. Current ontology mapping tamisever, only focus on
deriving simple correspondences between concepts or betweemtemespite ontologies having
more complex structures and capturing more real-world knowledge thamedatachemas. Exam-
ple tools are PROMPT [NMO03], FCA-merge [SMO01], IF-Map [KS03bhdaGLUE [DMDHO0?2].
Because of the simple form of their mapping results, we classify the toolsdisdinorrespon-
dences and discuss some of them in the next section. Ontology mappingsedrén ontology

translation [DMQO03], ontology merging [NMO03], and ontology integratioGlMD1b].

2.2 Finding Correspondences: Schema and Ontology Matching

To improve the chances of getting more accurate and reliable mappings, mppinméiscovery
tools as well as the mapping discovery algorithms developed in this dissertdomsat of element
correspondences as an extra input in addition to the schemas being mapedet of element
correspondences can be specified manually by users. More degsifableespondences could be
generated automatically by some tools. In this section, we take a glimpse of theobeark
related to finding correspondences, which is referred schema matchingr ontology matching
What we are concerned about is the underlying meaning of a corrdspos generated by a schema
matching tool: What does thagorithmtell us about an element in one schema corresponding to

an element in another schema.

Although schema matching also referred to as the problem of identifying semantic relation-

30

ships between schemas [RB0O1, PS05] by some researchers, the nfej@endé from theschema
mappingwe termed in the previous section is that the results of schema matching oftesetref
correspondences each of which links a single element in one schema tpeasd@ment in another
schema. Sometimes, however, a correspondence may involve a funéiomgra single element to
several elements [DLDO04], for examplesalary = hourly_wage x working_hours, or vice versa.
In particular, a matcher takes two schemas as input and produces a mdtehimgn elements of
the two schemas that correspond “semantically” to each other. Matcleeckaasified into schema-
and instance-level, element- and structure-level, language- and éonkvel, and individual and
combination methods. It is worth noting that almost all methods proposed go tfae literature
[DNHO04, NDHO05] are semi-automatic and need the intervention of the usstrgiVen two database
schemas without other explicit connections between them, few claim that aineflty automati-

cally discover correct matchings without user’'s examination on finalteesu

Specifically, Cupid [MBRO1] discovers correspondences betwekansa elements based on
their names, data types, constraints, and schema structures. Usingddgesgib as the unifying
internal representation of a spectrum of schemas, Cupid strives to jdewisimilarity between
elements. This is accomplished in two steps: Linguistic-based matching follovesusértbased
matching. The assumption in Cupid about “semantic correspondence” iththaiames of the
elements convey linguistic similarity and the structures of the representatiotoh@ippagate sim-
ilarity along graph edges. Matching is computed, essentially, by using tiestri§ he technique
of Similarity Flooding [MGMRO02] converts schemas into directed labeled grashwell and uses
fixpoint computation to determine the matches between corresponding nottes graphs. For
ontologies with rich semantics, Anchor-PROMPT [NMO1b] takes as input efschors — pairs
of related terms in two ontologies, producing pairs of other related termsho&RRROMPT also
assumes the structure conveys similarity. The COMA [DRO02] does nottimrgnnew matching
algorithm. Instead it develops a framework to combine multiple matchers in a flexayleMulti-
ple matching techniques can be plugged in COMA system to produce compositeingaesults
for input schemas. Hence the “semantic” interpretation of schema elem@matsddeon underlying

matchers. LSD and GLUE [DDHO1, DMDHO02] are systems that employ madbaraing tech-

31

niques to find similar elements. They use multiple learners exploiting various ¢fge®wledge
about data types, names, instances, structures, and previous matdRigjizing that evidence
carried by schemas themselves are not sufficient to derive more seouatching results, Xu et
al. in [XEO3b, XEO3a] utilize domain ontologies in matching discovery and Madh et al. in

[MBDHO5] explore a corpus of schemas for evaluating the similarity of agfastements.

For light-weight schemas like web service descriptions and web querfeiogst, statistical tech-
niques play a critical role in discovering matchings between web servit¢#s![D4] and matchings

between web interfaces [HCO6].

Most of the schema matching tools do not formally define the problem theyeatend with.
They do not state clearly what it means for two elements to be most similar. Aeptxg is
the study presented in [Doa02], where the author makes the assumptaertying the matching
algorithms explicit. In short, the common underlying assumptions behind masynscmatching
tools can be summarized as follows. Given two modednd7, that for an element; € S, there
is an element, € 7 corresponding t@; means that the real world object representedbiias
the highest similarity to the real world object represente@hycompared to all other real world
objects represented by all other element§dinThe matching results of such a schema matching
tool is in fact an approximation of the true objects in the real world desciiyetie elements of

domain models and an estimation of the true similarity between objects in real wonkirmm

2.3 Model Management

Model management [BHP0OO, BR0O, Ber03] is a framework for providirgeneric management
facility for formal descriptions of complex application artifacts such as relatidatabase schemas,
XML schemas/DTDs, conceptual models, web interface definitions, weftealescriptions, and
workflow diagrams. These formal descriptions are referred ta@dels A novel feature in model
management is that both models and mappings between models are treatdthati@ixssthat can
be manipulated by model-at-a-time and mapping-at-a-time operators. Here liggaithghat an

implementation of these abstractions and operators could offer an drdegmitude improvement

32

in productivity for metadata management. Formallynadelis defined to be a set of objects, each
of which has properties, has-a relationships, and associationsodglis assumed to be identified
by its root object and includes exactly the set of objects reachable fremoth by paths of has-a
relationships. Given two modelg; andM,, amorphismover M, andMs is a binary relation over
the objects of the two models. That is, it is a set of péixs 02) whereo; ando, are inM; and
Mo, respectively. Anappingbetween modeld/; and M5 is a modelmap,2, and two morphisms,

one betweemap,2 andM; and another betweenap, and M.

The literature suggests six major model management operatatsh creating a mapping be-
tween two modelscompose combining two successive mappings into omerge merging two
models into a third model using a mapping between the two moedisct returning a portion of a
model that participates in a mappirtiff returning a portion of a model that does not participating in
a mapping, andonfluence merging two mappings. The first prototype implementing some of the
operators, called Rondo, is presented in [MRBO03]. The implementatiorevemwreats mappings
as syntactic links without rigorous semantics. Therefore, fontageh operator in Rondo, existing
schema matching tools provide a solution. Since merging models such as sctegretion lies at
the heart of many metadata applications, the gemegige operator is studied in [PB03]. The main
contributions are the precise definition of the semantics ofrtbege operator, the classification of
the conflicts that arise in merging models, and the resolution strategies fiticisotihat must be
resolved inrmerge. Furthermore, thenerge operator along with other four operatoextract, diff,
compose, andconfluence, are studied in [MBHRO5] when mappings are specified as executable

statements in some formal languages.

It should be noted that theatch operator in model management can produce both syntactic
links and executable statements depending on the particular application. c@luimathis disser-
tation amounts to thenatch operator for generating executable mappings. As we have reviewed
in Section 2.1, most previous solutions focus on producing executableimyafdpetween database
schemas by solely exploring evidence in schemas. We now stomdych operator implementation
taking as the input database schemas and CMs, and we further propes®atic approach for

implementing thenatch operator for database schemas.

33

2.4 Database Reverse Engineering (DBRE)

Database reverse engineering (DBRE) [Hai98] is another relevaatadrresearch. Even though
there are similarities between this area and the problem we are tackling, teas@important
differences. First, DBRE is aimed at extracting a CM from a logical databekema, while our
work attempts to recover the semantics of a schema using a given CM, thouglecessarily
exactly the semantic data model from which the logical schema may have bittenSmcond,
different from graph construction algorithms in DBRE, the semantics egogigorithm in our
work heavily employs the graph-theoretic algorithms for discovering tnealsle” connections in
a conceptual model graph. Third, the results of our algorithm are lofpcadulas representing
semantics of a database schema, while DBRE produces just a pictoredeatation of a conceptual

model, without showing how it links to the database schema.

Since many databases and their operational environments evolve consteaitiiaining these
databases has long been recognized as a painful and complex activitimp®rtant aspect of
database maintenance is the recovery of a CM that represents the mefatiedogical schema.
Database reverse engineering (DBRE) is defined as the proces®eérag such a CM by exam-

ining an existing database system to identify the database’s contents ardtre@lationships.

Approaches to translating a relational database schema into a conceprrabshave appeared
since the beginning of the 1980s [Cas83, DA83, NA87, MM90]. Grigufaur main sources have
been explored for finding evidence to construct a conceptual schemaaf logical database: the
structures and integrity constraints of the database schema, the applicaticarps that access the
database, the data instances stored in the database, and the usersigmetgdeSpecifically, the
algorithm in [FG92] uses only schema structures and constraints foousitig subtype/supertype
relationships which are created at an early stage in the algorithm. Andarseark in [And94]
reengineers legacy systems, where the only information provided by tMSD®8table names, field
names, indices, and possibly view definitions. Information about fundtitmmendencies, keys, and
inclusion dependencies are deduced by looking into data manipulation st&ehestincan be ex-

tracted from the application code. The approach in [CBS94] analyzemhothe database schema,

34

but also data instances which contain detailed information about the applicktioain. Addi-
tionally, specific kinds of SQL queries are analyzed in [PKBT94] for imgpto build an Extended
Entity-Relationship schema including§A relationships and aggregates; the techniques of program
understanding which emerged in the Software Engineering field are endglojldEHT 98] to im-

prove understanding the domain semantics of database schemas.

Similar to our problem of discovering semantics of database schemas in teghnefCMs,
DBRE is also difficult to automate and needs human intervention. Since theesaiged for deriv-
ing evidence to construct a new conceptual model do not contain soffs@mantic information, the
conceptual models created by many DBRE methods are often closely tied tagtiegedatabase
schemas and hence may become, in worst case, just graphical reatiess of the actual logical
and physical implementations of the databases. To deal with complex DBREEm® more ef-
fectively, researchers have adopted a traditional Computer Sciertuggee: divide and conquer.
In [SAJPAO2], the complex problem of dealing with a large database systinided into smaller
problems: Relations are directly grouped into elements of a high-level absttgema, and inter-
mediate conceptual models are constructed for each group. Finally, theédiate conceptual
models are consolidated into a single conceptual model with missing elementowdgrfor some
specific types of constructs in logical schemas as well as in conceptualsnegecialized reverse
engineering methods are developed. For example, star schemas giegesd in [KS97], while

n-ary relationships and aggregate relationships are extracted in [S®fSou98], respectively.

Most of the DBRE methods we have reviewed are informal. In particulay, rilg on various
heuristics to generate elements in a conceptual model from available s@amdeo not formally
specify the quality of the results. Two possible criteria are “correctnasd™faithfulness”. Cor-
rectness concerns whether an element in the conceptual model exfraoteziconstruct of a logi-
cal schema or database represents the intended meaning of the coRsithfitiness measures the
degree to which all information in the logical schema and database havedpeesented in the con-
ceptual model and nothing else. The work of [Joh94] proposes a mé&iha@nslating relational
schemas into conceptual schemas. The method decides the correctyygsan the conceptual

schemas by interacting with users. Furthermore, it argues that the methpmbsedois faithful by

35

showing that the conceptual schemas produced are able to represesanth information as the
original logical schemas. One of the contributions of this dissertation is thgravide formal re-
sults for a subclass of problems, although the algorithm is necessarilgtieufrhe formal results
show that the algorithm is “correct” for the database schemas that wevediérom conceptual

models by the standard database design methodology.

2.5 Query Processing Over Mappings

Our work is also related to the study of query processing over mappingtsorly is the ultimate

goal of mapping discovery answering queries against the informativ@sgxontaining mappings,
but also rewriting queries over mappings is an important step in discovetiegrs mappings using
semantics of schemas. In this section we review some of the achievementaviaéicen made in

query processing over mappings.

As defined in Section 2.1, a data integration system involves a global sghens®urce schema
S, and the mappingUt betweeng andS. The goal of a data integration system is to provide a
unified view of the data stored in the sources so that queries about ftoes@an be posed against
the global schema and the queries will be answered by the system whilttssisers from knowing
the location and detailed description of each source. Query processandgita integration system
involves different manners in terms of LAV or GAV modeling approachesLAV, the problem
of processing a query is traditionally calletew-based query processinghich is classified into

view-based query rewritingndview-based query answering

Query rewriting is aimed at reformulating the original query in terms of a gtoetye sources in
a query languag€ o, in a way that is independent of the current source databases. Sometimes
equivalent rewriting exists in the fixed target query languége In this case, people are interested
in computing a so-calledhaximally containment rewritingA rewritten queryQ’ w.r.t. a query
languagel o is maximally contained in the original query means that there are no other rewritte
queries w.r.t. Lo that contain@’. A comprehensive survey [Hal01] discusses the large body of

work on algorithms for query rewritings. For conjunctive view definitiond aonjunctive queries,

36

important query rewriting algorithms are the Bucket algorithm [LRO96], thriddn algorithm

[PHO1], and the Inverse rule algorithm [Qia96, DGL0O0]. For Datalogrigs, the rewriting is
also approached by the Inverse rule algorithm [DGLOOQ]. For conjuaciueries with arithmetic
comparisons, an algorithm is developed in [ALMOZ2]. In ontology-baséatimation integration
systems, queries are posed against the ontology which acts as the gludrabs Query rewriting
incorporates the reasoning about the ontology [GR04]. Finally, whem#pping between XML
data are specified as source-to-target tuple generating dependenc@gant of the inverse rule
algorithm is developed in [YPO04] for rewriting queries posed to the targetqueries over the

source.

When developing algorithms that produce rewritten queries, one can asjuestions [Hal00]:
(?) whether the algorithms is sound and complete: given a q@eand a set of view®/, is there
an algorithm that will find a rewriting of) using) when one exists;i{) what is the complexity
of that problem. For the class of queries and views expressed as ctivgugueries, the study in
[LMSS95] shows that when the query does not contain comparisoticpted and has subgoals,
then there exists an equivalent conjunctive rewriting)aising)’ only if there is a rewriting with at
most n subgoals. An immediate corollary is that the problem of finding an &leuivrewriting of a
guery using a set of views is in NP, because it suffices to guess a repaitthcheck its correctness.
Furthermore, the work in [Hal00] also points out that the problem of findingraained rewriting

is NP-complete.

As we can see, the maximally-contained query rewriting needs to checkidoy gontainment.
Here, we refer to the literature on query containment. NP-completenessrjpmctive queries is
established in [CM77]I15- completeness of containment of conjunctive queries with inequalities is
proved in [Klu88, vdM92]. The case of queries with the union and diffiee operators is studied
in [SY80]. Results of the decidability and undecidability of various clas§@atalog queries with
inequalities are presented in [CV92, vdM92]. The problem of answaefgirggies using views is
closely related to the problem to query rewriting. The complexities of ansgepireries using

views under various view definition languages and query languagegvarein [AD98].

Query processing through the GAV mappings can be a simple unfoldinggstriithere are

37

no integrity constraints in the global schema and the views are exact. Howéwen the global

schema allows integrity constraints, and the views are sound, then qoessping in GAV systems
becomes more complex. The simple unfolding algorithm does not retrievertlrcanswers in
the presence of integrity constraints of the global schema [CCGLO02].erdmless, for foreign
key constraints, all certain answers can be computed [CCGLO02] byndikmaqueries with the
constraints and using the partial evaluation of logic programming, in the caisthéhlanguage for
expressing both the user query and the queries in the mapping is the on@wfofl conjunctive

gueries.

We will study a semantic approach to discovering schema mapping expieassuming seman-
tics of schemas are available. The semantics of each schema is specifiatsinftarset of semantic
mapping formulas each of which relates a predicate/expression refingsetasic organizational
unit in the schema to a conjunctive formula over a CM. The approach fasbvkrs a graphical
connection in the CM graph and then translates the discovered conne¢tiamiexpression over
the schema. Consider the discovered connection as a query over theapM drhe translation
problem becomes a query rewriting problem, where special provisiensesded to reconcile the

object identifiers in CM world with tuples in databases.

2.6 Conceptual Modeling and Data Semantics

We finally discuss conceptual modeling and data semantics. Conceptudinmgddeconcerned
with the construction of computer-based symbol structures which modelgarhef the real world
directly and naturally [Myl98]. Conceptual modeling originated from salvareas in Computer
Science [BMS84]. In Atrtificial Intelligence, conceptual modeling is caned with knowledge
representatiorwhich is the problem of capturing human knowledge so that it can be used by
software system. In Database, conceptual modeling prodigreantic data modelshich are used

to directly and naturally model an application before proceeding to a logicephysical database
design. In Programming Languages, conceptual modeling is concerttedlifferent forms of

abstractionwhich allow implementation-independent specifications of data, functiods;artrols.

38

For data management, semantic data models offer more semantic terms andiabstracha-
nisms for modeling an application than logical data models. A logical data modallyiprovides
abstract mathematical symbol structures for hiding the implementation details ardgi¢he con-
cerns of a physical data model. The Entity-Relationship model [Che75ireessthat an application
consists ofentitiesandrelationships Entities and relationships haegtributes This ontological
assumption is intended to make the Entity-Relationship model more expressjvagpable of cap-
turing more world semantics than the relational model [Cod70]. Specificalbt, af entities having
the same characteristics (the same set of attribute names) are modeledragyasetin an ER
model. Arelationship seimodels a set of similar relationships.k&yis a minimal set of attributes
whose values uniquely identify an entity in an entity set. Sometimes, a key maigtcohsome
attributes of other entities. To specify the occurrence of an entity in a ceyfanof relationship,
one can use theardinality constraints In order to capture more semantics, the Extended Entity-
Relationship (EER) model [MS92] introduces generalization/specializagiationships between

entity sets and allows relationships to participate in other relationships.

Figure 2.3 is a typical EER diagram which models a university domain. Itdwasentity sets:
Student, GradStudent, Professor, and Course and two relationship setssupervisedBy and
teaches. GradStudent is a subclass oStudent. In terms of the participations of entities in
the relationships, a student participates ingbpervisedBy relationship at most once, meaning a
student can have at most one supervisor; there is not limitation for asgmfeo participate in the
same relationship set. On the other hand, a professor must teach ankeastuose (the minimum
cardinality for participating in théeaches relationship is 1), while a course can be taught by one

professor.

In 1966, Ross Quillian [Qui68] proposed in his PhD thasisantic networks form of directed,
labeled graphs, as a convenient device for modeling the structure ohhmeraory. Nodes of his
semantic network represented concepts (more precisely, word s&ss were related through
links representing semantic relationships, sucks#s has, and other relationships. The semantic
networks were proposed for serving as a general inferential geptation for knowledge. The

inference technigues was based on the notion of a spreading activagoseition search — given

39

snum_ 0.1 0.* pid
QO—— Student supervisedBy Professor ——Q
T B

GradStudent

1.1

cnum

Course —0

Figure 2.3: An Extended Entity-Relationship Diagram

two words, possible relations between them might be inferred by an urguid=adth-first search

of the area surrounding the words.

Inferring potential relationships between words by using graphicatections was one of the
important features of semantic networks. Our work on discovering semmaitdatabase schemas
in terms of given CMs was initially inspired by Quillian’s work in semantic netwotkgarticular,
we have a set of concepts (singled out by the simple corresponderidag ltements in a database
schema to attributes of concepts) in a CM. What we want is some “reasboahleection among
these concepts such that the connection possibly matches the semanticgbtina. A significant
difference is that we attempt to find a connection in a Chhtatchan association (among a set of
elements) in a logical model. This requires not only discovering all poterdraiections but also

finding those that are “correct”.

The Unified Modeling Language (UML) was proposed by a consortiumenate 1990s and
soon became a standard modeling tool for Object-Oriented software deBignUML class di-
agram models static aspects of an application. For example, a databasedeaiy use a class
diagram modeling the data. A UML class diagram offers the following akigtramechanisms:
class, association, generalization, and composition. Specifically, a cimpapecifies gpartOf
association. A "whole” class is made up of component classes. A strangdbaggregation is
composite, where a component in a composite can be part of only one whgigegations and

composites are represented as lines joining the whole and the component ithrogpfilled di-

40

amond, respectively, on the whole side. Figure 2.4 shows a UML clasgadiaipr modeling a
university domain. Notice that thmemberOf association is also a composition association; car-

dinality constraints are specified at the opposite directions compared to ReiB§am in Figure

2.3.
StudentUnion memberOf Student Supervised By Professor
-snum pid
1.1 1.7 0.* 0..1
1.1
Zr teaches
GradStudent 1..*
Course
Lcnum

Figure 2.4: A UML Class Diagram

Since most semantic networks lack formal semantics as pointed by Wood3 $}Vtizere have
been attempts to integrate ingredients from formal logic to semantic models. Aregarhple of
this trend was terminological language such as KL-One [BS85]. Latefathiy of Description
Logics (DL) grew out of this. Generally speaking, Description Logiesfarmalisms that represent
the knowledge of an application domain (the “world”) by first defining tHeuant concepts of the
domain (its terminology), and then using these concepts to specify propsrtiegcts and individ-
uals occurring in the domain (the world description). Elementary descripdi@atomic concepts
and atomic roles/binary relationships. Complex descriptions can be builtthhem inductively
using concept constructors. Different Description Languagesistiaglished by the constructors
they provide. Concept descriptions 4L [U/][E][N][C][Z] are formed according to the syntax rules
which may allow union#), full existential quantification&), number restrictionX/), negation of
arbitrary concept®), and inverse roleX). The semantics of Description Logics are specified by the
model theory, and algorithms are sought for deciding judgments sucmaspticsubsumption and

consistency [B02].

DLs are also the underlying formalism of the Semantic Web. The idea behptgirmgpDLs to

41

the semantic web is related to the need of representing and reasoning logi@stolr he OWL web

ontology language [MvHO4] is intended to define and instantiate web ontologies

The fundamental concern for all semantic/conceptual models is the dlmstna@chanisms. By
definition, abstraction involves suppression of (irrelevant) details. Abttm mechanisms organize
the data stored in a database, providing semantics and guiding the use afahéndthe follow-
ing, we summarize some common abstraction mechanisms used in the semantic nredgédsu
above. A important ingredient of our mapping discovery algorithms is to fimdifar” abstraction

mechanisms in different models.

Classification, sometimes callethstanceOfclassifies instances under one or more generic classes.
Instances of a class share common properties. For example, all instdassfied under
Person have an address and an age. Some information models allow classification to be
recursive, i.e., classes may themselves be instances of other claskes[MEIK90] and

RDF [KCO03] are two such examples.

Generalization, referred to agSA organizes all classes in terms of a partial order relation deter-
mined by their generality/specificity. Inheritance is a functional inferenlzeaf generaliza-

tion mechanism.

Aggregation, also callecpartOf, views objects as aggregates of their components or parts. A strong

form of aggregation states that a component can be a part of only gnegate.

As we discussed at the beginning of this dissertation, CMs were mainly used)dlatabase
design-time and subsequently converted into logical schemas in the datamerdpllated by the
underlying DBMS. Since the main focus of a DBMS is performance, a logidama uses concise
mathematical structures to represent various abstraction mechanisms iff GiMead worked fine
for a closed and relatively stable operational environment. In this disisertave are interested in
the problem ofrecoveringmappings from logical schemas to CMs and using these mappings for
facilitating data integration and exchange in an open, dynamic, and distrigam@dnment. In the

next chapter, we begin with the detailed description of the problem.

Chapter 3

Problem Description

We define the problem of mapping discovery in this chapter. We first ibesdatabase schemas
and CMs. Two types of schemas are introduced, relational and XML. &afcommonly used
for describing data in databases. Next, we identify and describe theedispnapping discovery
problems, namely, mapping from relational schemas to CMs, mapping fromsttémas to CMs,
and mapping between relational database schemas. These specificgrolildbe considered in

depth in the chapters that follow.

3.1 Schemas and CMs

A database schema is a description of data in terms of a data model which s@nsainof abstract
and high-level constructs for describing an application. Primary exanoplgéata models include
the relational model, the XML data model, and the object-oriented model. Foutpege of this

dissertation, we will focus on relational schemas, XML schemas, and Ckésrits of the generic

CML.

42

43

3.1.1 Relational Model and Relational Schema

The basic data description construct of the relational model is relationhwhit be thought of as
a set of rows. The schema for a relation dable specifies the name of the relation, the name of
each column (or attribute or field), and the type of each column. For exaFiglee 3.1 shows a

relation with the following schema:

Employee(empno:Integer, name:String, dept: String, proj: String)

empno | name dept proj
288566345/ Jones| Research & DevelopmentP000234
288566346/ Smith | Research & DevelopmentP000234

288566348 Smith Marketing P000234
288566359, Alice Finance P000234
288566360 Peter Product P000387

Figure 3.1: A Relational Table

This table contains a set of tuples each of which describes an employgevakies under the
specified attributes. Furthermore, we can make the description of the caile€gmployees more
precise by specifyingntegrity constraints which are conditions that the tuples in the table must
satisfy. For example, we could require that every employee have a ugigpeo value. A subset

of columns that uniquely identifies a tuple is callegyin a table.

A relational schema consists of a set of relational tables. Formally, we esetationI' (X ,Y)
to represent a relational taklfé with columnsK'Y', and keyK. For individual columns irt”, we
refer to them a¥'[1], Y'[2],.. ., and useX'Y" as concatenation of columns. In the rest of the disserta-
tion, our notational convention for relational schemas is that single columesare either indexed
or appear in lower-case. Given a table sucli’@bove, we use the notatitey(T), nonkey(T) and
columns(T) to refer to K, Y and K'Y respectively. Other important constraint in the relational
model which plays a critical role in our mapping discovery process is thegiokey constraint.
Specifically, a A foreign key (abbreviated k. henceforth) inl" is a set of columns F thagfer-
enceshe key of tableél”, and imposes a constraint that the projectiof’adn F' is a subset of the

projection of7” onkey(7").

44
3.1.2 XML Data Model and XML Schema

An XML document is typically modeled as a node-labeled graph. For oynrgsey, we assume that
each XML document is described by an XML schema consisting of a sé¢wfeait and attribute
type definitions. Specifically, we assume the following countably infinite disgeis: Ele of el-
ement namegitt of attribute names, anbom of simple type names including the built-in XML
schema datatypes. Attribute names are preceded by @o distinguish them from element names.
Given finite sets® CEle and A CAtt, an XML schemaS = (E, A, 7, p, k) specifies the type of
each element in £, the attributes that has, and the datatype of each attributedinSpecifically,
an element type is defined by the grammar ::= ¢|Sequence[¢; : 11, ...¢,, : 7,]|Choice[¢; :
T, . by) fOr £1,..,¢, € E, wheree is for the empty type, an&equence and Choice are
complex types. Each element associates an occurrence constraint withltles: minOccursin-
dicating the minimum occurrence anthxOccurgndicating the maximum occurrence. (We mark
with * multiply occurring elements.) The set of attributes of an elenfeat F is defined by the
functionp : E — 24; and the function: : A —Dom specifies the datatypes of attributesAn
Each datatype name associates with a set of values in a ddmain In this dissertation, we do
not consider thsimple type elemen{sorresponding to DTD'$#CDATA), assuming instead that
they have been represented using attributes. All attributesirrgke-valued Furthermore, a special
element- € I is the root of each XML schema, and we assume that for any two elemént £,
p(t;) N p(L;) = 0.

For example, an XML schema describing articles and authors has the fajlepétification:
E ={article, author, contactauthor, name},
A ={Qtitle, Qid, Qauthorid, Qfn, Qln},
T(article) = Sequence|(author)x T (author), contactauthor:e],
T(author) = Sequence[name:e],
p(article) = (Qtitle), p(author) = (Qid), p(contactauthor) = (Qauthorid),
p(name) = (Qfn,Qln), k(Qtitle) = String,x(Qauthorid) = Integer,x(Qid)= Integer,x(Qfn)=

String, x(@In)= String, and the elementrticie is the root. Note that for tharticle element,

45

contactauthoronly occurs once, whil@author may occur many times. For theuthor element,
nameoccurs once. This XML schema can be described in the XML Schema bged&WO04] as
shown in Figure 3.2. The XML Schema Language is an expressive lgaghat can also express

key andkeyref constraints.

<xsd: el ement nanme=""article ' type="articleType '/>
<xsd: conpl exType nanme=""articl eType'’ >
<xsd: sequence>
<xsd: el emrent nanme="'aut hor’’ >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nanme="' nane
maxCccurs=""1"">
<xsd: conpl exType>
<xsd:attribute name=""fn’
type="'xsd:string’ ' use="'required '/>
<xsd:attribute name=""1n’
type="'xsd:string’'’ use='optional’’'/>
</ xsd: conpl exType>
</ xsd: el ement >
</ sequence>
<xsd:attribute name=""'id ' type='xsd:integer’
use=""required ' />
</ xsd: conpl exType>
</ xsd: el enent >
<xsd: el ement nanme="’contactauthor’’ m nCccurs=""1
maxQOccurs=""1"">
<xsd: conpl exType>
<xsd:attribute name=""authorid’
type="’'xsd:integer’’ use="'required ' />
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name=""title ' type="'xsd:string
use=""required ' />
</ xsd: conpl exType>
</ xsd: el enent >

m nCccurs=""1""

Figure 3.2: An XML Schema Description

Unlike relational databases where data are stored in relations comprisingdfipddues, data in

46

XML documents are organized in graph (tree) structures. An XML doatitie= (N, <,r, \,n)
over (E, A) consists of a set of nodés, a child relation< between nodes, a root nodeand two

functions such as:

e alabeling functio’\: N — E U A such that ifA\(v) = ¢ € E, we say thab is in the element

type/; if A(v) = @Qa € A, we say thav is an attributeQaq;

e a partial function):N — Dom for every nodev with \(v) = @Qa € A, assigning values in

domainDom that supplies values to simple type nameBom.

An XML documentX = (N, <,r, \,n) conforms to a schemé = (E, A, 7, p, k), denoted by
X ES, It

1. for every nodev in X with children vy, .., v,, such that\(v;) € E fori = 1,...,m, if

A(v) = £, thenA(vy),..., A(vy,) satisfiesr(¢) and the occurrence constraints.

2. for ever node in X with childrenu,, ..., u,, such that\(u;) = Qa; € Afori = 1,...,n, if

A(v) = £, then\(u;) = Qa; € p({), andn(u;) is a value having datatypg Qa;).

An XML schema can be viewed as a directed node-labeled graph saledha grapleonsisting
of the following edges: parent-child edges= ¢ — ¢; for elementd, ¢; € E such that ifr(¢)=
Sequence]...¢; : 7;...] or Choice][...4; : 7;...]; and attribute edges = ¢ = « for element € E
and attributex € A such thate € p(¢). For a parent-child edge = ¢ — ¢;, if the maxOccurs
constraint of¢; is 1, we show the edge to be functional, drawrndas- ¢;. Since attributes are
single-valued, we always draw an attribute edgé as «. The schema graph corresponding to the
XML schema in Figure 3.2 is shown in Figure 3.3.

Elements and attributes as nodes in a schema graph are located by pa#isiergreFor our

purposes, we use a simple path expresglona ¢|¢.QQ and introduce the notion @lement tree

An element tregepresents an XML structure whose semantics we are seeking for. Asema
mapping from an XML schema to a CM consists of a set of mapping formuldsofadhich is from

an element tree to a conjunctive formulas in the CM.&@ment treecan be constructed through

47

article

P\
author @title

/ll contactauthor
. \7

name

/ N @authorid

@fn @In

Figure 3.3: An XML Schema Graph

doing a depth first search (DFS), starting from the element node folhwigcare constructing an
element tree. The DFS process first createslament graptand goes as follows. Begin with an
empty element graph and create a new node in the element graph for eaatked original node
during the traversal of the original schema graph. Mark each node sth@ma graph as “visited”
when it is reached at the first time and unmarked when all of its descesdhant been traversed.
Regular edges are created in the element graph whenever there igseirfroen a DFS parent node
to its unmarked children in the original schema graph. If an already madaslia being traversed,
then a “back” edge (using dashed line) is created in the element grapthtieoDFS parent to this
marked child. For example, Figure 3.4 (a) shows a schema graph with a dyigere 3.4 (b),
(c), and (d) are the element graphs created by the DFS process s#drtitegelementsontrols,

employee, andmanager, respectively.

Next, we convert the element graphs into element trees by ignoring ddingdhe back edges
depending on our needs. To unfold a back edge from a Aptiea nodel;, we connect; and
all the contents descendirfg until /; to /; and remove the back edge. The occurrence constraint
of the new created edge frofto /; is the same as that of the back edge. Figure 3.5 (c) and (d)
are the element trees converted from the element graphs in Figure 3rd((Q)arespectively, by
unfolding the back edges, while Figure 3.5 (b) is the element tree confastedhe element graph
in Figure 3.4 (b) by ignoring the back edge. For the sake of simplicity, weifypeach element tree
as rooted at the element from which the tree is constructed, ignoring thérpatihe root to the

element in the original schema graph.

48

controls controls
department project department project
L// \ / \\7 / l l \b@ y employee‘ ’Jmanager
id pi
@did employee @i @did employee,‘ 1pmployee / ﬂ } '—”/
/ ﬂ / ll N JL \\.1 @eid manager ¢ CTHOE gy
A lL
@eid manager @eid manager/ ‘nanager @eid ll _
lL lL ll @mid @eid
@mid @mid @mid
(@ (b) (©) (d)
Figure 3.4: Schema Graph and Element Graphs
controls controls employee manager
/ \ f L/ \ : / lL employee lL
department project department project @eid manager lL \@mid
‘/ \ / @pid / l l @pid employee @eid ~ Manager
@did employee @did employee employee iL @mid lL
/ lL /ﬂ ll \\" @eid @mid
@eid manager @eid manager manager @eid
@mid @mid @mid

(@ (b) (© (d)

Figure 3.5: Schema Graph and Element Trees
3.1.3 CMs and the CM Graph

In this dissertation, we do not restrict ourselves to any particular lamgtagdescribing CMs.
Instead, we use a generic conceptual modeling language (CML), wbithinscommonaspects
of most semantic data models, UML, ontology languages such as OWL, acdpli®n logics.
Specifically, the language allows the representatiotiadses/concep{sinary predicates over indi-
viduals),object properties/relationshig®inary predicates relating individuals), addtatype prop-
erties/attributeg(binary predicates relating individuals with values such as integers andsstr

attributes are single valued in this dissertation. Concepts are organizedfantiiar ISA hierar-

49

chy, and subclasses of a superclass can be either disjoint or owvedaelationships, and their
inverses (which are always present), are subject to constraintasiggecification of domain and
range, plus cardinality constraints, which here allow 1 as lower bouadledtotal relationships),

and 1 as upper bounds (calleahctionalrelationships).

We shall represent a given CM using a labeled directed graph, calleajraph We construct
the CM graph from a CM as follows: We create a concept node labelednftr each concept
C, and an edge labeled withfrom the concept nodé€’; to the concept nodé€’, for each object
propertyp with domainC; and rangeCs; for each suclhp, there is also an edge in the opposite
direction for its inverse, referred to @s. For each attributg’ of conceptC’, we create a separate
attribute node denoted @é; -, whose label igf, and add an edge labelgdrom nodeC to Ny c.
For eachlSA edge from a subconcept; to a superconcept;, we create an edge labeled with
ISA from concept nod€’; to concept nodé€’s with cardinality 1..1 on th&’; side (aC; must be
a(s), and 0..1 on the’; side. For the sake of succinctness, we sometimes use UML notations, as
in Figure 3.6, to represent the CM graph. Note that in such a diagram,dnstelnawing separate
attribute nodes, we place the attributes inside the rectangle concept andesslationships and
their inverses are represented by a single undirected edge. Thegrasesuch an undirected
edge, labelegh, between concepts’ and D will be written in text a ---p--- [D] Itwil
be important for our approach to distinguiginctional edges- ones with upper bound cardinality
of 1, and their compositionfunctional paths If the relationship p is functional fror@' to D, we
write - - - p->- - [D] For expressive CMLs such as OWL, we may also con@gitt D by p if
we find an existential restriction stating that each instana€ of related tosomeinstance oonly

instances oD by p.

3.2 Mapping Discovery Problems

We now identify and describe the specific mapping discovery problems m&d=y in this disser-
tation. We first describe the problem of mapping a relational schema to a €in8, we define

the problem of discovering a mapping from an XML schema to a CM. We gpagcifiapping for-

50

0.* 1 works_on 0.1
5 Employee 4 11 Department Worksite
g -hasSsn “works_for ~=|-hasDeptNumber -hasNumber
oy -hasName -hasName 1.1 0.*|-hasName
a -hasAddress o1l controls
hasAge
0.1 1.1 manages

Figure 3.6: A CM Graph in UML Notation

malism and discuss why the problem is different from the problem for relatischema. Finally,
we describe the problem of discovering mappings between relationahashend contrast it with

the other two problems.

3.2.1 The Problem of Mapping Relational Schemas to CMs

In this setting, we want to discover a semantic mapping from a relational sdioesn@M, given a
set of correspondences. édrrespondencé’.c «~~D.f relates columre of a relational tablel” to

an attributef of a conceptD of a CM. Since our algorithms deal with CM graphs, formally a cor-
respondencé will be a mathematical relation (7', ¢, D, f, Ny p), where the first two arguments
determine unique values for the last three. This means that a table coluraspmmds to a single
attribute of a concept (complex correspondences associating with multipibeigttrcan be treated

as union of a set of correspondences each of which associates witfleattribute).

We use formulas in the forfd'(X) — ®(X,Y), as described in Section 1.1, to represent the
semantic mappinfrom a relational schema to a CM, wheéfeis a table with columnsy (which
become arguments to its predicate), &g a conjunctive formula over predicates representing the

CM.

Problem 1 (R-to-O problem). Given arelational schemR = (7', A) with a set of relational table
T7={T1,....,} and a set of integrity constraintd, a CM O, and a set of correspondencésrom

columns of tables iff” to attributes of concepts i@. For a tableT;(X), find an associatiod in

51

the CMO such thafT;(X') andd7 are “semantically similar” in terms of modeling a subject matter.

The input of problem 1 (R-to-O problem) is a relational schema, a CM, a&d af correspon-
dences from columns of tables in the schema to attributes of concepts in th& @Mtional table
stores attribute values organized into tuples, while a CM specifies cona#tptsjtes of concepts,
and relationships between concepts. A close relationship between relatbemas and CMs is in-
duced by the standard database design methodology which consist of pseciples that convert
a conceptual description into a logical schema. Our solution is to find aciagso/subgraph in
the CM graph by examining the structures and integrity constraints in the scfidgragoal is that
after converting the association/subgraph into a table by the standard destigodology, the table
is indistinguishable from the original table under consideration in the scheteams of structures

and constraints.

The output of problem 1 is a set of mapping formulas. These candidateilfias need to be
examined by the user. Of course, it is desirable that the candidate listmgpfet®” meaning that
it contains all expected formulas and that the list is as short as possiblatsastr would spend
the minimum amount of effort to examine the list. To evaluate the performanag sbtution, we
manually create mapping formulas for each tested dataset in our experifieede. manually create
mapping formulas serve as the “gold standard” for testing the achieverhsatmantic similarity.
We compare the results generated by the solution with these correct formidaheck how many
correct ones are contained in the candidate list. Furthermore, if anteddeomula is not generated
by the solution, we measure how much effort has to be put into correctitig@nrect” one into a
correct one. We choose the above method because it is sufficientritifgulae effectiveness and

usefulness of the solution.

3.2.2 The Problem of Mapping XML schemas to CMs

In this setting, we attempt to discover a semantic mapping from an XML schemalth gi@n

a set of simple correspondences.cérespondencd.Qc«~D. f relate the attributé Qc” of an

52

element/ reached by the simple path to the datatype property of the classD in the CM. A
simple pathP is always relative to the root of the tree. For example, we can specifyoltioaving

correspondences for the element tree in Figure 3.5 (C):

employee.Qeidl«~~Employee.hasld,
employee.manager.@mid«~Employee.hasld.

employee.manager.employee.Qeid2«~Employee.hasld

whereEmployee is a concept in a CM anhblasld is an attribute of the concefmployee. As in
the relational case, formally, a correspondeiceill be a mathematical relatiod (P, Qc, D, f,

Ny p), where the first two arguments determine unique values for the last three.

We now turn to the mapping language relating a formula representing an elémentith
a conjunctive formula in a CM. On the XML side, the basic componentsatridute formulas
[ALO5], which are specified by the syntax ::= ¢|¢{(Qa; = z1,..,Qa, = z,), Wherel € FE,
Qayq,..,Qa, € A; E and A are element names and attribute names, respectively, while variables
x1,.., Ty are the free variables of. Tree-pattern formulas over an XML sche®a= (E, A, T, p, k)
are defined by ::= alafpr, .., ¢n], Wherea ranges over attribute formulas oudr, A). The free
variables of a tree formula are the free variables in all the attribute formulas that occur in it. For
example,employee(Qeidl = x1)[manager(@mid = x2)[employee(Qeid2 = z3)]] is the tree
formula representing the element tree in Figure 3.5 (c).

A mapping formulebetween an element tree and a CM then has the fb(iki) — ®(X,Y),
where¥ (X)) is a tree formula in the XML schema adq X, Y) is a conjunctive formula in the CM.
For example, given a CM containing a concEptployee, with an attributehasld, and a functional
propertyhasManager (whose inverse isnanages, which is not functional), the following map-

ping formula ascribes a semantics of the element tree in Figure 3.5 (c):

53

employee(Qeidl = x1)[
manager (Qmid = x9)[
employee (Qeid2=x3)]] — Employee(Y;),hasld(Y7, z1), Employee(Ys),
hasld(Y2, z2), hasManager(Y7, Y2),

Employee(Y3), hasld(Y3, z3),manages(Y2, Y3).

Since we maintain the unique name assumption for attributes, we can dropitigderaames;;s,
and just use attribute names in formulas. The variablasare implicitly existentially quantified

and refer to individuals in the CM.

Problem 2 (X-to-O problem). Given an XML schem& = (E, A, 1,p, k), a CM O, and a set of
correspondences from attributes of elements ifi to attributes of concepts i@. For an element
treeT, find an associations in the CMQO such thatl" and o7 are “semantically similar” in terms

of modeling a subject matter.

The input of the X-to-O problem is an XML schema, a CM, and a set okspondences from
attributes of elements in the schema to datatype properties of concepts in th&nOMAL doc-
ument stores attribute values organized into a graph, while a CM specifiesps, attributes of
concepts, and relationships between concepts. As for the relatioealozassolution for discover-
ing the semantic mapping from an XML schema to a CM also exploits the principlesaheert
a CM into a “good” XML schema. Focusing on semantics discovery, wemnasshe input XML

schema has been transformed into element tree(s).

We now discuss the differences between the X-to-O problem and theCRpt@blem. Much
research has focused on converting and storing XML data into relatiatabases [STHI9]. It is
natural to ask whether we could utilize the mapping algorithm we have dewkfop¢he R-to-O
problem by first converting XML DTDs/schemas into relational tables ordphyang the mapping
algorithm directly to XML schemas. Unfortunately, this approach does onok.wFirst of all, the

algorithms that generate a relational schema from an XML DTD/schema akknia and system

54

generatedds in order to record the nested structure, and these confuse the algddththesR-to-O
problem, which rely heavily on key and foreign key information for semauficsal world objects.
Secondly, an XML schema is a rooted graph (tree) structure. Much siesare encoded in the
parent-child links as well as the occurrence constraints imposed on the Tiflesprinciples for
designing an XML schema from a CM is different from that for designinglational schema from
a CM,; therefore, when we seek for “semantically similar” associations in >$ktiemas and CMs,
the algorithm will be different from that for relational schemas and CMsrdly, the outputs are
different and need different treatments. One relates a tree formula tguanctve formula, while
other relates a table as an atomic formula to a conjunctive formula. Finally, asdgeoerally,
the X-to-O problem is different from the R-to-O problem because XMheseas and relational
schemas are heterogeneous domain models subscribing to different gddetjoages. Although
they may describe the same subject matter, they use different modelinguctsdtr different
purposes. A particular algorithm for one model often does not prodasied results for another
model because the algorithm has been designed for exploiting specifidimgodenstructs. We
believe that an effective tool for discovering semantics of differentaetsoldas to employ different

algorithms geared to particular modeling languages.

The output of problem 2 is a set of candidate mapping formulas. We useathanteated
“correct” mapping formulas for each tested dataset to evaluate the parfice of the solution. The

performance is measured in terms of recall, precision, and labor savings.

3.2.3 The Problem of Mapping Database Schemas to Database Sofas

In this setting, we want to discover semantic mapping from a source relasochamas to a
target relational schent@, given a set of correspondences from columns b columns of7 .

A correspondenc&.ce~T. f will relate the columre of the tableR in S to the columnf of the
tableT in 7. For the setl. of correspondences between the schehand the schemd, we use

L(S) andL(7) to denote the sets of columns linked byn S and7, respectively.

The goal of schema mapping is to find an association among colunir{$irand an association

55

among columns inL(7") such that the pair of associations are semantically similar in terms of
modeling a subject matter. For relational schemas, we use join algebragssiqms for associations

among columns as shown in the following example:
S1: gradStudent(sno, sname, pid)~iprofessor(pid, pname, area).

Given a pair of algebraic expressions, one could derive mapping fasnmi the form s-t tgd and
multiple mapping expressions could be derived. For example, supposawwehother algebraic

expression which is a single table
T1: student(sno, name, advisor, area),

and we want to derive mapping formula from the p&iy, 71) given the correspondences

v1. gradStudent.sno«~student.sno,
vy gradStudent.sname«~»student.name,
vs. professor.pname«~student.advisor,

vy. professor.area~~+student.area.

Here are three possibilities:

Mjy: Vsno, sname, pid.(gradStudent(sno, sname, pid) — student(sno, name, _, _)).
My: Vsno, sname, pid, pname, area.(@radStudent(sno, sname, pid) A
professor(pid, pname, area) — student(sno, sname, pname, area)).

Ms: Vpid, pname, area.(professor(pid, pname, area) — student(_, _, pname, area)).
The mapping expressiall;, covers the correspondencgsandwvs, My coversvy, ve, v3, anduvy,
and M3 coversvs andwvy. Since the derivation depends on usage of the mapping and other con-
straints, we will leave it open and specify a mapping as a 3-tUple E», Lys), whereE; and E,
are algebraic expressions in the source and target, respectivelf, aigla set of correspondences
that are covered by the pair of expressions. Specifically, a comdgpae linking a source column
c to a target columry is covered by a paifE;, E») of expressions, if appears int; and f appear

in Es.

56

Problem 3 (R-to-R problem). Given a relational schem& associated with a CNjs through
a semantic mappin&.s and a relational schemd associated with a CNgy through a semantic
mappingX7. Let L be the set of correspondences linking asgf) of columns inS to a setl(7)
of columns ir7. For an algebraic expressiof; connecting columns ih(S), find an algebraic ex-
pressionE; connecting columns iA(7) such thatF; and E; are “semantically similar” in terms

of modeling a subject matter.

By our solution to the problem 1 (R-to-O problem), we assume that the semamipinga relate
each table in the schemas to a semantic tree in the respective CM graphsthaealol column we
can associate a (unique) concept node in a graph through assocfationsolumns to attribute
nodes. Consequently, the d&(S) of columns gives rise to a s€t of concept nodes in the graph
Gs. Likewise, the sef(7) gives rise to a sefr of concept nodes in the gragh-. We call the
semantic trees which contain node€imandCr pre-selected s-tree©ur mapping discovery pro-
cess consists of two major steps: (1) finding a conceptual subgram@aftes CSG)Ds connecting
nodes inCg and a CSE)y connecting nodes il such thatDg and D are “semantically similar”
(we have stripped off the attribute nodes temporarily); (2) restoring thibiggmodes used to iden-
tify the concept nodes and translatibg into an algebraic expressidiy and D into an algebraic
expressionf,. The pair(E;, E») is returned as a mapping candidate if it covers the sét of a

subset ofL.

Compared to the R-to-O and X-to-O problems, the R-to-R problem usessihiesref the R-t0-O
problem for improving traditional schema mapping solutions. To evaluate tiierpence of our
solution to the R-to-R problem, we compare the results of our solution to thaedfdtitional
RIC-based techniques. The comparison is made against the manuallyleregieing formulas as

the “correct” ones. The performance is measured in terms of recallractsion.

57

3.3 Summary

In this chapter, we first presented database schemas and CMs. Astasabama is a description
of data in terms of a data model. In this dissertation, we focus on two commordydasabase
schemas, the relational schema describing data in terms of the relational mébtiet XML schema
describing data in terms of the XML data model. We create a CM graph from a&dribed in
a generic CML language. Next, we defined three specific mapping digcprablems, the R-to-O
problem, the X-to-O problem, and the R-to-R problem. We specified the inmput{s,ts, principles
for the solutions, and evaluation methods for these problems. In the negtdhapters, we develop
solutions for these specific problems and evaluate the solutions using ¢wmnpnres sets of test

data drawn from a variety of application domains.

Chapter 4

Discovering Semantic Mappings from

Relational Schemas to CMs

We now begin to develop a solution for discovering semantic mappings friatioreal schemas
to CMs. We first describe the problem in Section 4.1. Next, we presentta@itiie progression
of ideas underlying our approach in Section 4.2. In the two sections thaivfave provide a
mapping inference algorithm in Section 4.3 and report on the prototype implatioenof these
ideas and experimental results in Section 4.4. In Section 4.5, we discussube o generating
GAV mapping formulas from the LAV formulas produced by our solution. Fnave discuss the

limitations of our solution and future work in Section 4.6 and summarize the chiaferction 4.7.

4.1 The Problem

We use formulas in the fordd'(X) — ®(X,Y’) to represent semantic mappings from relational
schemas to CMs. A semantic mapping formula rel&éX), a single predicate representing a
table in a relational schema, 49 X, Y'), a conjunctive formula over the predicates representing the

concepts and relationships in a CM.

Recall that manual creation of mapping formulas is difficult, time-consumingzamad-prone,

58

59

0.* 1% works_on 0.1
_5 Employee 4 11 Department Worksite
& . .
S -hasSsn «\ works_for —hasDeptNum?er ?asNumber
e -hasName N\ -hasName / 1.1 0.* FhasName
7 -hasAddress \?\ 01l / controls / |-

0.1 “hasAge .1\ \Qanage“s ~ / //
-
Vo R
» Vg

Employee(ssn, name, dept, proj)

Figure 4.1: Relational table, CM, and Correspondences.

we propose a tool that assists users in specifying mapping formulasdén twr improve the ef-
fectiveness of our tool, we expect the tool user to progideple correspondencéstween atomic
elements used in the database schema (e.g., column names of tables) and theseNh(e.g.,
datatype property/attribute names of concepts). Given the set of pon@snces, the tool is ex-
pected to reason about the database schema and the CM, attempting torfiadtisally similar”
pairs of associations. At last, it generates a list of candidate formulasaébrtable in the relational
database. Ideally, one of the formulas is the correct one — capturingntesation underlying given

correspondences. The following example illustrates the input/output iseludithe tool proposed.

Example 4.1.1.Figure 4.1 contains the enterprise CM we have demonstrated in Chapteyiossu

we wish to discover semantics of a relational tabhaployee(ssn,name, dept, proj) with keyssn

in terms of the enterprise CM. Suppose that by looking at column names othlleeatad the CM
graph, the user draws the simple correspondences shown as dasivesl ia Figure 4.1. This
indicates, for example, that tlesn column corresponds to thesSsn property of theEmployee
concept. Using prefixe® andO to distinguish tables in the relational schema and concepts in the

CM, we represent the correspondences as follows:

60

7 :Employee.ssn«~O:Employee.hasSsn

7T :Employee.name«~O:Employee.hasName

T :Employee.dept«~O:Department.hasDeptNumber
7T :Employee.proj«~O:Worksite.hasNumber

Given the above inputs, the tool is expected to produce a list of plausibleinggformulas, which

would hopefully include the following formula, expressing a possible senmsafttiche table:

T :Employee(ssn, name, dept, proj) — O:Employee(x1), O:hasSsn(x1,ssn),
O:hasName(z1,name), O:Department(zs),
O:works_for(x1,z2), O:hasDeptNumber(zs,dept),
O:Worksite(zs), O:works_on(z1,r3),

O:hasNumber(xs,proj).

An intuitive (but somewhat naive) solution, inspired by early work of Quil[i@ui68], is based
on finding theshortesttonnections between concepts. Technically, this involves (i) finding the min-
imum spanning tree(s) (actually Steiner tf§asnnecting the “corresponded concepts” — those
that have datatype properties corresponding to table columns, and threnc(ijing the tree(s) into
formulas. However, in some cases the spanning/Steiner tree may noteptlogidesired semantics

for a table because of known relational schema design rules.

Example 4.1.2. Consider the relational tabRroject(name supervisor), where the colunmame

is the key and corresponds to the attrib@t&Vorksite.hasName, and columrsupervisor corre-
sponds to the attribut®:Employee.hasSsn in Figure 4.1. The minimum spanning tree consisting
of Worksite, Employee, and the edg&vorks_on probably does not match the semantics of table
Project because there are multidlenployees working on aVorksite according to the CM cardi-

nality, yet the table allows only one to be recorded, sswgervisor is functionally dependent on

A Steiner tree [HRW92] for a s/ of nodes in graplt is a minimum spanning tree @ that may contain nodes
of G which are not inM.

61

name, the key. Therefore we must seek a functional connection fMorksite to Employee, and

the connection will be the manager of the department controlling the worksite. [

Since our approach is directly inspired by the Clio project [MHHOO, P\OZ], which developed
a successful tool that infers mappings from one set of relational/XNhemas to another, given
just a set of correspondences between their respective attributesattural to ask whether Clio’s
current solution is sufficient for the problem. To apply Clio’s technique cauld view the present
problem as extending Clio to the case where the source schema is a reldtitaizse while the
target is a CM. The next example, however, shows that Clio’s solutios niaeproduce the desired

results.

Example 4.1.3.We can view the CM in Figure 4.1 as a relational schema made of unary tables fo
the concepts and binary tables for the attributes and relationships. Sgégifiere are three unary
tablesEmployee(z), Department(z,), andWorksite(x3) for the three concepts. Moreover, for
the attributes of the concepts and the relationships between conceptariharaumber of binary

tables including

hasSsn(x1, ssn), hasName(x1, name), works_for(z1, x2),

hasDeptNumber(z,, dept), hasNumber(zs, proj), andworks_on(z1, z3)...

The obvious foreign key constraints are from binary to unary tables, e.g

works_for.xzy CEmployee.xzq,

works_for.xoCDepartment.zs...

Then one could in fact try to apply directly the Clio’s current algorithm to thubjem.

Recall that Clio’s current algorithm works by taking each table and usaimae-like algorithm
to repeatedly extend it with columns that appear as foreign keys refegeather tables. Such
“logical relations” in the source and target are then connected by gudrieghis particular case,

this would lead to logical relations such as

62

Employee(x1)><works_for(x1, zo)<xDepartment(zs),
Employee(x)<xworks_on(z1, x2)<Department(xs),
Employee(x;)<hasSsn(x1),
Employee(z;)>hasName(z1),
hasDeptNumber(zs)><Department(zs),

hasNumber(zs)<Worksite(zs).

The desired mapping formulain Example 4.1.1 would not be produced keecans joinhasSsn(xy, ssn)

andhasDeptNumber(zs, dept) through some intermediary, which is part of the desired formula.

The fact thatssn is a key for the table&:Employee, leads us to prefer a many-to-one relation-
ship, such asvorks_for, over some many-to-many relationship which could have been part of the
CM (e.g.,O:previouslyWorkedFor); Clio does not differentiate the two. So the work to be pre-
sented here analyzes the key structure of the tables and the semantlesiafiskips (cardinality,

IsA) to eliminate/downgradenreasonableoptions that arise in mappings to CMs. Furthermore,
our principles of mapping inference exploit largely the knowledge of desmldesign in seeking

“semantically similar” associations.

In this dissertation, we use ideas of standard relational schema desig&Raliagrams in order
to craft heuristics that systematically uncover the connections betweeprb#ucts of relational
schemas and those of CMs. We propose a tool to generate “reasotrable’tonnecting the set
of concepts in a CM which have attributes participating in the given cornelpwes. In contrast
to the graph theoretic results which show that there may be too many minimumirsgp&teiner
trees among a set of concept nodes in a CM (for example, there ardyafeainimum spanning
trees connectingmployee, Department, andWorksite in the very simple graph in Figure 4.1),
we expect the tool to generate only a small number of “reasonable” tfd®ese expectations are

born out by our experimental results, in Section 4.4.

63

4.2 Principles of Mapping Discovery

Given atablel’, and correspondencégso a CM provided by a person or a tool, let the@gttonsist

of those concept nodes which have at least one attribute corresgdodiome column of’, i.e.,

D such that there is at least one tugle, ., D, _,). Our task is to find meaningful associations
between concepts ifiy. Attributes can then be connected to the result using the correspondence
relation: for any nodeD, one can imagine having edgg¢go M, for every entryL(_, -, D, f, M).

The primary principle of our mapping discovery algorithm is to lookdorallest'reasonable” trees

connecting nodes iG;. We will call such a tree aemantic tree

As mentioned before, the naive solution of finding minimum spanning treeteimebtrees does
not give good results, because it must also be “reasonable”. We aiestoilde more precisely this

notion of “reasonableness”.

Consider the case whéf(c, b) is a table with key:, corresponding to an attribufeon concept
C, andb is a foreign key corresponding to an attributen conceptB. Then for each value af
(and hence instance 6f), T associates at most one valuebdfnstance ofB). Hence the semantic
mapping for?” should be some formula that acts as a function from its first to its seconchargu
The semantic trees for such formulas look like functional edges in the CMhance are more

reasonable. For example, given tablep(dept,ssn, ...), and correspondences

T :Dep.dept «~~O:Department.hasDeptNumber,
T:Dep.ssn «~O:Employee.hasSsn,

from the table columns to attributes of the CM in Figure 4.1, the proper semasticsesnanages—

(i.e.,hasManager) rather tharworks_for~ (i.e., hasWorkers).

Conversely, for tabl@’(ib), wherec andb are as above, an edge that is functional fi@Gro B,
or from B to C, is likely not to reflect a proper semantics since it would mean that the keseoho
for T" is actually a super-key — an unlikely error. (In our example, considebla & ssn, dept),

where both columns are foreign keys.)

To deal with such problems, our algorithm works in two stages: first adartbe concepts

64

corresponding to key columns intaskeleton tregthen connects the rest of the corresponded nodes

to the skeleton by functional edges (whenever possible).

We must however also deal with the assumption that the relational schemaea@Gdiitivere
developed independently, which implies that not all parts of the CM arecteflen the database
schema. This complicates things, since in building the semantic tree we may neethtowugh
additional nodes, which end up not corresponding to columns of the redatable. For example,
consider again the tabRroject(name, supervisor) and its correspondences mentioned in Exam-
ple 4.1.2. Because of the key structure of this table, based on the algoweeats we will prefer
the functionalpathcontrols~.manages™ (i.e.,controlledBy followed byhasManager), passing
through nodddepartment, over the shorter path consisting of edgerks_on, which is not func-
tional. Similar situations arise when the CM contains detadlggregationhierarchies (e.ggity
part-oftownship part-of county part-of state), which are abstracted in the database (e.g., a table

with columns forcity andstate only).

We have chosen to flesh out the above principles in a systematic mannandigiaring the be-
havior of our proposed algorithm on relational schemas designed froity Relationship diagrams
— a technique widely covered in undergraduate database courseg][R@B@ refer to thiser2rel
schema desigh One benefit of this approach is that it allows us to prove that our algorititough
heuristic in general, is in some sense “correct” for a certain class ofrecheOf course, in practice
such schemas may be “denormalized” in order to improve efficiency, angdeanentioned, only
parts of the CM may be realized in the database. Our algorithm uses thalgenieeiples enunci-
ated above even in such cases, with relatively good results in practicendts that the assumption
that a given relational schema was designed from some ER conceptuel dogs not mean that
given CM is this ER model, or is even expressed in the ER notation. In fachewuristics have to

cope with the fact that it is missing essential information, such as keys fak amtities.

To reduce the complexity of the algorithms, which essentially enumerate all &m0 reduce
the size of the answer set, we modify a CM graph by collapsing multiple edgesdrenode#’ and
F, labeledp, po, . . . say, into at most three edges, each labeled by a string of thefgorm;,; .. .":

one of the edges has the names of all functions ffomo F'; the other all functions fron#’ to F;

65

and the remaining labels on the third edge. (Edges with empty labels are drpplo¢e that there
is no way that our algorithm can distinguish between semantics of the labelsedkira of edge,
so the tool offers all of them. It is up to the user to choose between alterriakiels, though the
system may offer suggestions, based on additional information suchugstios concerning the

identifiers labeling tables and columns, and their relationship to property names

4.3 Semantic Mapping Discovery Algorithms

As mentioned, our algorithm is based in part on the relational databaseadesign methodology
from ER models. We introduce the details of the algorithm iteratively, by inonéaiig adding
features of an ER model that appear as part of the CM. We assume thattie is familiar with

basics of ER modeling and database design [RG02], though we summaridedbe

4.3.1 ER): An Initial Subset of ER notions

We start with a subset, BRof ER that supports entity sefs (called just “entity” here), with at-
tributes (referred to bwttribs(E)), and binary relationship sets. In order to facilitate the statement
of correspondences and theorems, we assume in this section that atiriib&e€M have globally
unigue names. (Our implemented tool does not make this assumption.) An entjiydsarted as

a concept/class in our CM. A binary relationship set corresponds to twgepres in our CM, one

for each direction. Such a relationship is calledny-manyf neither it nor its inverse is functional.

A strong entityS has some attributes that act as identifier. We shall refer to these ursioge(S)
when describing the rules of schema designwéak entitylV has insteadocalUnique(W) at-
tributes, plus a functional total binary relationshifdenoted a&gRel(W/)) to an identifying owner

entity (denoted aslOwn(17)).

Example 4.3.1. An ER, diagram is shown in Figure 4.2, which has a weak em#pendent and
three strong entitiesEmployee, Department, andProject. The owner entity oDependent is
Employee and the identifying relationship dependents_of. Using the notation we introduced,

this means that

66

Dependent Employee Department Project
-deName -hasSsn -hasDeptNumbe rhasNumber
-birthDate | 0..* 1..1 FhasName [4.* 1..1}-hasName 1.* 0..* FhasName
-gender dependents_of|-hasAddress works for |- participates |
-relationship -hasAge - .

Figure 4.2: An ER Example.

localUnique(Dependent) =deN ame, idRel(Dependent)= dependents_of,
idown(Dependent)= Employee. For the owner entitEmployee,
unigue(Employee)= hasSsn.

Note that information about multi-attribute keys cannot be represented lfpriim&ven highly
expressive CM languages such as OWL. So functionsilitque are only used while describing the
er2rel mapping, and are not assumed to be available during semantic infereroer.2fdél design
methodology (we follow mostly [MM90, RGO02]) is defined by two components.b&gin with,
Table 4.1 specifies a mappingO) returning a relational table scheme for every CM compongnt
whereQ is either a concept/entity or a binary relationship. (For each relationshiplgxae of the

directions will be stored in a table.)

In addition to the schema (columns, key, f.k.’s), Table 4.1 also associatea vatational table

T'(V') a number of additional notions:

e ananchor, which is the central object in the CM from whi@his derived, and which is useful

in explaining our algorithm (it will be the root of the semantic tree);

¢ a formula for the semantic mapping for the table, expressed as a formula a7/ (&)
(this is what our algorithm should be recovering); in the body of the forpthka function
hasAttribs(z, Y') returns conjunctsttr;(z, Y[j]) for the individual columng’[1],Y[2], ...

in Y, whereattr; is the attribute name corresponded by colurfis|.

e the formula for a predicatielentify - (z, Y'), showing how object in (strong or weak) entity

67

ER Model object O Relational Table 7(O)
Strong Entity S columns: X
primary key: K
Let X=attribs(.S) fk.'s: none
Let K=unique(S) anchor: S
semantics: T(X) — S(y),hasAttribs(y, X).
identifier: identify g (y, K) — S(y),hasAttribs(y, K).
Weak Entity W columns: zZX
let primary key: Ux
E = idown(W) fk.'s: X
P = idrel(W) anchor: w
Z=attribs(W) semantics: T(X,U, V) — W(y), hasAttribs(y, Z), E(w),P(y, w),
X = key(T(E)) identify p (w, X).
U =localUnique(W) | identifier: identifyyy (y, UX) — W(y),E(w), P(y,w), hasAttribs(y, U),
V=Z-U identify i (w, X).
Functional columns: X1Xo
Relationship F primary key: X1
--F->- fk.'s: X references (E;),
let X; = key(r(E;)) | anchor: E,
for: =1,2 semantics: T(X1,X2) — J‘Lﬂl(g;l),identiny1 (y1,X1), F(y1,92), E2(y2),
identify i (y2, X2).
Many-many columns: X1 X2
Relationship M primary key: X1 X9
- -M-- fk.s: X, references (E;),
let X; = key(7(E;)) | semantics: T(X1,X2) — E1(y1)identify . (y1, X1), M (y1,92).E2(y2),
fori =1,2 identify i (y2, X2).

Table 4.1:er2rel Design Mapping.
C can be identified by values 2.

Note thatr is defined recursively, and will only terminate if there are no “cycles” in@ (see

[MM9O0] for definition of cycles in ER).

Example 4.3.2.Whenr is applied to conceEmployee in Figure 4.2, we get the table

T :Employee(hasSsn, hasName, hasAddress, hasAge),

with the anchoEmployee, and the semantics expressed by the mapping:

2This is needed in addition feasAttribs, because weak entities have identifying values spread over sevecaits.

68

T :Employee(hasSsn, hasName, hasAddress, hasAge) —
O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge).

Its identifier is represented by

identify 5, ,10pce (v, hasSsn) — O:Employee(y), O:hasSsn(y, hasSsn).

In turn, 7(Dependent) produces the table

T:Dependent(deName, hasSsn, birthDate,...),

whose anchor iDependent. Note that thdnasSsn column is a foreign key referencing thasSsn

column in theZ :Employee table. Accordingly, its semantics is represented as:

T :Dependent(de Name, hasSsn, birthDate,...) — O:Dependent(y), O:Employee(w),
O:dependents_of(y, w),
identify gy, pioyee (W, hasSsn),
O:deName(y, deName),
O:birthDate(y, birth Date) ...

and its identifier is represented as:

identify b pengent (Y; deName, hasSsn) — O:Dependent(y), O:Employee(w),
O:dependents_of(y, w),
identify g, ,10yce (W, hasSsn),

O:deName(y, de N ame).

7 can be applied similarly to the other objects in Figure 4@vorks_for) produces the table

works_for(hasSsn, hasDeptNumber).

T(participates) generates the table

participates(hasNumber, hasDeptNumber).

69

Please note that the anchor of the table generated(byrks_for) is Employee, while no

single anchor is assigned to the table generated pyrticipates).

The second step of ther2rel schema design methodology suggests that the schema generated
by r can be modified by (repeatedlgjerginginto the tablel of an entity F the tableT; of some
functional relationship involving the same entfiy(which has a foreign key referencep). If the
semantics offy is 7o (K, V) — ¢(K, V), and of T} is T1 (K, W) — (K, W), then the semantics

of table T=merge(7y,T1) is, to a first approximation,

T(K,V,WW) — ¢o(K,V), (K, W). 4.1)

And the anchor of ' is the entityE. (We defer the description of the treatment of null values which
can arise in the non-key columns 6f appearing ifl’.) For example, we could merge the table

T(Employee) with the tabler (works_for) in Example 4.3.2 to form a new table

7 :Employee2(hasSsn, hasName, hasAddress, hasAge, hasDeptNumber),

where the colummasDept Number is an f.k. referencing (Department). The semantics of the

table is:

T :Employee2(hasSsn, hasName, hasAddress, hasAge, hasDept Number)—
O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge), O:Department(w),

O:works_for(y, w), O:hasDeptNumber(w, hasDept N umber).

Please note that one conceptual model may result in several diffetational schemas, since
there are choices in which direction a one-to-one relationship is encedeéch(entity acts as a
key), and how tables are merged. Note also that the resulting schema isdr-Bogd Normal
Form, if we assume that the only functional dependencies are those thae aeduced from the

ER schema (as expressed in FOL).

70

In this subsection, we assume that the CM has no so-called “recursia¢ibnships relating an
entity to itself, and no attribute of an entity corresponds to multiple columns of aig/ganerated
from the CM. (We deal with these in Section 4.3.3.) Note that by the latter assumptaule out
for now the case when there are several relationships between a niggkaad its owner entity,
such ashasMet connectingDependent andEmployee, because in this cas€¢hasMet) will need
columnsdeName,ssnl,ssn2, with ssnl helping to identify the dependent, asgn2 identifying
the (other) employee they met.

Now we turn to the algorithm for finding the semantics of a table in terms of a gdMnlt
amounts to finding the semantic trees between nodes in thé-s@hgled out by the correspon-
dences from columns of the talileto attributes in the CM. As mentioned previously, the algorithm

works in several steps:

1. Determine a skeleton tree connecting the concepts correspondingadolideyns; also deter-

mine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns using shouestidnal paths to the

skeleton/anchor tree.

3. Link any unaccounted-for concepts corresponding to other colbgnabitrary shortest paths

to the tree.

To flesh out the above steps, we begin with the tables created by the staledégn process.
If a table is derived by ther2rel methodology from an ERdiagram, then Table 4.1 provides
substantial knowledge about how to determine the skeleton tree. Howakemust be taken when
weak entities are involved. The following example describes a right psdaoeiscover the skeleton

and the anchor of a weak entity table.

Example 4.3.3.Consider table
T :Dept(number,univ, dean),

with foreign key (f.k.)univ referencing table

Employee
1.1 -hasNameA 11
-hasBoD | \
president I | dean
0.1, ' \o.1
University Department Host
: A 0.* 0.1
-hasUnivName_ [1.1 1. -h%sDeptNumber . "+ |-hostName
-hasAddres T gelongsTo \ hasServerAt
N 1V
N 2
N \

71

Dept(numér u\n‘lv dean), univ and dean are f.k.s.

Figure 4.3: Finding Correct Skeleton Trees and Anchors.

7:Univ(name, address)

and correspondences shown in Figure 4.3.

We can tell that7:Dept represents a weak entity since its key has one f.k. as a subset (re-
ferring to the strong entity on whicbBepartment depends). To find the skeleton and anchor of
the table7 :Dept, we first need to find the skeleton and anchor of the table referencttehiyk.
univ. The answer idJniversity. Next, we should look for a total functional edge (path) from the

correspondent ofiumber, which is concepDepartment, to the anchorlJniversity. As a result,

the Iink[Depart ment \ - - bel ongsTo- - >- \Uni versity \ is returned as the skeleton, and

Department is returned as the anchor. Finally, we can correctly identifydisan relationship as
the remainder of the connection, rather thanphesident relationship, which would have seemed

a superficially plausible alternative to begin with.
Furthermore, suppose we need to interpret the table
7T :Portal(dept,univ, address)
with the following correspondences:

7T :Portal.dept«~O:Department.hasDeptNumber
7 :Portal.unive~~O:University.hasUnivName

7 :Portal.address«~O:Host.hostName,

72

where not only is{dept,univ} the key but also an f.k. referencing the key of taBl®ept. To
find the anchor and skeleton of talleéPortal, the algorithm first has to recursively work on the

referenced table. This is also needed when the owner entity of a weakistisgif a weak entity.

Figure 4.4 shows the functiaretSkeleton which returns a set of (skeleton, anchor)-pairs, when
given a tablel’ and a set of correspondende$rom key(7"). The function is essentially a recursive
algorithm attempting to reverse the functiorin Table 4.1. In order to accommodate tables not
designed according ter2rel, the algorithm has branches for finding minimum spanning/Steiner

trees as skeletons.

In order forgetSkeleton to terminate, it is necessary that there be no cycles in f.k. references in
the schema. Such cycles (which may have been added to representredidtitiegrity constraints,
such as the fact that a property is total) can be eliminated from a schemplaging the tables in-
volved with their outer join over the kegetSkeleton deals with strong entities and their functional
relationships in step (1), with weak entities in step (2.b), and so far, withtituad relationships
of weak entities in (2.a). In addition to being a catch-all, step (2.c) deals wikbstadpresenting
many-many relationships (which in this section have k&y= I F5), by finding anchors for the
ends of the relationship, and then connecting them with paths that arenwiohal, even when

every edge is reversed.

To find the entire semantic tree of a tafifewe must connect the concepts that have attributes
corresponding to the rest of the columns, in@nkey(T), to the anchor(s). The connections should
be (shortest) functional edges (paths), since the key determines atmeostlue for them; however,
if such a path cannot be found, we use an arbitrary shortest pathfufitiion getTree, shown in

Figure 4.5, achieves this goal.

The following example illustrates the use gdétTree when we seek to interpret a table using a

different CM than the one from which it was originally derived.

73

Function getSkeleton(T',L)

Input: tableT, correspondences for key(T)

Output: a set of (skeleton tree, anchor) pairs

Steps:

Supposeey(T') contains f.k.51,. .. ,F,, referencing table®) (K1),..,T5,(K,);

1. If n < 1 andonc(key(7))2 is just a singleton se{C}, then return
(C, {C}).PrTis likely about a strong entity: base case.*/

2. Else, letL;={T;.K;«~~ L(T, F;) }/*translate corresp’s thru f.k. reference;*/
compute §'s;, Anc;) = getSkeleton(T;, L;), fori =1, .., n.

(@) If key(T') = Fi, then return §sq, Ancy). /T looks like the table for the
functional relationship of a weak entity, other than its identifying relationship.*/

(b) If key(T)=F1 A, where columnsA are not part of an f.k. thenT is
possibly a weak entity*/
if Ancy = {N;} andonc(A) = { N} such that there is a (shortest)
total functional pathr from N to Ny, then return §ombine®(r,
Ss1), {N}). I*N is a weak entity. cf. Example 4.3.3.*/

(c) Else supposkey(T) has non-f.k. columnsi[1],... A[m], (m > 0);
let Ns={Anc;,i = 1,..,n} U {onc(A[j]),j = 1,..,m}; find skele-
ton treeS’ connecting the nodes iV, where any pair of nodes iV,
is connected by a (shortest) non-functional path; retaombine(5’,
{Ss;}), Ng). I*Deal with many-to-many binary relationships; also the default ac-
tion for non-standard cases, such as when not finding identifying reldtipricom a
weak entity to the supposed owner entity. In this case no unique anchis:’#xis

#onc(X) is the function which gets the s&f of concepts having attributes corresponding to the

columnsX.
bBoth here and elsewhere, when a cona@ps added to a tree, so are edges and node€®r

attributes that appear ib.
°Functioncombine merges edges of trees into a larger tree.

Figure 4.4: ThegetSkeleton Function
Example 4.3.4.In Figure 4.6, the table
7 :Assignment(emp,proj, site)

was originally derived from a CM with the entissignment shown on the right-hand side of the

vertical dashed line. To interpret it by the CM on the left-hand side, thetiiamgetSkeleton, in

Step 2.c, returnsEnpl oyee]- - - assi gnedTo- - - as the skeleton, and no single

anchor exists. The s¢Employee, Project} accompanying the skeleton is returned. Subsequently,

74

Function getTree(7,L)

Input: tableT’, correspondences for columns(7)
Output: set of semantic tre€s

Steps:

1. Let Ly be the subset of containing correspondences frawy (7');
compute(S’, Anc’)=getSkeleton(T",Ly).

2. If onc(nonkey(T")) — onc(key (7)) is empty, then returny’, Anc’). rif all
columns correspond to the same set of concepts as the key doesetilmenthe skeleton
tree.*/

3. For each f.kF; in nonkey(T') referencingl;(K;):
let Li = {Ti.K;~~L(T,F,)}, and compute (Ss”, Anc/)=
getSkeleton(T;,L%). /*recall that the functionLZ(T, F;) is derived from a corre-
spondencd.(T, F;, D, f, Ny p) such that it gives a concef and its attributef (Ny,p is
the attribute node in the CM graph.)*/
find m;=shortest functional path fromAnc to Anc/; let S =
combine(S’, m;, {Ss/}).

4. For each columre in nonkey(T) that is not part of an fk., letvV. =
onc(c); find m=shortest functional path frominc¢ to N; updateS :=
combine(.S,). /*cf. Example 4.3.4.%/

5. In all cases above asking for functional paths, use a shortesif gathinc-
tional one does not exist.

6. ReturnsS.

#To make the description simpler, at times we will not explicitly account forpgbssibility of
multiple answers. Every function is extended to set arguments by elem@m@pplication of the
function to set members.

Figure 4.5: ThegetTree Function

the functiongetTree seeks for the shortest functional link from elementgmployee, Project}
to Worksite at Step 4. Consequently, it conneéterksite to Employee via works_on to build the
final semantic tree.

To get the logic formula from a tree based on corresponddnoee provide the procedure
encodeTree(S, L) shown in Figure 4.7, which basically assigns variables to nodes, amgcisn

them using edge labels as predicates.

75

Employee 1 0 * ErOject :
-empNumng assignedTo -prOJhLumber |
~ \
~ \) _
1.+ S S \ I Assignment
works_on ~ \ _) _employee
1.1 derived fjom .
-project

N
_ , XV
Worksite Assignment(mp_mu;te) CZCI -site
J
s |

—sithame
PR

-~
-~~—~———’ '

Figure 4.6: Independently Developed Table and CM.

Function encodeTree(S, L)

Input: subtreeS of CM graph, correspondencédrom table columns to attributes
of concept nodes ify.

Output: variable name generated for root 8f and conjunctive formula for the
tree.

Steps: SupposeV is the root ofS. Let U = true.

1. If N is an attribute node with labél

e findd suchthatl.(_,d, _, f, N) = true;

° returr(d, true) [*for leaves of the tree, which are attribute nodes, return the corre-
sponding column name as the variable and the fornule:.*/

2. If N is a concept node with labél, then introduce new variable add con-
junctC(z) to U; for each edge; from N to N; /*recursively get the subformulas.*/

e letS; be the subtree rooted At;,
e let (v, ¢;(Z;))=encodeTree(S;, L),
e add conjunct;(x, v;) A ¢;(Z;) to ¥;

3. Return(z, ¥).
Figure 4.7: TheencodeTree Function
Example 4.3.5.Figure 4.8 is the fully specified semantic tree returned by the algorithm fortthee ta
T .Dept(number,univ, dean)

in Example 4.3.3. Takin@epartment as the root of the tree, functi@ncodeTree generates the

following formula:

76

hasDeptNumber

hasUnivName hasDeptNumber hasName

University Department Employee

-belongsTo - —dean —

Figure 4.8: Semantic Tree Fdrept Table.

Department(z), hasDeptNumber(x, number), belongsTo(x, v1),
University(vy), hasUnivName(vy, univ), dean(z, vs),

Employee(vs), hasName(vy, dean).

As expected, the formula is the semantics of the tgbl@ept as assigned by ther2rel designr.

Now we turn to the properties of the mapping discovery algorithm. In ordee tmbite to make
guarantees, we have to limit ourselves to “standard” relational scheinas, ®herwise the al-
gorithm cannot possibly guess the intended meaning of an arbitrary tatlehif reason, let us
consider only schemas generated byeherel methodology from a CM encoding an ER diagram.
We are interested in two properties. The first property is a sense of letenpss”: the algorithm
finds the correct semantics (as specified in Table 4.1). The seconerfyr@ipa sense of “sound-
ness”: if for such a table there are multiple semantic trees returned by thétaigahen each of the
trees would produce an indistinguishable relational table according terfnel mapping. (Note
that multiple semantic trees are bound to arise when there are several shigttobetween 2 enti-
ties which cannot be distinguished semantically in a way which is apparent tatitee(e.g., 2 or
more functional properties from to B). To formally specify the properties, we have the following

definitions.

A homomorphisnk from the columns of a tabl&; to the columns of a tabl&; is a one-to-one
mappingh: columns(7;)—columns(7%), such that (iY.(c) € key(T3) for everyc € key(11); (ii)
by convention, for a set of columris, h(F[1|F[2]...) is h(F[1])h(F[2])...; (i) h(Y) is an fk.

77

of Ty for everyY which is an f.k. ofl}; and (iv) if Y is an f.k. ofT}, then there is a homomorphism

from thekey(T7) of T} referenced by to thekey(T%) of T, referenced by (Y') in 7.

Definition 4.3.1. A relational tableT; is isomorphic to another relational tablg, if there is a

homomorphism frontolumns(T}) to columns(73) and vice versa.

Informally, two tables are isomorphic if there is a bijection between their coluntmshwore-
serves recursively the key and foreign key structures. Thesdwgieshave direct connections with
the structures of the ER diagrams from which the tables were derivede 8ieer2rel mappingr
may generate the “same” table when applied to different ER diagrams (edingjéttribute/column
names have been handled by correspondences), a mapping disalgeeithm with “good” prop-

erties should report all and only those ER diagrams.

To specify the properties of the algorithm, suppose that the correspomdenis the identity
mapping from table columns to attribute names, as set up in Table 4.1. The fglama states

the interesting property afetSkeleton.

Lemma 4.3.1. Let CM graphG encode an ERdiagram&. LetT= 7(C') be a relational table
derived from an objeot’ in £ according to theer2rel rules in Table 4.1. Givet;; fromT to G,

and L' = the restriction ofL,, to key(T), thengetSkeleton(7, L) returns(S, Anc) such that,

e Ancis theanchor of 7' (anchor (7).

e If C corresponds to a (strong or weak) entity, thercodeTree(S, L) is logically equivalent

to identify .

Proof. The lemma is proven by using induction on the number of applications of thdidanc

getSkeleton resulting from a single call on the tabilé

At the base case, step 1 gétSkeleton indicates thakey(7') links to a single concept ig.
According to theer2rel design, tableél’ is derived either from a strong entity or a functional rela-
tionship from a strong entity. For either casachor(7') is the strong entity, andncodeTree(S,

L’) is logically equivalent tadentify ;, whereF is the strong entity.

78

For the induction hypothesis, we assume that the lemma holds for each tabkerdfatenced
by a foreign key irl".

On the induction steps, step 2.(a) identifies that tdbig derived from a functional relationship
from a weak entity. By the induction hypothesis, the lemma holds for the wetitk. éBo does it

for the relationship.

Step 2.(b) identifies th&k is a table representing a weak enfitywith an owner entity®. Since
there is only one total functional relationship from a weak entity to its owngtyegetSkeleton
correctly returns the identifying relationship. By the induction hypothesispwve that formula

encodeTree(S, L') is logically equivalent tadentifyyy; .
[

We now state the desirable properties of the mapping discovery algorithm. déitsree finds

the desired semantic mapping, in the sense that

Theorem 4.3.1.Let CM graphg encode an ERdiagramé&. Let tableT be part of a relational
schema obtained bgr2rel derivation from&. GivenlL;, fromT to G, then some treé returned by
getTree(T, L;4) has the property that the formula generateddncodeTree(S, L;4) is logically

equivalent to the semantics assignedtby theer2rel design.

Proof. Supposd’ is obtained by merging the table for a entifywith tables representing functional

relationshipsf, . . ., fn, n > 0, involving the same entity.

Whenn = 0, all columns will come fromZ, if it is a strong entity, or fromE' and its owner
entiti(es), whose attributes appearkiey(T). In either case, step 2 getTree will apply, returning
the skeletort. encodeTree then uses the full original correspondence to generate a formula where
the attributes of2 corresponding to non-key columns generate conjuncts that are adftechtda
identify ;. Following Lemma 1, it is easy to show by induction on the number of such attsitheé

the result is correct.

Whenn > 0, step 1 ofgetTree constructs a skeleton tree, which represénbsy Lemma 1. Step
3 adds edge$, ..., f, from E to other entity node#’y, ..., E, returned respectively as roots of

skeletons for the other foreign keys’Bf Lemma 1 also shows that these translate correctly. Steps

79

4 and 5 cannot apply to tables generated accordimegarel design. So it only remains to note that
encodeTree creates the formula for the final tree, by generating conjunctgifar. ., f,, and for
the non-key attributes af, and adding these to the formulas generated for the skeleton subtrees at
Ei,....E,.

This leaves tables generated from relationships ip ERhe cases covered in the last two rows

of Table 1 — and these can be dealt with using Lemma 1.
[

Note that this result is non-trivial, since, as explained earlier, it wouldorosatisfied by the
current Clio algorithm [PVM 02], if applied blindly to€ viewed as a relational schema with unary
and binary tables. SinaggetTree may return multiple answers, the following converse “soundness”

result is significant.

Theorem 4.3.2.1f S’ is any tree returned bgetTree(T, L;;), with T', L;4, and £ as above in
Theorem 4.3.1, then the formula returneddoygodeTree(S’, L;,) represents the semanticssdme

table 7" derivable byer2rel design from¢, whereT” is isomorphic tdr".

Proof. The theorem is proven by showing that each tree returnegeblyree will result in tableT”

isomorphic tdrl".

For the four cases in Table 4detTree will return a single semantic tree for a table derived from
an entity (strong or weak), and possibly multiple semantic trees for a (fuadyitationship table.
Each of the semantic trees returned for a relationship table is identical toigimeabER diagram
in terms of the shape and the cardinality constraints. As a result, apphyfioghe semantic tree

generates a table isomorphicto

Now supposd’ is a table obtained by merging the table for enfityith n tables representing
functional relationshipgy, . .., f,, from E to somen other entities. The recursive catisetTree in
step 3 will return semantic trees, each of which represent functionibredaips fromE. As above,
these would result in tables that are isomorphic to the tables derived frooritheal functional
relationshipsf;,i = 1...n. By the definition of themerge operation, the result of merging these

will also result in a tablg” which is isomorphic td". |

80

We wish to emphasize that the above algorithms has been designed to dealittvechemas
not derived usinger2rel from some ER diagram. An application of this was illustrated already in
Example 4.3.4 Another application of this is the use of functional paths insfgadtdunctional
edges. The following example illustrates an interesting scenario in which veénet the right

result.

Example 4.3.6.Consider the following relational table

T(personName, cityName, countryName),

where the columns correspond to, respectively, attriqutesne, cname, andctrname of concepts
Person, City andCountry in a CM. If the CM contains a path such th&er son|-- bornln

- >- -- | ocat edl n - >- [Count ry |, then the above table, which is not in 3NF and was
not obtained usingr2rel design (which would have required a table @ity), would still get the

proper semantics:

T(personName, city N ame, countryName) — Person(zy), City(zs),
Country(zs), bornin(zy,z2),
locatedIn(xs,z3),
pname(x,personName),
chame(zs,city N ame),
ctrname(zs,countryN ame).
If, on the other hand, there was a shorter functional path fRemson to Country, say an edge

labeledcitizenOf, then the mapping suggested would have been:

T(personName, cityN ame, countryName) — Person(z;), City(zz),
Country(z3), bornin(zy,x2),
citizenOf(x1,z3), ...
which corresponds to ther2rel design. Moreover, haditizenOf not been functional, then once
again the semantics produced by the algorithm would correspond to th@Nfernterpretation,
which is reasonable since the table, having gmysonName as key, could not store multiple

country names for a person. [|

81
4.3.2 ER: Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, afidviarelationship sets

to have attributes in an ER model; we label the language allowing us to modelspetiaby ER
Unfortunately, these features are not directly supported in most CMick, & OWL, which only
have binary relationships. Since binary decomposition of an n-ary redfffprtannot be always
carried out [SJ95], such notions must instead be representédifigd relationships” [DP02] (we

use an annotatiotp to indicate the reified relationships in a diagram): concepts whose instances
represent tuples, connected by so-called “roles” to the tuple elementi. Birys relatesPerson,

Shop andProduct, through rolesuyer, source andobject, then these are explicitly represented

as (functional) binary associations, as in Figure 4.9. And a relationshilpua¢ty such as when the

buying occurred, becomes an attribute of Bagys concept, such ashenBought.

Buys ¢
Person buyer LA source Shop
-whenBought
.1 0..* 0..* 1.1
0..*
object
1.1
product

Figure 4.9: N-ary Relationship Reified.

Unfortunately, reified relationships cannot be distinguished reliably foodmnary entities in
normal CMLs based on purely formal, syntactic grounds, yet they ndeeltreated in special ways
during semantic recovery. For this reason we assume that they can bguistied orontological
grounds For example, in Dolce [GGNO02], they are subclasses of top-level concépisility and
Perdurant/Event. For a reified relationshif, we use functionsoles(R) andattribs(R) to retrieve

the appropriate (binary) properties.

Theer2rel designr of relational tables for reified relationships is an extension of the treatment

of binary relationships, and is shown in Table 4.2. As with entity keys, weiaable to capture in

82

ER model object O Relational Table 7(O)
Reified Relationship R | columns: ZXq ... Xy
if there is a functional primary key: X1
roler; for R fk.s: X1,...,Xn
--<-r1->-- anchor: R
e e>e- semantics: T(ZX1...Xn) — R(y),Ei(w;), hasAttribs(y, Z), ri(y, w:),
let Z=attribs(R) identify . (wi, X5), ...
X;=key(T(E;)) identifier: identify p(y, X1) — R(y), El(@), r1(y, w),
whereFE; fills role r; identinyl (w, X1).
Reified Relationship R | columns: ZX1...Xn
ifry,..., ry areroles ofR | primary key: X1...Xn
let Z=attribs(R) fk.s: X1,...,Xn
Xi=key(T(E;)) anchor: R
whereFE; fills role r; semantics: T(ZX1...Xn) — R(y).Ei(w;), hasAttribs(y, Z), r;(y, w;),
identinyi(wi, Xi)yeo
identifier: identifyp(y, ... Xi...) = R(y),...Ei(w;), ri(y,w;),
identinyi (wiy X5)e.n

Table 4.2:er2rel Design for Reified Relationship.

CM situations where some subset of more than one roles uniquely identifiedatienship [JS96].
Theer2rel designr on ER also admits thénerge operation on tables generated by Merging
applies to an entity table with other tables of some functional relationships ingdivesame entity.
In this case, the merged semantics is the same as that of merging tables obyaipedyingr to

ERy, with the exception that some functional relationships may be reified.

To discover the correct anchor for reified relationships and get tiyeptree, we need to modify

getSkeleton, by adding the the following case between steps 2(b) and 2(c).

e If key(T)=F1 F» ... F, and there exist reified relationshipwith n rolesry, ..., r, pointing

at the singleton nodes iAnc, . . ., Anc, respectively,

— then letS = combine({r;}, {Ss;}), and return(S, { R}).

getTree should compensate for the fact thag#étSkeleton finds areified version of a many-

many binary relationship, it will no longer look for an unreified one in stepQx after step 1. we

add

83

e if key(T) is the concatenation of two foreign keys F», andnonkey(T) is empty, compute
(Ss1,Ancy) and (Ssq, Ancs) as in step 2. ofetSkeleton; then findp=shortest many-many

path connectinginc; to Anco;
— return (§') U (combine(p, Ss1, Ss2))

In addition, when traversing the CM graph for finding shortest pathsftim famctions, we need
to recalculate the lengths of paths when reified relationship nodes aempr8pecifically, a path of
length 2 passing through a reified relationship node should be countgmh#is@f length 1, because
a reified binary relationship could have been eliminated, leaving a single’ddgie that a semantic
tree that includes a reified relationship node is valid only if all roles of theetkilationship have
been included in the tree. Moreover, if the reified relation had attributes@fitsthey would show
up as columns in the table that are not part of any foreign key. Thexeddilter is required at the

last stage of the algorithm:

o If a reified relationshipR appears in the final semantic tree, then so must all its role edges.
And if one suchR has as attributes the columns of the table which do not appear in foreign

keys or the key, then all other candidate semantics need to be eliminated.

The previous version afetTree was set up so that with these modifications, roles and attributes

to reified relationships will be found properly.

If we continue to assume that no more than one column corresponds to themsi@mattribute,
the previous theorems hold for ERs well. To see this, consider the following two points. First,
the tree identified for any table generated from a reified relationship is igmeaio the one from
which it was generated, since the foreign keys of the table identify exa&lpditicipants in the
relationship, so the only ambiguity possible is the reified relationship (root).itSel€ond, if an
entity £ has a set of (binary) functional relationships connecting to a set of anfitie. .,F,,
then merging the corresponding tables witlF) results in a table that is isomorphic to a reified
relationship table, where the reified relationship has a single functionalmitiiefiller £ and all

other role fillers are the set of entitiés,. . .,F,.

3A different way of “normalizing” things would have been to reify evendsinassociations.

84
4.3.3 Replication

We next deal with the equivalent of the full ERhodel, by allowing recursive relationships, where
a single entity plays multiple roles, and the merging of tables for differentifumed relationships
connecting the same pair of entity sets (engprks_for andmanages). In such cases, the mapping
described in Table 4.1 is not quite correct because column names wowdddsded in the multiple
occurrences of the foreign key. In our presentation, we will distingthisse (again, for ease of
presentation) by adding superscripts as needed. For example, if ehffigrsen, with keyssn, is

connected to itself by thikes property, then the table fdikes will have schemd&[ssn!, ssn?].

During mapping discovery, such situations are signaled by the presémeeligple columns
c andd of table T corresponding to the same attributeof conceptC. In such situations, we
modify the algorithm to first make a cogy..,, of nodeC, as well as its attributes, in the CM
graph. Furthermore(.,,, participates in all the object relatiorés did, so edges for this must
also be added. After replication, we can sat(c) = C andonc(d) = Ceopy, Oronc(d) = C
andonc(c) = Cqpy (recall thatonc(c) retrieves the concept corresponded to by colunimthe
algorithm). This ambiguity is actually required: given a CM wiRkrson andlikes as above, a
table T[ssn!, ssn?] could have two possible semantidikes(ssn!, ssn?) andlikes(ssn?, ssn'),
the second one representing the inverse relationstipdBy. The problem arises not just with
recursive relationships, as illustrated by the case of a tAplen, addr!, addr?], wherePerson
is connected by two relationshipsome and office, to concepBuilding, which has araddress

attribute.

The main modification needed to thetSkeleton andgetTree algorithms is that no tree should
contain two or more functional edges of the fof®| --- p ->-- and its replicaté D]
- p ->-- , because a functiop has a single value, and hence the different columns

of a tuple corresponding to it will end up having identical values: a clearty pchema.
As far as our previous theorems, one can prove that by making copgesenttity £’ (say £ and

E.opy), and also replicating its attributes and participating relationships, one oataleR diagram

from which one can generate isomorphic tables with identical semanticsdaugdo theer2rel

85

mapping. This will hold true as long as the predicate usethddn £ and E.,,, is E(_); similarly,
we need to use the same predicate for the copies of the attributes andtimseaiawhich £ and

E.opy participate.

Even in this case, the second theorem may be in jeopardy if there are multisiblpdidenti-

fying relationships” for a weak entity, as illustrated by the following example.

Example 4.3.7. An educational department in a provincial government records theferansf
students between universities in its databases. A student is a weak engtyddepfor identifica-
tion on the university in which the student is currently registered. A traadfstudent must have
registered in another university before transferring. The td@bleansferred(sno,univ, sname)
records who are the transferred students, and their name. Theltgdrkvious(sno,univ, pUniv)

stores the information about tipeeviousUniv relationship. A CM is depicted in Figure 4.10. To

TransferredStudent 1.* . 1..1 |University
registerin
SN0 € = — -name

-
-sname =o_ S~ [0.*)) 1--1,’address
— previousUniv
~.§‘

y
\ \\ -~ - - ’
\ *o
LAY
TransferredStudent(sno.univ_,sname)

Figure 4.10: A Weak Entity and Its Owner Entity.

discover the semantics of talffe Transferred, we link the columns to the attributes in the CM as

shown in Figure 4.10. One of the skeletons returned by the algorithm faf firansferred will

be| Tr ansf er r edSt udent |- -- previ ousUni v - >- -]Uni versity \ But the design re-

sulting from this according to ther2rel mapping is not isomorphic they(Transferred), since

previousUniv is not the identifying relationship of the weak entliyansferredStudent.

From above example, we can see that the problem is the inability of CMLsasuthML and
OWL to fully capture notions like “weak entity” (specifically, the notion of ideyitify relationship),

which play a crucial role in ER-based design. We expect such casesduite rare though — we

86

certainly have not encountered any in our example databases.

4.3.4 Extended ER: Adding Class Specialization

The ability to represent subclass hierarchies, such as the one in Figdris 4 hallmark of CMLs

and modern so-called Extended ER (EER) modeling.

Person
-SS#
Facult Course
y teach
-college csrid
1.* 0.1
AN 0.1
coord
1..*
Professor Assist. Professor Lecturer

Figure 4.11: Specialization Hierarchy.

Almost all textbooks (e.g., [RG02]) describe several techniques &gdimg relational schemas

in the presence of class hierarchies

1. Map each concept/entity into a separate table following the stamdarel rules. This ap-
proach requires two adjustments: First, subclasses must inherit ident#igiiigutes from a
single super-class, in order to be able to generate keys for their taldesnd in the table
created for an immediate subclass of classC, its keykey(7(C”)) should also be set to
reference as a foreign key ('), as a way of maintaining inclusion constraints dictated by the

ISA relationship.

2. Expand inheritance, so thall attributes and relations involving a claSsappear on all its
subclasses”. Then generate tables as usual for the subclaSsethough not forC itself.

This approach is used only when the subclasses cover the superclass.

87

3. Some researchers also suggest a third possibility: “Collapse up” theniation about sub-
classes into the table for the superclass. This can be viewed as the fesatoe (T, T¢r),
whereT¢ (K, A) andT¢ (K, B) are the tables generated forand its subclas§” according
to technique (1.) above. In order for this design to be “correct”, thenigcie in [MM90]
requires thaf» not be the target of any foreign key references (hence not hgveskation-
ships mapped to tables), and tliabe non-null (so that instances 6f can be distinguished

from those ofC).

The use of the key for the root class, together with inheritance and thef fmeign keys to also
check inclusion constraints, make many tables highly ambiguous. For exampteding to the
above, tabl'(ss#, crsld), with ss# as the key and a foreign key referencifig could represent

at least

(a) Faculty teachCourse
(b) Lecturer teachCourse

(c) Lecturer coordCourse.

This is made combinatorially worse by the presence of multiple and deep hies(fe.g., imagine

a parallelCourse hierarchy), and the fact that not all CM concepts are realized in thédaksa
schema, according to our scenario. For this reason, we have chadeal twith some of the ambi-
guity by relying on users, during the establishment of corresponde8pesifically, the user is sup-
posed to provide a correspondence from colurtmattributef on the lowest class whose instances
provide data appearing in the columiTherefore, in the above example of taliless#, crsid),

ss# should be set to correspondgs# on Faculty in case (a), while in cases (b) and (c) it should
correspond t@s# on Lecturer. This decision was also prompted by the CM manipulation tool that

we are using, which automatically expands inheritance, seH#aappears on all subclasses.

Under these circumstances, in order to deal appropriately with designand (2.) above, we

do not need to modify our earlier algorithm in any way, as long as we fifgir@k inheritance in

the graph. So the graph would shpwect urer |-- teaches; coord ->- in the

88

above example, anidecturer would have all the attributes élaculty.

To handle design (3.), we add to the graph an actual edge for the invkethe ISA rela-
tion: a functional edge labeleaisoA, with lower-bound); e.g.,[Facul ty|--- al SOA - >--
[Lecturer | Itis then sufficient to allow irgetTree for functional paths between concepts to
includealsoA edges; e.gFaculty can now be connected ourse through pathalsoA followed
by coord. ThealsoA edge is translated into the identity predicate, and it is assigned cost zero in

evaluating a functional path mixed witisoA edge and other ordinary functional eddes.

In terms of the properties of the algorithm we have been considering sthéaabove three
paragraphs have explained that among the answers returned by théhaigwill be the correct
one. On the other hand, if there are multiple results returned by the algorgtshoan in Example
4.3.7, some semantic trees may not result in isomorphic tables to the originalfttides are more

than one total functional relationships from a weak entity to its owner entity.

4.3.5 Outer Joins

As we have cautioned earlier, the definition of the semantic mappind fer merge(7x, T,),

whereTr (K, V) — ¢(K, V) andT,(K, W) — (K, W), was not quite correct. The formula
T(E,V,W) — ¢(K, V), (K, W) (4.2)

describes a join ork’, rather than a left-outer join, which is what is requireg ifs a non-total
relationship. In order to specify the equivalent of outer joins in a peugpis manner, we will use
conjuncts of the form

[u(X, YT, (4.3)

which will stand for the formula

(X, Y) Vv (Y =null N —-3Z.u(X, Z)), (4.4)

“It seems evident that iB ISA C, and B is associated with via p, then this is a stronger semantic connection
betweenC' and A than if C is associated t® via aq:, andD is associated tal via g».

89

indicating that null should be used if there are no satisfying values forahablesY. With this

notation, the proper semantics for merge is
T(E,V,W) = ¢(K, V), [¥(K,W)]". (4.5)

In order to obtain the correct formulas from treescodeTree needs to be modified so that
when traversing a non-total edgethat is not part of the skeleton, in the second-to-last line of the

algorithm we must allow for the possibility @f not existing.

4.4 Experimental Evaluation

So far, we have developed the mapping inference algorithm by investigatngonnections be-
tween the semantic constraints in relational models and that in CMs. The thabresiglts show
that our algorithm will report the “right” semantics for most schemas dedifgiwing the widely
accepted design methodology. Nonetheless, it is crucial to test the algamitiead-world schemas
and CMs to see its overall performance. To do this, we have implemented tipgng&erence al-
gorithm in our prototype systemAPONTO, and have applied it on a set of real-world schemas and
CMs. In this section, we describe the implementation and provide some evifiberibe effective-

ness and usefulness of the prototype tool by discussing the set afregpts and our experience.

Implementation. We have implemented theAPONTO tool as a third-party plugin of the well-
known KBMS Proége® which is an open platform for ontology modeling and knowledge acquisi-
tion. As OWL becomes the official ontology language of the W3C, intendeddemith Semantic
Web initiatives, we use OWL as the CML in the tool. This is also facilitated by thteBts OWL
plugin [KFNMO04], which can be used to edit OWL ontologies, to accessamers for them, and

to acquire instances for semantic markup. ¥ oONTO plugin is implemented as a full-size user
interface tab that takes advantage of the views ofé@gotiser interface. As shown in Figure 4.12,

users can choose database schemas and ontologies, create and meacoprdapondences, gener-

Shttp://protege.stanford.edu

90

ate and edit candidate mapping formulas and graphical connectionsiahtte and save the final
mappings into designated files. In addition, there is a library of otheeg&q@iugins that visualize
ontologies graphically and manage ontology versions. Those pluginsrsastagoal of provid-
ing an interactively intelligent tool to database administrators so that they rneyliss semantic

mappings from the database to CMs more effectively.

{~]

Project Edit Window OWL Help Maponto

Dsg o o AR @il o 2 B
[Hciiow | [ETProperties | - Farms | £ individuats | &2 Metadata | ™ Mapanto
| “Sthema | Gonstiaints | {|(ontology | ISiots | {| Mapping Formulas | Diiderlying Connections. |

Schema Elements V 4 || Corresponding Ontology v
@ (T student [owl Thing
@ name [PK] [NOT MULL] i@ (©work

Logical Formulas

13. areasOfinterest(name,area) :- 1=
Person{X1),Research(X2?),ResearchGroup(x3),

@ office (E) Course researchProject(X3,X2,head(x3,X1),personName(x1,
@ position ! () Research workTitle¢x2,area).

@ email || @ (C) Publication @

@ phone | & & organization 14. rolesgame,researchGroup) :-

Person{X1),ResearchGroupX2),head X2, X1),

@ supervisor [FK] personName(x1l,namey,researchGroup in {SubClass

@ (T) academicStaff
®'® adminStaff
@ (T technicalstart

||® (©Person
|| (©swdent
{E) GraduateStudent

@15, course(courseNumber,courseTitle,instructor,
(C) UndergraduateStudent

Course(xl),cout (X1,course| WOPKT|

@ (T areasOfinterest § (O iorker ||| *||[ResearchGroupX2),Chair(X3),affiliatedOFX3. X2, [
@ nare [PK] [FK] [MOT MULL] @ (C) Administrativestarf || ||1eacher0f¢x3.x1),area in (SubClassNamesOfResearg |
@ area [PK] [NOT NULL] @ (C) Assistant teacher0f (i, X1), personName i, instructon .
© (D roles @ (CiFaculty <1l |® 16. courseccourseNumber, courseTitle,instructor,d. |
e (T crue (E1] acturer B
4 Course(xX1),cour (X1,course| WORKT
H #h " #| | (ResearchGroupx2).Deanx3),affiliatedOfX3.X2),
¢ teacherOfigX3,X1),area in (SubClassNamesOf@Resears
Correspondences teacherOf(x4,X1),personNamecxd,instructon].
student. narne++(Class:Student (DatatypeProperty persantarme)) :ﬂ = Open & 17. coursecourseNumber,courseTitle,instructor,
student. position#-*(Class:Student () T . . | || CoursedxD).cour (X1.course| WOrkT|
+ Add [ResearchGroup(x2),Faculty (3, affiliated OF(x3,X2),

student. email**(Class Student (DatatypeProperty.emailaddress))
student. superdsort-(Class: Professor (DatatypePropery personiame))

teacherOfX3,X1),area in {SubClassNamesOfResear:
[teacherOfX3,X1),personName(xX3,instructon).
Z

[y Edit

[4]

academicstaff name¥-+Class:Faculty (DatatypeProperty personiame))
academicstaflf. positiont-*{Class: Facul
4]

* Remove

I Save J.Do It ‘ 0 Edi;.. ‘ ¥ Re.. ‘ (3 Save ‘

Figure 4.12:MAPONTO Plugin of Protege.

Schemas and CMs.Our test data were obtained from various sources, and we haveedrtbat
the databases and CMs were developed independently. The test diédgtedrin Table 4.3. They
include the following databases: the Department of Computer Science saialibe University of
Toronto; the VLDB conference database; the DBLP computer scientiedviphy database; the
COUNTRY database appearing in one of reverse engineering pdpéa4] (Although theountry
schema is not a real-world database, it appears as a complex experiexamtgle in [Joh94], and
has some reified relationship tables, so we chose it to test this aspect afotithm); and the
test schemas in OBSERVER [MIKS96] project. For the CMs, our test datada: the academic
department ontology in the DAML library; the academic conference ontdlogy the SchemawWeb
ontology repository; the bibliography ontology in the library of the Stanfofdhtolingua server;

and the CIA factbook ontology. Ontologies are described in OWL. Fdn eatology, the number

of links indicates the number of edges in the multi-graph resulted from objegegies.

91

Database Schema | Number of | Number of Ontology Number of | Number of
Tables Columns Nodes Links
UTCS Department 8 32 Academic Departmen 62 1913
VLDB Conference 9 38 Academic Conference 27 143
DBLP Bibliography 5 27 Bibliographic Data 75 1178
OBSERVER Project 8 115 Bibliographic Data 75 1178
Country 6 18 CIA factbook 52 125

Table 4.3: Characteristics of Schemas and CMs for the Experiments.

Results and ExperienceTo evaluate our tool, we sought to understand whether the tool could pro-
duce the intended mapping formula if the simple correspondences were giewere especially
concerned with the number of formulas presented by the tool for useifs irsugh. Further, we
wanted to know whether the tool was still useful if the correct formula vagyanerated. In this
case, we expected that a user could more easily debug a generatethftormaach the correct one
instead of creating it from scratch. A summary of the experimental res@tisaed in Table 4.4
which shows the average size of each relational table schema in eachsathie average number
of candidates generated, and the average time for generating the ¢asdidiatice that the number

of candidates is the number of semantic trees obtained by the algorithm. Aisgle@exge of an
semantic tree may represent the multiple edges between two nodes, collaipgedunp; ¢ abbre-
viation. If there aren edges in a semantic tree and each edgenhds = 1, .., m) original edges
collapsed, then there afg." n; original semantic trees. We show below a formula generated from

such a collapsed semantic tree:

TaAssignment(course Name, student Name) — Course(x;), GraduateStudent(zs),
[hasTAs;takenBy] (x1,z2),
workTitle(x1,course N ame),

personName(zq,student Name).
where, in the semantic tree, the nddeurse and the nodésraduateStudent are connected by
a single edge with labdiasTAs;takenBy , which represents two separate eddessTAs and

takenBy.

92

Database Schema | Avg. Number of Avg. Number of Avg. Execution
Cols/per table | Candidates generated time(ms)
UTCS Department 4 4 279
VLDB Conference 5 1 54
DBLP Bibliography 6 3 113
OBSERVER Project 15 2 183
Country 3 1 36

Table 4.4: Performance Summary for Generating Mappings from Relafiab#s to CMs.

Table 4.4 indicates thatAPONTO only presents a few mapping formulas for users to examine.
This is due in part to our compact representation of parallel edges betweenodes shown above.
To measure the overall performance, we manually created the mappinddsrimuall the 36 tables
and compared them to the formulas generated by the tool. We observeddhabttproduced
correct formulas for 31 tables. This demonstrates that the tool is able tdhiefeemantics of many

relational tables occurring in practice in terms of an independently devilopke

We were also interested in the usefulness of the tool in those cases wHemtlitas generated
were not the intended ones. For each such formula, we compared it to thealtgagenerated
correct one, and we wanted to know how much effort it would take totdéh generated formula
to reach the intended one. We use the number of changes of predicate imathe formula to

measure the effort. For example, for the table

Student(name, office, position, email, phone, supervisor),
the tool generated the following formula

Student(x), emailAddress(x1,email), personName(z1,name),
Professor(zs), Department(zs), head(zs,x-),

affiliatedOf(x3,21), personName(zs, supervisor)... (1)
If the intended semantics for the above table columns is
Student(z,), emailAddress(z1,email), personName(z1,name),

Professor(zs), ResearchGroup(zs), head(xzs,z2),

affiliatedOf(x3,z1), personName(xzs, supervisor)... (2)

93

then one can change the predicBgpartment(z3) to ResearchGroup(xs) in formula (1) instead
of writing the entire formula (2) from scratch. Our experience working Withdata sets shows that
at average only about 30% of predicates in a single incorrect formtulianes by thenAPONTO tool
needed to be modified to reach the correct formula. This is a significainigsavterms of human

labors.

Tables 4.4 indicates that execution times were not significant, since, astpdedhe search for

subtrees and paths took place in a relatively small neighborhood.

We believe it is instructive to consider the various categories of problencitensas and map-

pings, and the kind of future work they suggest.

(i) Absence of tables which should be present accordireg2eel. For example, we expect the

connectioPer son |- - resear chl nter est --- [Resear ch|to be returned for the table

AreaOflnterest(name, area).

However,MAPONTO returned

[Person|- <- head - - - [Resear chG oup |- <- resear chPr oj ect - - - [Research

because there was no table for the condeggearch in the schema, and 90APONTO treated it

as a weak entity table. Such problems are caused, among others, by thetalimbfizables that
represent finite enumerations, or ones that can be recovered bygtfmojirom tables representing

total many-to-many relationships. These pose an important open probiemvio

(i) Mapping formula requiring selectiorfhe table

European(country, gnp)

means countries which are located in Europe. From the database poiatwthis selects tuples
representing European countries. CurremtlPONTO is incapable of generating formulas involv-
ing the equivalent to relational selection. This particular case is an instditice need to express
“higher-order” correspondences, such as between table/columrsremdeCM values. A similar

example appears in [MHHOO].

(iii) Non-standard desigrOne of the bibliography tables had a columnswothor and a column

94

of otherAuthors for each documentviAPONTO found a formula that was close to the desired one,
with conjunctshasAuthor(d, author), hasAuthor(d, otherAuthors), but not surprisingly, could

not add the requirement thatherAuthors is really the concatenation of all but the first author.

4.5 Finding GAV Mappings

Arguments have been made that the proper way to connect CMs and ststdba the purpose
of information integration is to show how concepts and properties in the CMbeaxpressed as

gueries over the database — the so-called GAV approach.

To illustrate the idea, consider Example 4.1.1 , from Section 4.1, where thensemapping

we proposed was

T :Employee(ssn, name, dept, proj) — O:Employee(z;), O:hasSsn(x,ssn),
O:hasName(z1,name), O:Department(z,),
O:works_for(x1,z2), O:hasDeptNumber(z2,dept),
O:Worksite(zs), O:works_on(z1,z3),

O:hasNumber(zs,proj).

In this case, we are looking for formulas which expré&sBepartment, O:works_on, etc. in terms

of 7:Employee, etc., as illustrated below.

We note that a strong motivation for mappings between CMs and databasessed in this
way is that they can be used to populate the CM with instances from the datalsaimsk that is

expected to be important for the Semantic Web.

An essential initial step is dealing with the fact that in the CM (as in object odesteabases),
objects have intrinsic identity, which is lost in the relational data model, wheradltien is replaced
by external identifiers/keys. For this purpose, the standard appi®é&xintroduce special Skolem

functions that generate these identifiers from the appropriate keys, as in

O:Employee(ff(ssn)) — 7:Employee(ssn,-,_,-).

95

One then needs to express the external identifiers using axioms that relsgeSkolem functions

with the appropriate CM attributes:

O:hasSsn(ff(ssn),ssn) — 7T :Employee(ssn,_,-,-).

Finally, one can express the associations by using the above identifiers:

O:works_on(ff(ssn),gg(dept)) — 7:Employee(ssn,_,dept,).

The following less ad-hoc approach leads to almost identical resultseles on the logical
translation of the original mapping, found by the algorithms presented esrltbis paper. For

example, the actual semantics of taBlEEmployee is expressed by the formula

(Vssn, name, dept, proj.) (7 :Employee(ssn, name, dept, proj) =
(Jz, y, 2.) (O:Employee(z)A O:hasSsn(x,ssn)A
O:hasName(xz,name) A O:Department(y)A
O:hasDeptNumber(y,dept) AO:works_for(z,y)A

O:Worksite(z) A O:works_on(z,z) A O:hasNumber(z,proj))).

The above formula can be Skolemized to eliminate the existential quantifiers t6: yield

(Vssn, name, dept.) (7 :Employee(ssn, name, dept) =
O:Employee(f(ssn, name, dept)) AO:hasSsn(f(ssn, name, dept),ssn)A
O:hasName(f(ssn, name, dept),name) A
O:Department(g(ssn, name, dept))A
O:hasDeptNumber(g(ssn, name, dept),dept) A

O:works_for(f(ssn, name, dept),g(ssn, name, dept))).

This implies logically a collection of formulas, including

®For simplicity, we eliminate henceforth the part dealing with projects.

96

(Vssn, name, dept.) (O:Employee(f(ssn, name, dept)) <

T .Employee(ssn, name, dept)).
((Vssn,name, dept.) (O:hasSsn(f(ssn, name, dept),ssn) <

T :Employee(ssn, name, dept)).
(Vssn, name, dept.) (O:works_for(f(ssn, name, dept),g(ssn, name, dept)) <

T :Employee(ssn, name, dept)).

Note however that different tables, such as

T:manages(ssn,dept)
say, introduce different Skolem functions, asin :
O:Employee(h(ssn, dept)) < 7T :manages(ssn, dept).
O:hasSsn(h(ssn, dept),ssn) < T :manages(ssn, dept).
Unfortunately, this appears to leave open the problem of connecting thindiduals obtained

from 7:manages and7 :Employee. The answer is provided by the fact titathasSsn is inverse

functional €sn is a key), which means that there should be a CM axiom

(Vu, v, ssn.) (O:hasSsn(u, ssn) A O:hasSsn(v, ssn) = u = v).

This implies, among others, that

(Vssn, name, dept.) (f(ssn,name, dept) = h(ssn, dept)).

So we need to answer queries over the CM using all such axioms.

A final, important connection to make in this case is with the research on angwgreries
using views [Hal01]: The semantic mappings found by the earlier algorithmssip#per can be
regarded as view definitions for each relational tables, using conjerdutieries over CM predicates
(“tables”). What we are seeking in this section is answers to queriesguhia terms of the CM
predicates, but rephrased in terms of relational tables, where the daacies reside — which is

exactly the problem of query answering using views. The kind of rulepraposed earlier in this

97

section are known as “inverse rules” [Qia96], and in fact Duschkhlaavy [DGLOOQ] even deal
(implicitly) with the alias problem we mentioned above by their solution to the queswearing
problem in the presence of functional dependencies: keys functiodedgrmine the rest of the

columns in the table.

The one difference in our case worth noting is that we are willing to countenanswers which

contain Skolem functions (since this is how we generate object id’s in the CM)

4.6 Discussion

We now discuss the limitations of our solution to the problem of discovering semaappings
from relational schemas to CMs. First, the solution essentially infers semargmga from sim-
ple correspondences. To prove the “correctness” of the solutioinéolimited class of problems,
we assume that the correspondences are correct, meaning that the oalmemin the tables cor-
respond to the attributes of the concepts in the CM from which the column naeresderived by
theer2rel methodology. Since automatic schema matching tools often generate inactorate a
cessive correspondences, if a schema mapping tool is used foatipgeorrespondences, it would

be better to adjust the correspondences before starting the semantic gndippovery process.

Second, correspondences are assumed to be simple and one-togiimafifrom column names
in tables to attributes of concepts in a CM. Nevertheless, sophisticatedmiagnsant to specify
complex correspondences and let the tool to do the rest job. We leaves thifuture work to be
investigated. Third, in regard to our definition of semantic mapping betweerlsmode seek for
“semantically similar” associations in a schema and in a CM for discovering mgppive guidance
provided by the standard database design principles is appropriatarfsitgation. Sometimes,
however, people may want to establish mappings that are not necessariglfitically similar” as

defined in this dissertation. We did not design our solution to deal with this situatio

Fourth, much the semantics of a database schema is encoded in a variethstficts in the
schema. For example, the data types of columns often imply some meaning tonzascter

solution, however, does not take advantage of data types and elenmee$ iima schema, nor of

98

data types and names of objects (i.e., concept, attribute, and relationshi@Nh ®We assume
that there are implicit functions for converting data values in the domains chensa to data
values in the domains of a CM. Finally, we have limited our mapping formulas to thé (bA
conversely, GAV) formalism. A more flexible and general formalism wouldlbbal-local-as-view
(GLAV), meaning a mapping formula would associate a conjunctive formdatbe schema with a
conjunctive formula over the CM. This might be possible if the CM would be bdténterpreting
a view defined over the schema. Our solution, however, do not gerig& mapping formula at

this stage.

We envision a number of future research directions. Numerous additonedes of knowledge,
including richer CMs, actual data stored in tables, linguistic and semantic redhijis between
identifiers in tables and a CM, can be used to refine the suggestiomsraiNTO, including pro-
viding a rank ordering for them. As in the original Clio system, more complexespondences
(e.g., from columns to sets of attribute names or class names), should alsestigeated in order

to generate the full range of mappings encountered in practice.

4.7 Summary

A semantic mapping relating a relational schema to a CM is a key component of mi@nigra-
tion systems. Such a mapping also provides precise meaning for data omthat8aNeb. In this
chapter we studied a tool that assists the user in specifying a semantic mépping relational
schemato a CM. As in many mapping discovery tools, we assume the usergzraviet of simple
element correspondences between the relational schema and the CM@ditamal input. The
tool generates a set of logic formulas each of which associates a relatibleawith a conjunctive

formula over the CM.

Our algorithm relies on information from the database schema (key arigridtey structure)
and the CM (cardinality restriction$SA hierarchies). Theoretically, our algorithm infers all and
only the relevant semantics if a relational schema was generated usingrstaladabase design

principles. In practice, our experience working with independently Idpeel schemas and CMs

99

has shown that significant effort can be saved in specifying the LAVpingdormulas.

In next chapter, we develop a solution to the problem of discovering denmaapping from an
XML schema to a CM. We explore the semantic information encoded in the néstetuge of an

XML schema.

Chapter 5

Discovering Semantic Mappings from

XML Schemas to CMs

In this chapter, we develop a solution for discovering semantic mappings XML schemas to
CMs. We start by reviewing XML schema and the mapping formalism. We useane to

illustrate the reason for developing a different algorithm for discovesgmantic mappings for
XML schemas rather than using the algorithm for relational schemas bedony XML schemas
into relational schemas. Subsequently, we describe the principles anddhiehan in Section 5.2,
and report the results of experimental evaluation in Section 5.3. Finallyjstfass$ limitations and

future directions in Section 5.4, and summarize the chapter in Section 5.5.

5.1 The Problem

There is much XML data published on the current Web, since XML hasrhe@ostandard format
for information exchange on the Web. As a syntactic model, XML does ricsti integration
automatically due to the heterogeneity in structures and vocabularies. |atdgade area, there
are a number of important database problems requiring semantic mappingebetiL data and

CMs. These include XML data integration systems using a global concegthiaia, and peer-

100

101

to-peer data management systems [HIMTO3]. Furthermore, semantic mgjbgitvgeen XML data

and ontologies play an important part in accommodating XML data to the Sematrttic We

Mappings between XML schemas and CMs could be as simple as valuepmrdesices be-
tween single elements or as complex as logic formulas. In almost all of the apigachieving
accurate information integration, complex logic formulas are required. r*digoovering semantic
mapping from relational database schemas to CMs, manual creation of gamgiping formulas
between XML schemas and CMs is also time-consuming and error-protigs lchapter, we pro-
pose a solution that assists users to construct complex mapping formulaseheML schemas

and CMs.

The proposed solution takes three inputs: a CM, an XML schema (actualiyfidding into
tree structures that we callement treessee Section 3.1.2), and simple correspondences from XML
attributes to CM datatype properties, of the kind possibly generated bydaleedsting schema
matching tools. The output is a list of complex mapping formulas possibly repiiag the seman-

tics of the XML schemas in terms of the CMs.

A semantic mapping from an XML schema to a CM may consist of a set of mappingifas
each of which is from an element tree to a conjunctive formulas in the CMel&ment treean be
constructed through doing a depth first search (DFShapping formulebetween an element tree
and a CM has the forn¥ (X) — ®(X,Y), where¥(X) is a tree formula in the XML schema and

®(X,Y) is a conjunctive formula in the CM.

There are several proposals in the literature for converting and stdtigdata into relational
databases [STHO9, LC00]. A natural question is whether we could utilize the mapping algorithm
we have developed for relational database schemas by converting XMimss into relational
tables. When we looked into the algorithms for converting XML schemas/DTi@sréetational
schemas, we noticed that the resulting relational tables were in fact thiefede of the hierarchical
data. In order to minimize the fragmentation of the hierarchical data, tupleslestaiay have
different meanings because they may come from different levels of tihartly. Their positions

are maintained by pointing to different tuples generated from parents aotiién the original

102

hierarchy. Furthermore, each tuple is assigned a newly system-gehdratgibute as its identifier.
Consequently, applying the algorithm of discovering semantic mappingsritational tables to
CMs would not produce good results because the information aboutkelyfreign keys, which
are heavily relied on by the algorithm, become the mechanism for hierarchyemairce. This is
mainly because the goal of converting XML schemas into relational tables ter® and query

XML data in relational databases. The following example illustrates the almre p

Example 5.1.1. We use the example of [STH9] to show the point. The “hybrid inlining” tech-
nique is proposed by [STHD9] for converting XML schemas/DTDs into relational tables. The

following XML DTD is given by [STH"99] for demonstrating the algorithm.

<! ELEMENT book (booktitle, author)>

<l ELEMENT article(title, author=*,contactauthor)>
<! ELEMENT cont act aut hor EMPTY>

<! ATTLI ST cont act aut hor aut hor| D, | DREF | MPLI ED>
<! ELEMENT nonograph(title, author, editor)>

<! ELEMENT edi t or (nobnogr aph+) >

<I ATTLI ST edi tor name CDATA #REQUI RED>

<! ELEMENT aut hor (name, address)>

<I ATTLI ST aut horid | D #REQUI RED>

<! ELEMENT nane(firstnane?, |astnane)>

<! ELEMENT f i r st nanme(#PCDATA) >

<! ELEMENT | ast nane(#PCDATA) >

<! ELEMENT addr ess ANY>

Graphically, Figure 5.1 shows the schema graph created from the alddkedDXD. A single-
lined arrow “—”" indicates multiple occurrences of a child element, while a double-lined aresiv “
indicates single occurrence of a child element or an attribute. Subsequgetlgybrid inlining
technique generates four relational tables shown in Figure 5.2, whetelthans are named by the
path from the root element of the table. There are several featuresaanrthe relational tables.
Each table has al field that serves as the key of that table. All tables corresponding to elemen
nodes having a parent also havearentID field that serves as a foreign key. For instance, the

author table has a foreign keguthor.parentID that joins authors with articles.

Given a bibliographic CM containing conceptsticle, Author, and a many-to-many relationship

hasAuthor betweenArticle and Author. If we try to discover the semantic mapping between the

103

book
article monograph

J booktitle ﬂ lL >
contactauthor / editor

author lL

@authorlD y @name
@id
name address authorid

firstname lastname

Figure 5.1: The Schema Graph Corresponding to the bibliographic DTD

book(bookID:integer, book.booktitle.isroot:boolean, book.booktitle:string,
author.name.firstname:string, author.name.lastname:string,
author.address:string, author.authorid:string).

article(articlelD:integer, article.contactauthor.isroot:boolean,
article.contactauthor.authorid:string,
article.title.isroot:boolean, article.title:string.

monograph(monographlD:integer, monograph.parentiD:boolean,
monograph.parentCODE:integer, monograph.title:string,
monograph.editor.isroot:boolean, monograph.editor.name:string,
author.name.firstname:string, author.name.lastname:string,
author.address:string, author.authorid:string).

author(authorlD:integer, author.parentID:integer, author.parentCODE:integer,
author.name.isroot:boolean, author.name.firstname.isroot:boolean,
author.name.firsthame:string, author.name.lastname.isroot:boolean,
author.name.lasthame:string, author.address.isroot:boolean,
author.address:string, author.authorid:string).

Figure 5.2: Relational Tables Generated by the Hybrid Inline Algorithm

tables and the CM from a set of correspondences, probably, including

7 :author.authorIlD«~@:Author.ID,

T :author.author.parentiD«~O:Article.ID,
then we would not be able to find the representation of the many-to-many nslafidvasAuthor
from the constraints of the relational schema. The foreignakaiior.parentID of theauthor table

does not match the relationship in terms of the cardinality constraints. Themoasther refer-

104

ential constraints representing relationships between articles and au®worthe other hand, the
XML schema graph contains the parent-child edgejcle—author, which can be interpreted by
the many-to-many relationshipasAuthor. The foreign keyauthor.parentID actually encodes the
information that an author tuple references an article tuple as a parentThjgenformation repre-
sents the hierarchical relationships between elements in the XML DTD. Goassty, the solution
for discovering semantic mapping from relational schema to CM misundessthadnformation

encoded in the foreign key constraint.

From this example, we can observe that foreign key constraints sometieneseat to maintain
the hierarchical information of the nested XML structure. To find the sensotian XML schema,
it is necessary to develop an algorithm that explores the XML structuretigirather than making
use of referential integrity constraints of the relational schema which b@sned from the XML
schema. Comparing to the XML schema mapping technique in Clio [P2], we still face the
challenge to connect concepts in the CM as in the relational case. Maorewvesolution will
exploit the occurrence constraints specified in XML schemas, while trasstraints are ignored

by the Clio’s algorithm.

In short, the main contributions of this chapter are as follows: (i) we pmadeuristic algorithm
for finding semantic mappings, which are akin to a tree connection embeddeel @M; (ii) we
enhance the algorithm by taking into account information about (a) XMle®ehfeatures such as
occurrence constraintgey andkeyr ef definitions, (b) cardinality constraints in the CM, and
(c) XML document design guidelines under the hypothesis that an explicimicit CM existed
during the process of XML document design; (iii) we adopt the accuraatyic of schema matching

[MGMRO02] and evaluate the tool with a number of experiments.

5.2 Mapping Discovery Algorithm

Now we turn to the algorithm for discovering semantic mapping from an elenentdra CM. The

algorithm assumes a set of correspondences have been givenwEiestalyze the structure of an

105

XML element tree to lay out several principles for the algorithm.

5.2.1 Principles

As in the relational case, we start from a methodology presented in the lieef&MO01, KLO1] for
designing XML DTDs/schemas from a CM. We begin with basic CMs whichigegonstructs for

concepts, attributes, and binary relationships.

Basic CMs

As with relational schemas, there is a notion of XML normal form (XNF) faaleating the absence
of redundancies and update anomalies in XML schemas [EMO1]. The nuitigydin [EMO01]
claims to develop XNF-compliant XML schemas from CMs. It turns out thadéHgood” XML
schemas are trees embedded in the graph representations of the CMg.tHdstarm“element
tree” instead of‘schema tree”in [EMO1], we briefly describe the algorithm of [EMO1] (called

EM-algorithm)

Example 5.2.1. A CM containing only binary relationships between concepts is referred o a
“binary and canonical hypergraph’in [EMO1]. For such a CMH, the EM-algorithmderives an
element tred” such thatl" is in XNF and every path of" reflects a sequence of some connected
edges inH. For example, starting from tH2epartment node of the CM in Figure 5.3 the following

element tree (omitting attribute$)is obtained:

Department]
(FacultyM ember|
(Hobby)*, (GradStudent|
Program, (Hobby)x*])x*])x*],
where we use [] to indicate hierarchy and ()* to indicate the multiple occoe®af a child element

(or non-functional edges) in element trees.

In essencelzM-algorithmrecursively constructs the element ttEaas follows: it starts from a

concept nodeV in CM, creates tre@” rooted at a nodd? corresponding taV, and constructs the

106

Hobby 0.* 0.+ |Faculty Member 1% Department
1.1
0.* 1.1
1"*
GradStudent 1 Program
0“*
1.1

Figure 5.3: A Sample CM graph.

direct subtrees below by following nodes and edges connectedtin CM. Finally, a largest hier-
archical structure embedded within CM is identified and an ed@éreflects a semantic connection

in the CM.

Given an XNF-compliant element trééand the CM from whicll” was derived, we may assume
that there is aemantic tree5 embedded in the CM graph such thais isomorphic tor". If the
correspondences between element® imnd concepts in the CM were given, we should be able to

identify S.

Example 5.2.2. Suppose elements in the element tféef Example 5.2.1 correspond to the con-
cepts (nodes) in Figure 5.3 by their names. Then we can recover thetgenadrT’ recursively

starting from the bottom. For the subtréé

GradStudent|
Program, (Hobby)x|,

the edgeGradStudent = Program in T" is functional andGradStudent — Hobby is non-
functional. In the CM graph, we can take the cond8pdStudent as the root. Then we seek for
a functional edge from the concepradStudent to the concepProgramand al : N or M : N

edge fromGradStudent to the concepHobby. The result is the semantic tréé consisting of two

edges{G adSt udent |- - - >- - [Progr am|and/G adSt udent |----- [Hobby |

107

Having identifiedS’, we now move one layer up to search for a semantic$feeorresponding

to the following subtreg"”

FacultyMember|
(Hobby)*, (GradStudent|
Program, (Hobby)x|)*].

The edg&-acultyMember — Hobby inT" is non-functional, and the edge fraftuculty M ember
to GradStudent, the root of treeS’, is non-functional as well. Hence, in the CM, we build the tree
S using theM : N edge from the concefftacultyMember to the concepHobby and thel : N

edge fromFacultyMember to the concepGradStudent.

Finally, we are ready to build a semantic tigeorresponding to the entire trée

Department]
(FacultyMember|
(Hobby)*, (GradStudent|
Program, (Hobby)x])x])*].

Since we have identified a semantic trge corresponding t&@”’, what we have to do now is to
connect the concefepartment to the root ofS”, which is the concepFacultyMember. The
connection should be & : N or N : M edge according to the occurrence constraint of the

FacultyMember element.

Figure 5.4 shows the final semantic tigéentified from the CM in Figure 5.3, where we use a
line with arrow to indicate a functional edge. Notice that the shared cohtmgiy gets duplicated

in the CM graph.

Inan element tre@, attributes are the leavesBfand often correspond to the datatype properties
of concepts in a CM. Our algorithm assumes that the user specifies tesmondences from XML
attributes to datatype properties in a CM, manually or using some existing scheufdangdools.

Given an element tree, a CM, and a set of correspondences, thighatgattempts to identify the

108

Department

Faculty Member

Hobby

GradStudent

\\

Hobby Program

Figure 5.4: The Identified Semantic Tree

root of a semantic tree corresponding to the element tree and use “seithantatghed” edges to

connect the root to remaining nodes. This process is recursive arubitoen-up fashion.
Example 5.2.3.Given an element treg
GradStudent(Qln,Qfn)]
Program(Q@Qpname)],
and a CM shown in Figure 5.5. Suppose the user specifies the followingspondences from

attributes of elements to datatype properties of concepts in the CM

v1: X:GradStudent.Qln«~O:.GradStudent.lastname,
vo: X:GradStudent.Q fn«~QO:GradStudent.firstname,

vy: X:GradStudent. Program.Qpname«~O:Program.name,

where we use prefixe¥ andO to distinguish terms in the element tree and the CM.

109

GradStudent | 0..* registersin 1.1 | Program
-lastname -name
irstpame ‘
L) . \
/ } 0..* appliedFor 0..* }
] | \
| \ |
U\ \
\ [%]
\ v GradStudent .
vy N Vs
\ \ N
N J
\\ /
@fn Program /
~a @In
@pname

Figure 5.5: A Small CM and An element Tree

In a recursive and bottom-up fashion, we build a semantic $remrresponding tdl" start-
ing from the leaf@pname. The correspondencg gives rise to the semantic treg for the leaf
@pname, whereS’ is the concepProgram. For the subtreé’rogram(@pname), the seman-
tic tree isS’ as well because there are no other correspondences involving thenelemgram.

At this level, there are two other subtrees;fn and@Iln. The semantic tree for botb fn and
@In is the concepGradStudent according to the correspondencesandv,. Let us refer to
this semantic tree a$”. In connectingS” to S/, a possible solution is to assume that the root of
S” corresponds to the element tree rédtadStudent. Therefore the connection is a functional
edge from the root of”, GradStudent, to the root ofS’, Program, because the connection from

the elementGradStudent to the elementProgram is functional (the occurrence constraint on

Program is 1). Consequently, we identify the semantic tteas the connectierr adSt udent \

--regi stersln->- [Program|in the CM.

Thefirst principle of our mapping discovery algorithm is to identify the root of a semantic tree
and to construct the tree recursively by connecting the root to its dinbtte®s using edges in the

CM graph. More precisely, for the node and its childvs in the element tree, if a node; in the

110

CM is identified for the root of the semantic tree for interpreting the treg @nd a nodeN; is
the root of the semantic tree for the subtree-atthen we connedi; to N, using an edge having

compatible cardinality constraints with the edge fropo v, in the element tree.

As we may have observed, identifying the root of a semantic tree is the majtactda The
following example illustrates the problem for an XML schema which is not XNfagiaant. Such

a schema can be easily encountered in reality.
Example 5.2.4.Given an element tree

GradStudent|
Name(Qln, Qfn), Program(Qpname).

Suppose the user specified the following correspondences

X:GradStudent.Name.Qln«~O:GradStudent.lastname,
X:GradStudent.Name.Q fn «~QO:GradStudent.firstname,

X:GradStudent.Program.Qpname«~O:Program.name,

from the attributes of elements to the datatype properties of concepts in thén@ih sn Figure

5.6.

For the elemenft: Name and the elemen&’: Program, we can identify two sub-trees, the
conceptGradStudent and the concepProgram by using the correspondences. For the element
X:GradStudent, we have to use the two identified two sub-trees to build the final semantic tree.
Since bothY: Name and X: Program occur once and are at the same level, the question is which
concept node is the root of thmal semantic tre® GradStudent or Program? Since the order
of nodes on the same level of the element tree does not matter, both arégbotents. Therefore,
the mapping algorithm should recover functional edges f@nadStudent to Program as well as

from Program to GradStudent, if any.

This leads to theecond principlef our algorithm. Let); andvs be two nodes in an element tree

(an element tree has element nodes and attribute nodes), beta child ofv; and the maximum

111

* istersl
GradStudent 0.. regisieisin 1.1 Program
-lastname Fname
1-firstname - f
nt \
| ¢ 0.* appliedFor 0.* t
11 |
(| \
I\ |
1\ GradStudent |
\ \\ |
\]
AN I
AN]
\\ \ Name Program

\\\ \AL//\\I &

‘~- »@In @pname

Figure 5.6: An Element Tree and A CM

occurrence constraint far, is 1. For each concept’ in the CM graph such that’ has been
identified as the root of a sub- semantic tree for the subtreg &t is a potential root for building
the semantic tree for the sub- element treenat If v; does not have a child whose maximum
occurrence constraint is 1, then we find a concept node as the raaerhantic tree for the sub-
element tree at; as follows. The root connects to its children using non-functional pdthes tree
consisting the root and its children is the minimum one if there are other treeeddvy other roots
connecting to the same set of children.

Unfortunately, not every functional edge from a parent node to a daitte in an element tree

represents a functional relationship. Specifically, some element tagstaadiyathe collection tags.

The following example illustrates the meaning of a collection tag.

Example 5.2.5. Figure 5.7 depicts an element tree and the correspondences from theteiemen

to a CM. The element tree and the correspondences are written in teXoasfo

GradStudent|
Name(Qiln, Qfn), Hobbies|

(H obby(Qtitle))*]]

112

0.* mostFavorite 0.1
GradStudent " Hobby
-lastname Hitle

1-fi‘rstname - 1
|l ‘:‘ 0..* hasHobbies 0..* "
I 1]
[\
I\ |
I\ GradStudent |
v\ |
N |
(RN)
\ \ [
\ Ny Name Hobbies
N N |
RNV !
N ~
~~090 _@n Hobby |

A

@title
Figure 5.7: An Element Tree with a Collection Tag

X:GradStudent.Name.Qln«~O:GradStudent.lastname,

X:GradStudent.Name.Q fn «~QO:GradStudent.firstname,

X:GradStudent.H obbies.H obby.Qtitle~~O:Hobby.title.

The element tad’: Hobbies is a collection tag. It represents a collection of hobbies of a graduate

student. Although the edg®:GradStudent = X':Hobbies is functional X': Hobbies — X': H obby

is non-functional. When the concefdbbby is identified as the root of the semantic tree for the
subtree

Hobbies|

(H obby(Q@title))*],

Hobby should not be considered as a potential root of the semantic tree fortireeadament tree

Eliminating concepts corresponding to collection tags from the set of thetjadteots is our
third principle.

113

In most cases, we try to discover the semantic mapping between an XML selnelaaCM such
that they were developed independently. In such cases, we may nbleb dind an isomorphic

semantic tre¢& embedded in the CM graph. For example, for the element tree

City(Qcity N ame)[

Country (QcountryN ame)],

ifaCMwithapatGity|-- | ocatedin-->- [State]-- | ocatedin-->-

is used for interpreting the element tree, the entire path is a possible aifwéurth principlefor
discovering mappings is to find shortest paths in a CM graph instead dttiestto single edges.
The composed cardinality constraints of a path should be compatible with tthet obrresponding

edge in the element tree.

Even though we could eliminate some collection tags from the set of potentialtaceduce
the number of possible semantic trees, there may still be too many possibilities iMhgaph
is large. To further reduce the size of the set of potential roots, we cée ose of thékey and

keyr ef constructs in an XML schema.
Example 5.2.6.Given the element tree

Article[
Title(Qtitle), Publisher(@name), Contact Author(Qcontact), (Author(Qid))x].
If the attributeQtitle is defined as thkey for the elementdrticle, then we should only choose the
class/concept corresponding@aitie as the root of the semantic tree, eliminating the classes cor-
responding t@name andQcontact (chosen by the second principle). AlternativelyQitontact
is defined as &eyr ef referencing some key, we can also eliminate the class corresponding to

Qcontact. [|

So ourfifth principleis to usekey andkeyr ef definitions to restrict the set of potential roots.

Reified Relationships

To represent n-ary relationships in the conceptual modeling languddi)(©ne needs to usei-

fied relationship (classeg¢yee Section 4.3.2). For example, a CM may have daBsesentation

114

connected with functionables to classesD:Author, O:Paper, and O:Session, indicating par-
ticipants. It is desirable to recover reified relationships and their roleemioms from an XML

schema. Suppose the element tree

Presentation|

Presenter(Qauthor), Paper(Qtitle), Session(QeventId)],

represents the above ternary relationship. Then, in the CM, the roa séthantic tree is ttreified
relationship clasgD:Presentation, rather than any one of the three classes which are role fillers.
The sixth principlethen is to look forreified relationshipdor element trees with only functional

edges from a parent to its children that correspond to separate élasses

ISA Relationships

In [EMO1], ISA relationships are eliminated by collapsing superclasses into their subclarsges
versa. If a superclass is collapsed into subclasses, correspesdesntbe used to distinguish the
nodes in the CM. If subclasses are collapsed into their superclass, therat thdSA edges as
special functional edges with cardinality constraifits1 and1 : 1. Thelast principleis then to

follow ISA edges whenever we need to construct a functionafpath

5.2.2 Algorithm

We have presented tlencodeTree(S, L) procedure, which translates a CM subtfemto a con-
junctive formula, taking into account the correspondercasFigure 4.7 of Section 4.3. The same
procedure also applies to the problem of generating mapping formulasfbrs€hemas. The core
of the solution is the following procedum®nstructTree(7', L) which discovers a subtree in a CM

graph for an element tree after appropriately replicating noethe CM graph.

Function constructTree(T, L)

1If a parent functionally connects to only two children, then it may repreae M:N binary relationship. So recover
it as well.

2Thus,ISA is taken care of in the forthcoming algorithm by proper treatment of funatipath.

®Replications are needed when multiple attributes correspond to the sartypeateoperty. See Section 4.3.3 for
details.

115

Input an element tred’, a CM graph, and correspondengefrom attributes inT" to datatype
properties of class nodes in the CM graph.
Output set of (subtree, root R, collectionT ag) triples, wherecollectionT ag is a boolean value

indicating whether the root corresponds to a collection tag.
Steps:

1. SupposeV is the root of tredl".

2. If N is an attribute, then find(_, N, _, _, R) = true; return { R},R, false). [*the base case

for leaves.*/

3. If N is an element having edges{e;, .., e, } pointing ton nodes{ Ny, .., N,,}, let T; be the
subtree rooted av;,

then computeq;,R;, collectionT ag;)= constructTree(T;, L) fori =1, ... n;

(a) If n =1 ande; is non-functional, returny,R1, true);/* N probably is a collection tag

representing a set of instances each of which is an instance dfttebement.*/

(b) Else ifn = 1 andey is functional return §1,R1,collectionT agr).

(c) Else if Ri=R»y=...=R,, then return¢ombine(Sy, .., S,), R1, false)*.

(d) Else letF'={R;,, .., R, | S.t. e, is functional anctollectionTag;, = false for k =
L,...m, jre{l,...,n}} andNF={R;,, .., R;, | S.t. ¢;, is non-functional, oe;, is func-
tional andcollectionTag;, = true for k = 1,..,h, ire{l,...,n}}, letans = {},
[*separate nodes according to their connection typed/tty

i. Try to limit the number of nodes i’ by considering the following cases: 1) keep
the nodes correspondingkey elements located on the highest level; 2) keep those
nodes which do not correspondkeyr ef elements.

ii. If NF =0, find a reified relationship concept with m rolesr;,, .., r;,. pointing
to nodes inF', let S= combine({r;, }, {S;,}) for k = 1,..,m; let ans= ansU(S,

R, false). If R does not exist aneh = 2, find a non-functional shortest pagh

“Functioncombine merges edges of trees into a larger tree.

116

connecting the two nodeB; , R;, in F'; let S= combine(p, Sj,, S},); let ans=
ansU(S, Rj,, false). [*N probably represents an n-ary relationship or many-

many binary relationship (footnote of the sixth principle.)*/

iii. Else for eachR;, € F k = 1,..,m, find a shortest functional pafy, from R;,
to eachR;, € F\R;, fort = 1,..,k — 1,k + 1,..,m; and find a shortest non-
functional pathy;, from R;, to eachRk; € NF forr =1,.., h;if p;, andg;, exist,
let S= combine({pj, }, {¢, },{S1, .., Sn}); letans=ansU(S,R;,,false). [*pick an
root and connect it to other nodes according to their connection types.*/

iv. If ans # 0, returnans; else find a minimum Steiner tre&&connectingRy, .., R,

return (S,R1, false). [*the default action is to find a shortest Steiner tree.*/

It is likely that the algorithm will return too many results. Therefore, at thal fitage we set a

thresholdNy,..sp, for limiting the number of final results presented.

5.3 Experimental Evaluation

We have implemented the mapping algorithm in the prototypeMe@oNTO and conducted a set

of experiments to evaluate its effectiveness and usefulness.

Measures for mapping quality and accuracy.We first attempt to use the notionspecisionand
recall for the evaluation. LeRR be the number of correct mapping formulas of an XML schema, let
I be the number of correctly identified mapping formulas by the algorithm, ané bat the total
number of mapping formulas returned. The two quantities are computeg-agision = I/P
andrecall = I/R. Please note that for a single input element ffeavhich has a single correct
mapping formula, the algorithm either produces the formula or not. Scettadl for T' is either 0

or 1, but theprecisionmay vary according to the number of output formulas. For measuring the
overall quality of the mapping results, we computed the average precisibreeall for all tested

element trees of an XML schema.

However, precision and recall alone cannot tell us how useful theitigois to users. The

117

purpose of our tool is t@assistusers in the process of constructing complex mappings, so that
productivity is enhanced. Consider the case when only one semantic gappaturned. Even if
the tool did not find the exactly right one, it could still be useful if the formslaccurate enough so
that some labor is saved. To try to measure this, we adopt an accuracy foesébema matching
appearing in the literature. Consider the mapping forni(¥)—® (X, Y') with the formula¥ (X)
encoding an element tree. The formdaX,Y’) encodes a semantic trée= (V, E) by using a set

of unary predicates for nodes I, a set of binary predicates for edgeshinand a set of variables,

Y, assigned to each node (there are predicates and variables for datadperties as well). For a
given element tre@’, writing the complex mapping formula consists of identifying the semantic tree
and encoding it into a conjunctive formula (which could be treated as & s¢bmic predicates).
Let ®; = {a1(Z1),a2(Z3),..,am(Zm)} encode a tredy, let &y = {b1(Y1),b2(Y2), .., b (Y1)}
encode atredy. Let D = ®,\®; = {b;(Y;)]| s.t. for a given partial one-one functigh: Y — Z
representing the mapping from nodes%f to nodes ofS, b;(f(Y;)) € ®;}. One can easily
identify the mappingf : Y — Z by comparing the two tree$; and.S; (recall a CM graph contains
class nodes as well as attribute nodes representing datatype proeriisstonsider that it comes
for free. Letc = |D|. Supposeb; be the correct formula andél; be the formula returned by the
tool for an element tree. To reach the correct formbjarom the formula®,, one needs to delete

n — c predicates fromb, and addm — ¢ predicates tab,. On the other hand, if the user creates
the formula from scratchy additions are needed. Let us assume that additions and deletions need
the same amount of effort. However, browsing the ontology for correétimgula ®, to formula

®, is different from creating the formulé; from scratch. So letx be a cost factor for browsing
the ontology for correcting a formula, and |g@the a factor for creating a formula. We define the

accuracy or labor savings of the tool la$or savings = 1 — W

. Intuitively, a < 3,

but for a worst-case bound let us assume- (5 in this study. Notice that in a perfect situation,

m = n = c andlabor savings = 1.

Schemas and CMs.To evaluate the tool, we collected 9 XML schemas varying in size and nested
structure. The 9 schemas come from 4 application domains, and 4 publidigldealomain on-

tologies were obtained from the Web and the literature. Table 5.1 showsdhactdristics of the

118

schemas and the ontologies; the column heads are self-explanatorgofipanyschema and on-
tology are obtained from [KLO1] in order to test the principles of the mappimstruction. The
conferenceschema is obtained from [LCOQUT DBis the schema used for describing the informa-
tion of the database group at the University of Tororf@8@modRecords the schema for SIGMOD
record. The rest of the schemas are obtained fromCiiee test suite. The KA ontology, CIA

factbook, and the Bibliographic-Data are all available on the Web.

XML Schema Max Depth (DFS) in # Nodes in # Attributes in Ontology # Nodes | # Links
Schema Graph Schema Graph | Schema Graph

Company 6 30 17 Company 18 27

Conference 5 21 12 KA 105 4396

UT DB 6 40 20 KA 105 4396
Mondial 6 214 93 CIA factbook 52 77
DBLP 1 3 132 63 Bibliographic 75 749
DBLP 2 5 29 11 Bibliographic 75 749
SigmodRecord 3 16 7 Bibliographic 75 749
Amalgam 1 3 117 101 Bibliographic 75 749
Amalgam 2 3 81 53 Bibliographic 75 749

Table 5.1: Characteristics of Test XML Schemas and CMs

Experimental results. Our experiments are conducted on a Dell desktop with a 1.8GHZ Intel
Pentium 4 CPU and 1G memory. The first observation is the efficiency. nmstef the execution
times, we observed that the algorithm generated results on average incartisevhich is not

significantly large, for our test data.

Figure 5.8 shows the average precision and recall measures of the Bgnpaips. For each pair
of schema and ontology, the average precision and recall are computdtbas. For the element
trees extracted from a schema graph, a set of correct mapping forimuteually created. We
then apply the algorithm on the element trees and ontologies to generatd fosetLdas. Next we
examine each of the generated formulas to count how many are corcecbanpute the average

precision and recall. The overall average precision is 35% and oeweathge recall is 75%.

Finally, we evaluate the usefulness of the tool. The usefulness is evainaezths of the value

of labor savings which is measured by the number of different prediteeeen a generated

119

100 -+ O Avg. Precision
m Avg. Recall

Avg. Precision/Recall (%)
a1
o

Figure 5.8: Average Recall and Precision for 9 Mapping Cases

formula and a correct formula, regardless the subject who would actpeifgrm the correction.
Figure 5.9 shows the average values of labor savings for the 9 mapsag. daor each mapping
case, the average labor savings is computed as follows. Examine eagleé¢héormula returned

by the algorithm and compute its labor saving value relative to the manually dreate Take

the average value of the labor savings of all incorrect formulas. Notestlem when the correct
formula was identified by the algorithm, we still computed the labor savings fanatrect ones

to see how useful the tool is in case only one formula was returned. Téralbaverage labor
savings is over 80%, which is quite promising. Especially in view of the pessinaistiomption
thata = [in thelabor savings formula, we take this as evidence that the tool can greatly assist
users in discovering complex mappings between XML schemas and CMs witbparpgschema

matching tool as a front-end component.

120

100
S 80 T —]
@
e 60 +— [| —
3
n
S 40 14— -
©
-
? 20 4+ -
O L} L} L} L} L} L} L} L} 1
J 2 > Y Vv S N q,
& & N &2 L FEMNF e
S & Y J Q Q & 2 2
& S & &
$ S vor
N) 2

Figure 5.9: Average Labor Savings for 9 Mapping Cases

5.4 Discussion

There are several limitations in our solution for the problem of discovegntasitic mappings from
XML schemas to CMs. First, the proposed mapping formalism only relates fotreala over an
XML schema to a conjunctive formula over a CM. Complicated XML structureslhiuing cycles
need to be unfolded. Second, the solution assumes the user speciftesf siggle correspon-
dences as an additional input. The correspondences are from astribwtiributes. Although the
solution does not particularly deal with the correspondences specdfiegén constructs other than
attributes in both models, we believe the solution is more general and needséeasput. In fact,
other types of correspondences provide more information for disicgvarsemantic tree. For ex-
ample, if the user specified a correspondence from an elemehtta@ concept, then the solution
would easily use the concept as the root of a semantic tree for interpretietetinent tree rooted at
E. Currently, each concept corresponding to a child&of/hich is connected by a functional edge
from E may be a potential root. Third, the solution does not explore informationdexcim data
instances such as XML documents. Our techniques are primarily analytistnsatically explor-

ing information in the structures and constraints of schemas and CMs asswddtabase design

121

process.

Ontology reasoning provides a new opportunity for eliminating “unredslehanappings. We
can encode a mapping formula into an ontology concept and reason thaleoaintology to find
any inconsistency that may be introduced by the new encoded concejphilér @ipproach can be
applied to eliminating “unreasonable” mappings for relational schemas as Metk details are

available in [ABMOG6].

Integrating schema matching tools for automatically generating the corrempmesland devel-
oping a filter by making use of instance data to assist users in choosimgioappings are future
investigations. Moreover, a thorough empirical usefulness study ingpliders with different lev-

els of experience in schema mapping will be conducted.

5.5 Summary

In this chapter, we have looked at a new problem of discovering complaristic mappings from
XML schemas to CMs, given a set of simple correspondences from aésilbo attributes. The
problem is well-motivated by the increasing requirements of annotating XMurments with on-
tologies, translating XML data into ontologies, and integrating heterogenédusiata sources on
the semantic web. We implemented the proposed algorithm in the prototypestcbNTO, for

semi-automatically discovering complex mappings for users, and we evathatexbl on a variety

of real XML schemas and ontologies.

There are several novelties in our solution. First, our mapping langudgeds the LAV-like
formalism for relational schema and relates a tree formula in an XML schemaaveitimjunctive
formula in a CM. It subsumes the previously used formalisms [ABFS02, | ®0&h deal with
paths in XML tree. Second, our mapping discovery algorithm is guided bgpeoach for deriving
“good” XML documents from conceptual models, taking various semanticnmdtion encoded in
document structures into consideration. Unlike the relational schemaaydtimal parent-child
relationships and occurrence constraints are more important than kdgrargh key constraints.

Third, we adopted the accuracy metric of the schema matching to measurefiieess of the tool

122

in real mapping cases. The experiment results show that over 80% alddrbe saved.

In the next chapter, we will turn our attention to using the semantics of datachemas. We
will focus on the problem of discovering mappings between relational datafchemas, assuming

the semantics of each schema are available in terms of some CMs.

Chapter 6

Discovering Schema Mapping

Expressions Using Schema Semantics

We now address the problem of discovering schema mapping exprebssiarsing the semantic
mappings from schemas to CMs. This chapter is organized as follows. Béctialescribes the
problem. Section 6.2 reviews the notations about schemas and semantic redpmimgchemas
to CMs. Section 6.3 presents motivating examples for using the semantic mappiimgsrove

schema mapping. Section 6.4 discusses our contributions in comparisontéo retak. Section
6.5 describes the algorithm for schema mapping discovery. Section 6.@G@smlusing a set of
experiments the proposed approach in comparison to the techniqueshalyconstraints in
the logical schema. Finally, Section 6.7 discusses the pros and cons sdlation and points to

possible future directions, and Section 6.8 summarizes the chapter.

6.1 The Problem

Schema mapping is the problem of findingreeaningfulrelationship between different database
schemas. This relationship is represented in terms of logical expresaimhisis inherently difficult

to automate. Just given a source and a target relational schemas, ahlefdbe numerous ways

123

124

of connecting tables in both schemas and pairing up associations to formngspsince the
intended relationship is often buried in the head of the database desigeaiays, it is almost
impossible to always derive the relationship “correctly” from syntacticcstimes and constraints
by an automaton. Therefore, interactive and semi-automatic tools are aktuiye the solution.
As we have mentioned before, such a tool often employs a two-phagdigrardirst to specify the
simple correspondences between schema elements such as table columtsdérere plausible

declarative mapping expressions for users to sift through.

Considering the first phase for specifying element correspondénassaally done manually or
by some schema matching tools, we are interested in the problderiging plausible declarative
mapping expressions from element correspondendé&® element correspondences we consider
will be quite simple: pairs of column names in the source and target relatidreisg presumably
signifying that data from the source column will contribute to data to appeakeitatiget column.
For example, in Figure 6.1; is a correspondence between colueid of table Employee in the

source and the columeid of Emp in the target.

SOURCE TARGET

Employee:

ei
did
\Vl Emp:
Dept: \ eklj
did

/pid
pid v

2

Figure 6.1: Simple Correspondences between Source and Target

Given a set of simple correspondences from a source schema to aidelngea, a schema
mapping solution essentially finds an association in the source among theeteineits referred
to by the correspondences and an association in the target among thelsetents referred to by
the same set of correspondences. In forming mappings using pairsaziations, two important

guestions arise: First, how to construct a “meaningful” association amaeg af elements in a

125

schema. Second, how to match a source association to a target associatioh mway that the
pair gives rise to intended relationship. Recall that current solutiorts asi€Clio [PVM"02] and

MQG [KB99] rely on integrity constraints (especially referential integritystaints) to assemble
“logically connected elements” (or logical associations). These logisalcétions, together with
the column correspondences, then give rise to mappings between the Tdddesmlution, however,
sometimes miss important semantic connections (as shown by the motivating exampées

section), and the interpretation is primitive in the sense that a mapping is simply @ pegical

associations covering some correspondences and there lacks aystoategdering alternatives.
This is in part because it only exploits evidence that is present in the tvesrschbeing mapped
and in part because there is no formal definition of mapping for guiding beeps of matching

associations.

Compared with CMs, database schemas are a@gemantically impoverishedrhis chapter de-
scribes an approach which leverages CMs that encode semanticseaiascho improve schema
mapping. The approach explores an additional source of informatiomelgahesemanticof the
database schemas expressed in terms of CMs. In previous chaptées/enstudied how to capture
semantics of a database schema by using a CM of the domain, and a fororgitdesrelating the
CM to the database schema. In addition, we observe that obtaining the seéatichema is not
necessarily a difficult task. For example, many database schemas alepdelfrom a conceptual
model, such as an Extended Entity-Relationship diagram. Consequenpinddiee EER schema
and the mapping between the EER schema and the relational schema needs fionted kis
could be quite realistic, given the proliferation of tools for managing CMsaartologies motivated

by visions of e-Services and the Semantic Web.

Itis important to note that wdo not assumehat the CMs for the source and target are identical,
or are connected at the semantic level, as in many data integration propasiad, we rely on the

element correspondences between the table columns, which have trdneeso useful for others.

126

6.2 Representing Semantics for Schemas

Recall that a given CM is represented in a labeled directed graph, &lfledraph We assume
that attributes in CMs are simple and single-valued (composite and multi-valudditatsrcan be
transformed into concepts). Note that we will deal with n-ary relationshigdationships with
attributes, and so-called higher order relationships (which relate relapsthemselves) in Section
6.5.3 by reifying them. We shall eventually also reify many-to-many binaryioglships (ones that

are not functional in either direction) since the algorithm will treat thesedheesyay.

In Chapter 4, we studied the problem of discovering semantics for relaschamas. The
semantics of a relational table is represented by a subtree in a CM graphawealled such
a subtree @emantic tree (or s-treehere columns of the table associate uniquely with attribute
nodes of the s-tree. An s-tree can be encoded in conjunctive formh&xewnary predicates are
used for concepts and binary predicates are used for attributes aany bétationships (see the

algorithm in Figure 4.7).

Example 6.2.1.Figure 6.2 shows a CM containing three conceptxson, Book, andBookstore.

Let writes(pname, bid) and soldAt(bid, sid) be two tables in a relational schema. In terms of
data, tablevrites(pname, bid) stores persons and the books they wrote, and sddtkAt(bid, sid)
records books and the stores selling the books. The columns of the tabtespond to some
attributes of concepts in the CM. The semanticsvdfes(pname,bid) is represented by the s-tree
consisting of node®erson andBook connected by edgerites, written textually asPer son |
---writes--- [Book| The s-tree is encoded in the logical formula

7T writes(pname, bid) — O:Person(z), O:Book(y), O:writes(z,y),
O:pname(z, pname), O:bid(y, bid).
where we use prefixes andO to distinguish terms in the relational schema and the CM.

Likewise, The semantics afoldAt(bid, sid) is represented by the s-tree consisting of nodes

Book and Bookstore connected by edgsoldAt, written textually agBook | - - - sol dAt - - -

|Bookst or e |. The s-tree is encoded in the logical formula

127

Person 1.% 0.* Book 1% 0.* |Bookstore
-pname: key writes -bid: key soldAt -sid: key
<< — 7'T , Vol
-~ ~ / \\\ /
~ - /
. “a . Dt YL
writes(pname, bid) soldAt(bid, sid)

Figure 6.2: Semantics of Tables

7T:soldAt(bid, sid) — O:Book(z), O:Bookstore(y), O:soldAt(z, y),
O:bid(z, bid), O:sid(y, sid).

In order to handle multiple relationships between entities, as well as “rgelrsilationships,
while continuing to use trees, we duplicate concept nodes, and all the mslaipis they participate
in (see Section 4.3.3). So, for example, the semantics of sk pid,name,age,spousePid) is
represented by a graph with two nodBsyson andPerson,,,,,1, connected by edgeasSpouse
in Figure 6.3. And an additional columpers.bestFriendPid, would require an additional node,
Person,.,,,2, connected td’erson by edgehasBestFriend. Note that this approach allows us to
handle correcthcyclic RICs since the table semantics has to specify the number of times the loop

has to be unfolded.

As we have noted before, there are well-known methodologies for degidpgical database
schemas from a CM, such as EER diagrams. We call such methodotrgie$ designs We can
now assert that s-trees allow the encoding of the semantics of all tablésenbby er2rel design,

and there are ways of dealing with more complex formdias

Our study of discovering semantics for database schemas also assvaiaseklitional notions
with the semantics of a tablg: First, ananchor, which is the central object in the s-tree from which
T is derived, if aner2rel design was used. For exampleTifc,d) was derived from a functional
relationshi ---p->-- @ thenC is the anchor of tabld". Second, a rule expressing how
classes involved in the s-tree’Bfare identified by columns &f. In the preceding example, claSs

is identified by the colume of T, while classD is identified by the column. (More details about

128

Person
hasBestFriend -
\ -pid: key
0.* 0.1
/-name
; Person -
Person duplicates _ hasBestFriend age
-pid: key -pid: key
0.1 [hame 0.1 |:> name <
age -age
hasSpouse Person
\-pid: key
0..* -name
0.1
hasSpouse K

pers(pid,name,age,spoursePid,bestFriendPid)

Figure 6.3: Handling Multiple and Recursive Relationships

these can be found in Section 4.3.)

6.3 Motivating Examples

Now, we highlight our motivations with illustrative (rather than exhaustivaneples.

Example 6.3.1. Consider the source relational schema given in the upper part of Figdiret

contains five tablesperson(pname,age), writes(pname, bid), book(bid), soldAt(bid, sid), and

bookstore(sid). The underlined column name(s), suchpaame, indicates the primary key of
each table. A dashed arrow representReferential Integrity Constraint (RIC).e., a foreign
key referencing a key. (This is not required for our own algorithm, whiould recover many
RICs from the semantics, but is presented for comparison purposes.gx&mple, the dashed
arrow r; pointing from columnpname of table writes(pname,bid) to columnpname of table
person(pname, age), written textually asvrites.pnameC person.pname, indicates that the val-
ues in the former column are a subset of the latter.

The semantics of the source schema is encoded by associating with eachgiabégaph in the

CM above it. In the CM, we take a binary relationship to link instances in its paatioip classes

in a specific direction. For examplBerson is linked toBook by writes, while Book is linked to

129

SOURCE:

Person Book Bookstore
-hasName: key writes -bid: key soldAt -sid: key
-age 1.* 0.* = 1.x 0..*

—) P ey al j—— ’-r3-\ — | -
L= 1 -~ P > & N - 1~~~
person(pname,age) Writes(pna?ne ,bld) bOOk(bld) SOldAt(bld,sia) bow *Sld)
\v v
1 2
hasBookSoldAt(aname,sid)

TARGET:

Author hasBookSoldAt Bookstore
-aname: key -sid: key
1 * O“*

Figure 6.4: Schemas, CMs, RICs, and Correspondences

Person by its inversewrites—. To encode constraints for identifying objects, we need a special

key annotation to indicate (collections of) attributes that act as identifiers of entities

A target schemas given in the lower part of Figure 6.4. The target schema contains, among
others, a tabldhasBookSoldAt(aname,sid). The table is associated with the CM shown below
it. Now let us turn to the mapping task. To initiate the process, inter-schemaspomndences
need to be specified. Figure 6.4 shows two correspondences usintiresidith arrows:v,, con-
nectingperson.pname in the source tdhasBookSoldAt.aname in the target, and,, connecting
bookstore.sid in the source tdhasBookSoldAt.sid in the target. Textually, a correspondence is

written asperson.pname«~hasBookSoldAt.aname.

Current Solution The current solutions, which we call tHRIC-based techniquesake as input
the source schema, the target schema, database constraints (inclydinigtegn keys, and more
generally RICs), and the correspondences. In our examples, wesaiti approach proposed in
Clio [PYM™102], that is perhaps the most general of the solutions and generatéé @appings
in the form of source-to-target tuple-generating dependencies G-fREMPO03]. Specifically, to
generate a mapping expression, Clio uses an extension of the relatiasal algorithm to first

assemble logically connected elements into so-cdfigital relations In this example, RICs;

130

andr, are applied to tablarites(pname,bid) to produce the logical relation (expression):

S1: person(pname,age) e writes(pname, bid) > book(bid).

Likewise, we can chase the taldleldAt(bid,sid) usingrs andr, to produce:

So: book(bid) i soldAt(bid,sid) < bookstore(sid).

In the target, a logical relation is

T1: hasBookSoldAt(aname,sid).

To interpret the correspondences, the RIC-based technique loekslapair of source and target
logical relations, and checks which areveredby the pair. For example, the pdif;, 71) covers
v1, and the paif.Sy, T1) coversve. So the mappings are actually written(&s, 71, v1) and(Ss, 11,
v2). The complete algorithm will then generate the following two candidatgarative mapping

expressioni the form of s-t tgd:

My Ypname, age, bid.(person(pname, age) \writes(pname, bid) Abook(bid)
— JrhasBookSoldAt(pname, x)).

My Vbid, sid.(book(bid)AsoldAt(bid, sid)Abookstore(sid)
—dyhasBookSoldAt(y, sid)).

Since, in this example, the tablpsrson(pname) andbookstore(bid) are also logical relations,

then the following are also candidate mappings:

Ms: Ypname, age(person(pname, age)—drhasBookSoldAt(pname, x)).
My: Vsid(bookstore(sid)—3JyhasBookSoldAt(y, sid)).

Thereafter, all candidate mappings are presented to the user forfextmaination and debugging.

Note that the mappings/; through M, represent incomplete data. When mappings are real-
ized as queries (as in data exchange), Skolem functions are gensedlyaurepresent existentially
guantified variables [PVMO02]. In some cases, Skolem functions (and more complex mapping ex-

pressions like nested mappings) can be used to represent how datee iy different mappings

131

should be merged [FHHD6]. However, no mapping generation algorithm that we are aware of
would automatically generate a mapping that pairs authors with bookstoregdbktheir books,

an interpretation we motivate below.

Alternate Solution We believe that the following mapping expression is more natural in this case

and should be generated as a candidate:

Ms: Vpname, age, bid, sid.(person(pname, age) \writes(pname, bid) A\
Book(bid)AsoldAt(bid, sid)Abookstore(sid) — hasBookSoldAt(pname, sid)).
The mapping pairs in the target a person and a bookstore if the persos avbitmk and the book is
sold at the bookstore. Looking into the semantics of the schemas, we eltisatthere is indeed a

semantic connection between the clagzason andBookstore, namely the composition afrites

andsoldAt.

Furthermore, note that the many-to-many cardinality constraint that carfidoesith for the com-
posed connection is compatible with that of the target relatiortsmBookSoldAt. Contrast this to
the hypothetical case when the upper bounbda¥BookSoldAt would have been 1, indicating that
each author is associated with at most one bookstore: we contend thaksucgs are semantically

incompatible, and do not lead to reasonable mapping expressions.

Note that the RIC-based techniques avoid generating lossy joinsftikesr<soldAt), because
these would provide an overabundance of logical relations, making theitge much less use-
ful in practice. So any semantic solution must strictly limit, though not rule out, sleeofi such

compositions.

Example 6.3.2.Most conceptual modeling languages support the modeling of classesated by

ISA relationships, as well adisjointnessandcompletenessonstraints concerning the subclasses.

Consider a CM, illustrated in Figure 6.5, with claseployee and two subclassdsngineer
andProgrammer, which are not disjoint, and cover the superclass. The bottom clasddh&in
respectivelSA relationships represent the semantics of the taptegrammer(ssn,name,acnt)

andengineer(ssn,name,site), forming the source schema. Suppose that the target database has

132

Employee

-ssn: key
-name

Engineer Programmer

-site -acnt

Figure 6.5: Using Rich Semantics in CM

schemamployee(eid,name,site,acnt), and its CM is identical to Figure 6.5. These two databases
represent alternative ways of encodiish hierarchies in relational tables, except for the fact that
they use different identifierssn andeid, as keys. Given correspondences that pair all columns
with identical names (sesn andeid do not correspond), the RIC-based techniques will suggest
mappings(programmer, employee) and (engineer, employee), which will not merge the in-
formation about the engineer programmers. We would prefer instead angabpat makes this
connection. This will be made possible by the presence of the supercles @M, but absent in

the database schema. [|

Example 6.3.3.In addition to cardinality considerations, the CM may contain additional informa-
tion useful in eliminating or prioritizing possible mappings. For example, considase resem-
bling Example 6.3.2, where information about departments and faculty anel@hasing different
internal keys in the source and target db. If the source had two fuattielationships¢hairOf and
deanOf, betweerDepartment and Faculty, while the target only had one, callfito, then even
considering cardinality constraints one cannot distinguish the two mappitideges: (chairOf,

foo) and (deanOf, foo). On the other hand, if the semantics indicates tetirOf andfoo are
partOf relationships (marked by filled-in diamond in UML), bdéanOf is not, then the second
mapping is less likely and can be eliminated or downgraded. Begqaar$®f is transitive, this

would be the case even if we had to traverse a longer path of such edfgessisurce CM.

133

6.4 Comparisons and Contributions

We now discuss the main contributions made in this chapter in comparison to tieel ietark. The
most directly related work is obviously Clio [MHH00, PVM2], and we have already provided
some comparison of the basic techniques. Conceptual models have bden developing graph-
ical query interfaces for databases. A central problem is inferringeaygwvhen a user has marked
some nodes in a CM diagram. We note that Zhang & Mendelzon [ZM83] aptiieedoncept of
maximal object from relational database theory to find a default conneatmmg a set of nodes in

a CM diagram. The following example shows their basic technique.

Example 6.4.1.In [ZM83], an object is defined as a relationship set together with all itsgpar
pating entity sets. A maximal object is constructed by starting with an objectgaodihg” it into

a maximal object. Objects are added to the maximal object being constructetheassithe new
object joins losslessly with the objects already in the set. The cardinalities @ugjes of the ER

diagram is used to infer lossless joins which allow maximal objects to grow witholgsets.

Figure 6.6 shows a CM diagram. Some of the maximal objects that can be ihfesne the

diagram are:

{[Hospi tal |----- [Lab]}, (1)
{[Patient | --->-- [Vard] [Vard]--->-- [Hospital | [Test|--->-- [Patient]
[Test |--->-- [Lab]}, (2)
{[staff]--->-- [ard] [Ward]--->-- [Hospi tal]} (3)

The maximal object defined has two properties (i) the join of all the relatiorsidpentity sets
in the maximal object is lossless and (ii) the subgraph of the original CM graplsponding to
the maximal object contains no cycles. For a given set of néddst T be the maximal object in
the CM graph that contains every nodeXrnand has as few nodes as possible. The set of all'the

is calledconnectioron X. Queries are formed using the connection.

134

Hospital
1.1 0.*
0..* 1.1
Ward 0.*
-wid: key
0..*
Lab
11 Doctor -name: key
1.1
0.* 0.*
Staff
0“*
0..*
Patient
11\0* Test
1.1
0"*
Diagnosis

Figure 6.6: Finding Maximal Objects

Consider the queryfFind the labs associated with ward 12Zo express this query, the user can
markLab andWard and the output attributes. The only maximal object that containsltaitrand
Ward is the second one in the above maximal object list. Therefore, the connpativisWard —
Patient — Test — Lab, and the answer will be the set of labs that have been assigned tesitiéotp
of ward 12. Note that there are several other ways of connetaibgo Ward. For example, the
set of labs that work with the hospital where ward 12 is located. Intuititiely,connection is less
“tight” than the one given by the maximal object since the join among the entityedationship

sets is lossless for the maximal object.

135

In terms of finding a meaningful association among a set of concept mod&M, we also adopt
the idea of lossless join. However, as Example 6.3.1 shows, sometimes tliteelxpssociation
may be a lossy join. Therefore, we should also consider some conneictiaddition to maximal
objects in a CM. The following example shows how the work in [WS84] deals thiétproblem of

connecting concept nodes in a CM by assigning different weights taeliffeéypes of edges.

Example 6.4.2.In [WS84], the query inference problem is to determine the best treeinoga
the target graph marked by the user in a CM graph. A best query treegses two properties (i)

it is minimal in the sense that each leaf node of the query tree is contained ingkedeaph and

(i) it has minimum cost. The cost of an edge is specified as follows. For gaebdetween a
concept node and an attribute node, the costisfalways 1; the cost of traversing an edgeom a
conceptC; to a concept’s is 1 if the upper bound of the cardinality constraints ondheside is 1;
otherwise the cost of traversirgs p, a sufficiently large number. Using the cost model, the query

inference problem is a variation of the minimum directed cost Steiner treéepnob

Student
1.* -sName 1.*
-sAddr
register enrol
1.1 1%
College Class
-collegeName 1.1 1. -className
-dean -prof
offer

Figure 6.7: Finding Query Trees

Figure 6.7 shows a cyclic CM graph. Suppose the user has marked teedgeagh as the two

attribute nodesName andcollegeName. There are two trees containing the target graph, namely,

[Student |--->register--[Col |l ege|andStudent |--enrol -- [0 ass|--->of fer--

Col | ege | (we have omitted the attribute nodes.) The best query tree is the first caeseethe

cost of the second tree will agdby traversing the edge frotudent to Class. p is sufficiently

136

large so that the total cost of the second tree is greater than the cosfioéthee.

In this example, if there is no lossless join then all edges of all connectiaesvireight. and
these connections are still the possible connections among marked nadskottest one will be
returned as a result. We will also consider a connection that is a lossy joimggtime relationships
and the concepts in the connection in our mapping discovery proces&vidQwke above, the use
of such a connection should be kept at a minimum. It would only happen Witenecessary to
find a compatible connection to match one connection in other CM, as showmamix 6.3.1 and

detailed in Section 6.5.3

The contributions made in this chapter are as follows. Compared to traditid@abdsed tech-
nigues, the work presented in this chapter increases recall by, amang,alightly generalizing the
use of RICs to repeatedly merging functional relationships onto the entities i@Nh wherelSA
is also treated as a functional relationship. It can also increase prebigieliminating candidate
logical relations which cannot be consistently satisfied (e.g., becauggahthess constraints) and
eliminating mappings that pair relationships with suspiciously different semgntigsy-to-many
with many-to-onepartOf with nonpartOf). Compared to the work of using CMs for user-friendly
guery interfaces, the work presented in this chapter proposes a sew@ntion for discovering
mappings between relational schemas which is fundamentally different ithéh&icus is shifted
from discovering meaningful connections irnsengle CM to discovering a pair of "semantically

similar” associations in different CMs. Following sections elaborate on theigo we propose.

6.5 Mapping Discovery Algorithm

In this section we study the problem of discovering a pair of matched atisosién the source and
target schemas. The ultimate goal is to find a pair of “semantically similar” algeé&xpressions
that connect the respective sets of columns linked by the correspmsleie begin with a formal
description of the problem setting. Next we proceed to our basic prindigiesapping discovery

and use examples to illustrate the algorithm for discovering a pair of matchetligal represen-

137

tations in CM graphs. We present the formal algorithm after the exampleallyi-wve describe a

process for obtaining algebraic expressions from graphical reypiason.

6.5.1 Basic Criteria

The input to our algorithm consists of (i) a source relational schgad a target relational schema
T, whereS and7 associate with their respective Cg andG through table semantics; (ii) a set
of correspondences linking a setZ(S) of columns inS to a setl(7") of columns in7. Assuming
that L specifies pairwise “similar” table columns, we seek to find a pair of “similar” laigie

expressionsFEy, Es) which “interpret” the correspondencés

As shown earlier, the table semantics relate each table in the schema to aimshieaespective
CM graph, associating with each table column a concept node in the graplgiththe bijective
associations between columns and attribute nodes. Consequently, the$eif columns gives
rise to a se€s of marked concept nodes in the graph Likewise, the sel (7) gives rise to a set
Cr of marked concept nodes in the gra@h. We call the s-trees associated with tables that have

columns participating irl pre-selected s-trees

Example 6.5.1. Figure 6.8 presents a source schema associated with a source CM ahodeit
target schema associated a target CM below it. The set of correspasdenontains two corre-

spondences specified from the source schema to the target schema

v1. enroll.name«taughtBy.sname

vg: teach.instld«~~taughtBy.pid

L(S) is the set{enroll.name, teach.instld}; L(7) is the set{taughtBy.sname, taughtBy.pid}.

The setCg of marked concept nodes in the source CM graph contains two n&tadent and
Instructor, and the sefr of marked concept nodes in the target CM graph also contains two nodes:
Student andProfessor. Since the source schema contains five relational tablielent(name,age),
course(cNum), instructor(instld), enroll(hame, cNum), andteach(cNum, instld), there are five

Course | [I nstructor],[Student |--enrol | -- [Course]

and Cour se]- - t aught By- >- - [nst r uct or |, corresponding to the five relational tables, re-

s-trees, namelySt udent

138

spectively. According to the correspondenceandu,, there are two pre-selected s-treedt: udent |

--enrol | -- [Cour se|and Cour se|- -t aught By->-- [I nstructor |
SOURCE:
Student Course N Instructor
t tB
-hasName: key enroll -cNum: key augntsy -instld: key
I~ AN 7
-age SN . « « |0.* 1.1 k&
~ 1. 0.* 7 < -
h ps \ /
N / N\ /. instld
student(name,age) \\ / course(cNum) \\ / instructor(instld)
Y ¥

enroli(’ nagee ,cNum) teach(cNum,instld)

Vi

TARGET: taughtB)‘gsname, pid)
Student -== N Prof
udent | — taughtBy rofessor
-sname: key -pid: key
1..* 0"*

Figure 6.8: Marked Class Nodes and Pre-selected s-trees

Likewise, in the target CM graphst udent | - - t aught By- - is the s-tree

corresponding to the tabtaughtBy(sname, pid). The same s-tree is also the pre-selected s-tree in

the target CM graph.

Our approach will consist of two major steps:

1. Find a subgrapl®; connecting concept nodesdk and a subgraptv, connecting concept

nodes inCr such thatD; and D, are semantically “similar” — we call thessnceptual

subgraphs (CSG)

2. TranslateD; and D-, including the relevant attribute nodes, into algebraic expresdibhns
andE», and return the tripléE, Eo, L) as a mapping candidate, wheltg, C L is the set

of correspondences covered by the géiy, E2).

139

In the rest of this section, we first present the CSGs for differenttginmand illustrate the
algorithms for discovering them using various examples. Then, we descplocess of translating

a CSG into an algebraic expression by using the table semantics in terms ofkpAsssions.

6.5.2 Basic Conceptual Model

We first consider basic constructs: concepts and functional binetyoreships, includindSA. We

delay the treatment of all other kinds of relationships to the next subsection.

There are many ways to connect the marked nod€s ito create CSGs; similarly fat;. We
propose to systematically explore the information encoded in the correspoesl and the table
semantics to discover a pair of similar CSGs. First, a nodeCg corresponds to a node € Cr
whenv andu have attributes that are associated with corresponding columns via thediataletecs.
Second, we take into consideration the following: (i) For a pair of nodgsv) in Cs and a pair
of nodes {1, u2) in Cr, with v; corresponding ta; andwv, corresponding tas, if there is to be a
connection betweem anduvs then it should be “semantically similar” or at least “compatible” to the
connection between; andus. The compatibility is decided by either the cardinality constraints of
the connections imposed on the corresponding participants or the semaetif tiye connections,
e.g.,ISA andpartOf. For instance, a source relationship betweemandvs with lower bound 2
of the cardinality foru, is not compatible with a target relationship betwegrandus with upper
bound 1 of the cardinality fots. The second part of Example 6.3.3 also usaedOf semantics
to pair up compatible relationships. (ii) Since columns appearing in the same tatdesamed to
represent particularly relevant semantic connections between theptemegrying the respective
attributes, there is a preference that the CSGs use edges from thelgmed s-trees. (i) To
the extent that there are choices available, we want the CSG to repfigeitively meaningful
concepts/queries”. (iv) All things being equal, we want the CSG to be aotmpas per Occam’s
principle.

In relational database, there appears to be consensus that obsefiliafiavors the joins in the

query to be lossless. Previous research on graphical querying digigRams [ZM83] (see Example

140

6.4.1) indicates thatunctional treesin such diagrams correspond to lossless joins. Formally, a
functional treeF containing a set of nod€s),, vo, ..., v, } is a tree with a root: such that all paths
from u are functional. (Such a tree is formally a Steiner tree.) The preferendenfctional trees is
motivated by the fact that functional properties in the CM determine fundtae@endencies, and
hence the application of thex2rel design to a functional tree gives rise to a set of relational tables
whose join is lossless. Combining this with observation (iv), we are led torsgeknal functional
treescontaining, as a subset, the node€in(Cr). Interestingly, Wald & Sorenson [WS84], while
considering the problem of querying ER diagrams, also suggested usiitgahioost Steiner trees,
but in this case passing, if necessary, through non-functional gagese individual cost is greater

than the sum of all the functional edges (see Example 6.4.2).

Note also that meaningful queries should not be equivalefittee, so we will eliminate CSGs
that include arlSA edge from a class nodg to its parent and then ai$A~ edge to a nodé

corresponding to a disjoint subclass fram

We now begin to present the algorithm, which starts by finding a CSG in onasieonstructs
a semantically “similar” CSG in the other side. For ease of presentation, wmaghat we always

start from the target side, and then try to find a similar CSG in the sourcee @hetwo subcases:

e Case A: The target CSB; is known, e.g., it is the s-tree associated with a single table.

e Case B: The target CSG is to be constructed itself.

Case A. We use the following example to illustrate the construction of a similar CSG in theesour

when the target CS®; is given.

Example 6.5.2. Consider an example involving source schema with tatxedgrol(proj,dept) and
manage(dept,mgr), and target tablproj(pnum, dept, emp). Suppose the correspondences given
arevy.control.proj«~proj.pnum, v, :control.dept«~+proj.dept, andvs:manage.mgr«~+proj.emp.

Figure 6.9 provides the semantics of target tadslgj as the graph, rooted Btoj, while the seman-

tics of the source tables are subgraphisoj ect |---contr ol | edBy- >-- [Depar t nent | and

141

[Depar t ment |- - - hasManager - >- - | Enpl oyee

SOURCE
' 1.% 1.1 o 11
Project Department = = Employee
hasManager
pid controlledBy did \ eid
N i /
TARGET: N\ v /
1.* 1.1
Proj Dept v,
pid hasDept did /
0.* hasSup 1.1
Emp
eid

Figure 6.9: Input to Example 6.5.2

In Figure 6.9, the correspondences are lifted to correspondentesdrethe associated class

nodes.

Notice that the target CSG is amchored s-treewhere the anchor Broj, and the path from the
anchor to every other node is functional. This leads us to believe that a ‘SiQEG in the source

should be a functional tree with a root corresponding to the anchor.

Case A.1 Suppose for the anch@&roj in the target we find a corresponding node in the source, in
this casdProject. Then try connect it to every other node that has a correspondetimetioyget CM,
(Department andEmployee in this case) using minimal cost functional paths. Since observation
(i) above directs us to follow edges in pre-selected trees as much aslppsisédbedges in pre-
selected trees do not contribute to the cost of functional paths. At lastha@se the functional
tree(s) satisfying the following conditions as the CSGs in the source: yindighe minimal cost
and (2) containing the most number of edges in the pre-selected s-traels.oEsuch functional

trees is rooted at the node corresponding to the anchor in the target. lextrigple, the tree

---control | edBy- >-- [Department |- - - hasManager - >- - [Enpl oyee] is the

142

CSG in the source that matches the target CSG.

Case A.2 If auser only specifies correspondencgandvs (v1 is missing), then we can no longer
find a corresponding root in the source; we are nonetheless seekid§@ in the source that is a
functional tree. In this case, we look for all functional trees in the sothiat contain the nodes in
Cs. Such trees should be as small as possible, hence, minimal functional trees

In this example, we would return the same anchored tree as above. Nateehatthere were
another claskitern in the source graph, and a functional relationghigt er n |- - - wor ks_on- >- -
, the functional tree rooted &ttern would not be returned because it is not minimal:
the functional tree rooted &roject already contains the necessary nodes.

Note that it is this technique that finds the appropriate answer for Exampl2. 6S3ippose
for the source tablgsrogrammer(ssn, name, acnt) andengineer(ssn, name, site), the respec-
tive s-trees in the CM graph af&npl oyee] - - - >i sa-- [Programer | and|Enpl oyee |

-- - >i sa- - [Engi neer |. These two s-trees are also pre-selected s-trees. Let the tree cantainin

the twoISA relationships be the s-tree for the target tadateployee(eid, name, site, acnt). To

connect the marked class noda®grammer andEngineer using edges in the pre-selected s-trees
in terms of a minimal functional tree in the CM graph, we could tBkeployee as the root and use
thelSA edges as the functional links. The resulted tree gives rise to the delgjedlaic expression

over the source tables, i.e.,

programmer(ssn, namel, acnt)siengineer(ssn, name2, site).

Suppose that the nodesdry are not covered by a single (minimal) functional tree in the source
CM graph. Then, in Case A.1, we connect as many nodes as possilieausimgle tree rooted at
the node corresponding to the anchor and leave the rest unconn@oteskquently, the correspon-
dences will be split among the tree and the remaining unconnected nod€sisénA.2, we find
the collection of trees covering different subsets of the nodes, anuh dich paired with the target

CSG. |

As the example below illustrates, a node in the target tree may correspond tolenudtges in

143

the source graph.

Example 6.5.3. The target tree in Figure 6.10 consists of a single rdésion. Using the corre-

spondences

employee.name«~+division.manager,
department.did«~division.did,
department.budget«~division.budget,
we identify two nodes in the sourdémployee andDepartment, corresponding t®ivision of the
target. To connect the two source nodes, wekeseinformation. The concedDepartment has
an attribute corresponding to tkey did of the target concefdivision. Therefore, we search for a

functional tree rooted ddepartment, which has the attribute correspondingdid. As a result, the

tree Depar t ment |- - - hasManager - >- - | Enpl oyee | is returned.

SOURCE:
Employee 1.* worksIn 1.1 |pepartment
-eid: key -did: key
*
name 1.1 hasManager 0.. -budget

workslIn(eid, did)

I id, department(did,budget
employee(eid,name) hasManager(did, eid) /j)

TARGET: division(did, budget, manager)

Division
-did: key
-manager
-budget

Figure 6.10: Usindley Information for Identifying the Root

However, if there is no concept in the source having an attribute camesgpy to the key in

the target, then we look for all minimal functional trees containing the souwdesas discussed

in Example 6.5.2 Case A.2. In this case, both tideepar t ment | - - - hasManager - >- -

Enpl oyee |and Enpl oyee |- - - wor ks| n- >- - [Depar t ment |are returned. [

144

Case B. Next, we consider the case where there are several pre-selecess $rtthe target and
we want to connect them. Once again, we use the idea of minimal-cost fualdtieas to con-
nect the marked nodes which belong to these pre-selected trees. Gamtbegue construct a set
of minimal functional trees in the target. Similarly, we can construct a set of mirfimational
trees in the source. From these two sets we form pairs CSGs by rever@ag¢oA, i.e., following

heuristics such as matching the roots of tree pairs and seeking compatibéctions.

We now present the algorithm for discovering CSGs in a source andet @kg graphs when
given a source and a target relational schemas, their table semantiessandf correspondences
from columns of the source schema to columns of the target schema.

Algorithm: getCSGs(S, Gs, X5, 7, Gr, X1, L)

Input: A source schem& associated with a CNjg through the table semantiéss; a target
schema? associated with a CNjr through the table semanti®sy; a set of correspondencés
between a set of columrgS) in S and a set of columns(7) in 7.

Output: A set of (D1, Dy, Lys), whereD; and D, are CSGs iGg andGr, respectively, and.
is a set of correspondences covered by, D-).

Steps:

1. LetCs andCr be the sets of concept nodes identified by the correspondénalemg with

the table semanticsg andX 1 in the CM graph%js andGr, respectively.
(@) Computes=onc(L(S))* andCr=onc(L(T)).
2. LetPg andPr be the sets of pre-selected s-tree§inandG, respectively.
(@) ComputePg = pstree(L(S))? andPr = pstree(L(T)).
3. Let Ans be the results set. Initialize Aas(.

4. LetB be a set of CSGs in the target gra@h. Initialize B = ()

Yonc(X) is the function which gets the set of concept nodes having attributesspamding to the columnk.
2pstree(L) is the function which gets the set of s-trees associated with tables with celpanticipating inL.

145

(@) If|Pr| =1, let B = B U Pyp. I*There is only one pre-selected s-tree in the target. This tree covers
all nodes inCrp.*/
(b) Else let FT be the set of functional trees covering nodés-innitialize FT=(); for each
nodev € Gr
i. for each node € Cr, let SR ={p | p is a shortest functional path fromto}. /*in
computing a shortest path, the edges of the pre-selected s-tréasdo not contribute the weight of
a path.*/
ii. FT=FT U combine(SR)3 for all i € Cr.
iii. Among each set of functional tree in FT such that these trees coveathe set of
nodes inCy, choose the tregthat has the minimum weight and contains the most

number of edges in the pre-selected s-tregBjinlet B = B U t.
5. For each CSGr € B, let D be a set of CSGs in the source graph Initialize D = ()

(a) Letwu be the anchor of. I gr is a single pre-selected tree according to step 4.a, get the anchor

of gr by the table semantics; else the anchoggfis the nodev specified in step 4.b.*/
(b) Let R be the set of nodes i¢is corresponding to the nodes i, get R through[L.
(c) Letr be a node inRk corresponding ta. /*If there are multiple nodes iR corresponding tax,
distinguish them usinkey information of nodes i, if possible.*/
(d) If r exists
i. For each nodg € R\r, let SB={p | a shortest functional path fromto j such
that p is compatible with the path between the nodes correspondingrd; in

QT.} /*Using semantics likéSA and partOf to check the compatibility. A case considered here is

thatISA andpartOf paths are compatible wittSA andpartOf paths, respectively.*/
ii. D= DUcombine(SP)) forall j € R\r.
iii. Foreach CSGjs € D
A. Let UCg be the set of nodes iR which are not covered bys. Let UCr be the

set of nodes iy corresponding to the nodes in YC

3combine is the function that merges functional shortest paths into a functional tree

146

B. Let Ans=AnsU(gs\UCg, gr\UCrp, Lys). *gs\UCs is the graph after removing
nodes in UG and their incident edges frogy; the same fogy\UCr.*/
C. Let! be the correspondence linking a nagen UCg and a node; in UCr,
let Ans = AnsU(v;, vj,).
(e) ElserFor the functional treegr, we cannot find a node in the source corresponding to the anchgr ,of
so find all minimum functional trees covering R.*/
i. Compute a seb of CSGs covering nodes iR using procedure similar to step 4.b.
ii. Foreach CSGys € D, let L), be the set of correspondences covereddgy gr);
remove those leaves frogy and gy such that they do not participale,;; check
the compatibility of paths igs andgr as in step 5.d.i.

iii. Let Ans=AnsU{gs, g7, L)-

6. Repeat step 4 and step 5 by exchanging the source and the targetdrstbps but skip the

CSGs that have been matched in steps 4-5.

7. If the single pre-selected s-tree identified in step 4.a is not a functi@wglttren find the set
of corresponding nodes in other graph and compute a minimum Steiner &rea sy the set

of corresponding nodes as a matched CSG.

8. Return Ans as the result.

6.5.3 Reified Relationships

In order to represent n-ary relationships £ 2) in a CM like UML, one reifies them, introduc-
ing a special class connected to the participants using so-called “roles”example, to repre-
sent that stores sell products to persons, we introduce Skl§swith functional properties/roles
seller, buyer, sold pointing to classeStore, Person andProduct respectively. (See Figure 6.11.)
Such reified relationship nodes will be indicated in our text by tagging themenaith {, although
formally this can be encoded in the CM by making such classes be subaéssgsecial top-level

classReifiedRelationship. Note that classes for reified relationships may also be used to attach

147

descriptive attributes for relationships (e dateOfPurchase). In fact, we need to use this mod-
eling approach for binary relationships that have attributes. For eadgafthm design, we have
also chosen to represent many-to-many binary relationships, sucem®fdikes food”, in reified

form.

In terms of the formulas for table semantics, reified relationships are used stathdard way.
For example, if we had tabkells(sid,prodid,pid, date) whose semantics is represented by Figure

6.11, then the formula is specified as follows:

T:sells(sid, prodid, pid, date) — O:Store(z), O:Product(y),
O:Person(z), O:Sell(s),
O:seller(s,), O:buyer(s, z),
O:sold(s, y), O:sid(z, sid),
O:prodid(y, prodid), O:pid(z, pid),
O:dateOfPurchase(s, date).

Store Sell ® Person
1.1 0.* 0.* 1.1
-sid: key dateOfPurchase -pid: key
seller buyer

O“*
sold
1.1

Product

-prodid: key

Figure 6.11: Reified Relationship Diagram
Note that cardinality constrainfy/1..1 on inverse roles can be used to indicate those cases where
an object can participate at most once in a relationship. Thus functiothed, gauch a
---has_nmnager - - >- can still be recognized in reified form -<--
what —- - >- | Managenent © ‘ - -who- - >- :

When a reified relationship node appears in a CM graph, we make sadmatments in the

mapping algorithm. First, a path of length two passing through a reified relatppnede should

148

be counted as a path of length 1, because a reified relationship coulddmveliminated, leaving

a single edge.

Second, the semantic category of a target tree rooted at a reified rebgtidgmsucesprefer-
encedor similarly rooted (minimal) functional trees in the source. This includes ticb@mrbeing
many-to-many, many-to-one or one-to-one (distinguished by the cardinaditictions on the role
inverses, as in th&anagement example above), the number of roles (exact arity), or subclass

relationship to top-level CM concept (e.gartOf®).

Third, note that non-functional relationships between entities in a CM canba&islerived as
the composition of edges on non-functional paths. For example, tragettsinpath Per son |
---shopsAt--- [Store}--1ocation-->- yields a many-to-many relationship between
persons and cities where the stores are located. Thus, in seeking matttteesource for a target
(reified) many-to-many binary relationships betwéesndB, one must also consider the possibility
that they appear as paths frékhto B’ in the source that are not functional in either direction, where
A’ andB’ are nodes in the source correspondinghtandB in the target, respectively. Note that
using a single reified relationship as an anchor and extending this grafoimdtjonal paths from
the roles, corresponds to lossless joins with the table representing ththevefpre such CSGs are
preferred. More generally, we look for CSGs that minimize the number sy lsns, by minimiz-
ing the number oflirection reversal changeslong each path. In terms of the algoritlgetCSGs(

S,Gs,%s,7,Gr, X7, L), we add the following adjustment.

¢ If the anchor of a CSG to-be-discovered is a reified many-to-many resdtijpthat has been
identified, then we use shortest paths with minimum direction reversal chahgeg each

path to connect the anchor to other nodes.

Example 6.5.4. [Example 6.3.1 revisitedJ he solution to the problem in Example 6.3.1 is then
obtained as follows. The target s-tree in Figure 6.4 is a many-to-many redaiiorwhich our
algorithm represents as a reified relationship with antte@BookSoldAt®. To find a matching
CSG connecting the noderson in the source (correspondingAathor in the target) and the node

Bookstore in the source (corresponding Bookstore in the target), we look for paths connecting

149

them that are not functional in either direction. Note that going from ofeefilter to another of
a reified many-many binary relationship produces exactly such a pathisloabe, no such single
reified node can be found in the source. So we look for longer pattenoig the path fronPerson

to Bookstore throughwrites®, Book, andsoldAt®.

6.5.4 Obtaining Relational Expressions

The final mapping expression requires a pair of algebraic expresssimg the tables in the input
relational schemas only. Therefore, we need to translate the discd&®@d in the CM graphs
into algebraic expressions over the database schemas. Consider aaCddlksction of primitive
relations/predicates for its concepts, attributes and properties. The tsegratra relational table
associated with the CM is a LAV expression over these predicates. Tiagstadiscovered sub-
graph in the CM graph into expressions over tables associated with the &¥1 gecomes a query

rewriting problem.

The first step of the translation is to express the CSG as a query using €li¢gtes. The en-
coding algorithm proposed in Figure 4.7 of Section 4.3 can be used forutpsge. The following
example illustrates this.

pname sid

writes soIdAt Bookstore

1

Figure 6.12: A Discovered Tree over a CM Graph

Example 6.5.5. Figure 6.12 is a fully specified CSG in the source CM of Example 6.3.1, with
attribute nodes shown. (For simplicity of presentation, we revert to urddifreary relationships.)
TakingPerson as the root of the tree, the encoding algorithm recursively constructgcaftomula

using unary predicates for the class nodes and binary predicatee fedgies. An attribute node is

150

encoded as a fresh variable in the formula and appears in the answerAapigning a namens

to the query, we obtain

ans(vy,v2) - O:Person(zy), O:pname(xy, v1),
O:writes(z1, z2), O:Book(z-),
O:soldAt(xs, x3), O:Bookstore(xs),
O:sid(x3, v2).

Given the table semantics in terms of logical formulas, we rewrite the quabpve to a new
gueryq’ which only mentions the tables in the relational schema by taking advantage aifjdu
identifier information in the table semantics. The new quéry maximally-contained (see [Hal01])

in ¢ and should mention tables that have columns linked by the correspondences.

Example 6.5.6. For the sake of completeness, we now briefly describe a process ritimgw\We
have proposed in Section 4.5 an ad-hoc approach to deriving inudesefor each predicate in a
CM, in terms of the tables in a relational schema. An essential problem regsbkee is that unique
internal object identifiers (e.g., arguments likdor Person(x)) used in the CM, are not directly
available in the relational tables. Formally, these are converted to Skolartidius, giving rise to

formulas such as

O:Person(f(pname, age)) :- T :person(pname, age).

when inverting a semantic specification such as

T person(pname, age) — O :Person(x), O :hasName(x, pname), O:hasAge(z, age).

The problem is that different tables give rise to different Skolem funstiavhich cannot then be
joined. For this purpose, we use tkey information about table semantics (see Table 4.1 of Section
4.3) in order to “unify” the various Skolem functions. So if we knew thasName is the key of
entity Person, and the body formul@ containsPerson(xz)A hasName(z, z) then we can in fact

usez instead ofr as the internal identifier, and tref@sName as the identity relation.

151

As a result, we can rewrite the queyyn Example 6.5.5 to queries that mention tables only. In

our case, these include the following:

¢ ans(vy,w) - T:writes(vy, y), 7:S0ldAT (y, va).
¢y ans(vy,v2) - T:Person(vy), T:writes(vy, y),
T:Book(y), 7:soldAT (y, vo),
T :Bookstore(vs).
g5 ans(vy,v) - T:Person(v;) T:writes(vy, y),

T :SOldAT (y, v2), 7 :Bookstore(wvs).

Sinceq] does not mention tablgserson(pname) andbookstore(sid) that are linked by the
correspondences, anrd is contained ing;, ¢; andg, are eliminated. The body of the quegy,

converted to relational algebra in the standard way, is returned as theafgexpression.

6.6 Experimental Evaluation

We now report on experimental results that evaluate the performance pfaphosed approach. We
show that this approach works reasonably in a number of cases, laiedlexcbetter results than the
RIC-based techniques for discovering a complex mapping expressiomgamarked elements in
the schemas. The implementation is in Java and all experiments were performB€erompatible

machine with a Pentium IV 2.4GH CPU and 512MB memory.

Datasets: We considered a variety of domains. For each, a pair of relational ssheéevaloped
independently was used for testing. We ensured that the CMs associtlietievpair of schemas
were also mutually independent, by using different domain CMs or the eliffeER conceptual
models used for deriving the independent schemas. We describe tleéipnlilow. All the schemas

and CMs used in our experiments are available at [An06].

The first three pairs of schemas were obtained from Clio’s test dat@ét${02]. DBLP 1&2

are the relational schemas for the DBLP bibliography. They are assibeidte the Bibliographic

Schema | #tables associated | #nodes| #mappings | time
CM in CM tested (sec)
DBLP1 22 Bibliographic 75 6 0.072
DBLP2 9 DBLP2 ER 7
Mondiall 28 factbook 52 5 0.424
Mondial2 26 mondial2 ER 26
Amalgam1 15 amalgaml ER 8 7 0.14
Amalgam?2 27 amalgam2 ER 26
3Sdb1 9 3Sdbl ER 9 3 0.105
3Sdb2 9 3Sdb2 ER 11
UTCS 8 KA onto. 105 2 0.384
UTDB 13 CS dept. onto. 62
HotelA 6 hotelA onto. 7 5 0.158
HotelB 5 hotelB onto. 7
NetworkA 18 networkA onto. 28 6 0.106
NetworkB 19 networkB onto. 27

Table 6.1: Characteristics of Test Data

152

ontology and an ER model reverse engineered from the DBLP2 schespactively. Mondial 1&2

are databases about countries and their various features, whedéallans associated with the CIA

factbook ontology and Mondial2 is reverse engineered. Amalgam 1&2 siredkemas developed

by students and used in the Clio evaluations. They associate with diffeveoegtual models.

3Sdb 1&2 are two versions of a repository of data on biological samplesrexbduring gene

expression analysis [JTBM06]. UTCS and UTDB are databases f@$h@epartment and the DB

group at the University of Toronto. They were used in our previoudysti semantics discovery,

so their semantics are available now. Finally, we chose two pairs of ontolivgrasthe I3CON

conferencé These ontologies were used for the ontology alignment competition and deaten

a certain degree of modeling heterogeneity. We forward engineereditbemelational schemas

for testing our techniques. As shown in Table 6.1, the test data have gy\afrmmplexities.

Methodology: We compared thesemantic approach, presented in this chapter, with the RIC-

based technique illustrated in Example 6.3.1, which, recall, creates logiaibns by chasing

RICs constraints, and derives mappings from pairs of source-tagjeal relations covering some

“http://www.atl.external.Imco.com/projects/ontology/i3con.html

153

correspondences. Since in its raw form, the chase generates maximafl seglismns that can be
grouped by lossless joins, we first applied a heuristic that removed argcassary joins — ones
that did not introduce new attributes not covered by corresponder{@éss is one optimization

recently described in [FHH06].)

The comparison tries to focus on the intrinsic abilities of the methods. Eachireeme consists
of a manually created non-trivial “benchmark” mapping between some pachemas. (A triv-
ial mapping is from a single source table to a single target table.), together wittspondences
involving column names in it. These manually-created mappings are used aklastgndard” to

compare the mapping performance of the different methods.

Measures: We useprecision andrecall to measure the performance of the methods. For a given
schema pair, leP be the set of mappings generated by a method for a given set of comcespes.

Let R be the set of manually-created mappings for the same given set of pomtEsces. The

|POR|
|P]

andrecall = |P‘E|R‘. We compute the average

two measures are computed @secision =

precision and average recall over all tested mapping cases.

We believe it is instructive to give more details about how we calculate thessunesa For each
test caseR contains the manually-created non-trivial benchmark mapping expressmsisting of
a connection in the source and a connection in the target. In evaluatingrtbeatg mappings for
each method, we seek the same pair of connections, considering otheiw tiod match the bench-
mark completely as “incorrect” mappings. For instance, in Example 6.3.1,ietlere were target
tables forauthor2, store2, and the RIC-based techniques recovered mapgipgison,author2)
and (store,store2), recall and precision would have been 0 because no non-trivial nggpiere

found. (Note that the semantic method can also find trivial mappings.)

Results: First, the times used by tleemantic approach for generating the mappings (in algebraic
expressions) in the tested schemas are insignificant. The last column@®®6Talshows that it took
less than one second. This is comparable with the RIC-based techniquk,aldo took less than
one second for mapping generation in our experiments. Next, in terms of Hsunaes, Figure 6.13

compares the average precisionssefantic and the RIC-based technique for all the domains.

154

@ Semantic [RIC-based

100
g 8o
5
2 60
)
S 40
S 20
E 1 1
z O
& &
Figure 6.13: Average Precision
Figure 6.14 compares the average recalls.
m Semantic [RIC-based
100
< 80
S
= 60
[S]
[0
X 40
()
(o))
S 20
()
>
< 0 1 1 1 I I
Q > Q& N4 & Ny
R S > 2) Q Qo 8
Q @0(\ &Q > 0«0(9 Y é]@

Figure 6.14: Average Recall

The results show that in general, themantic approach performed at least as well as the RIC-
based technique for the test datasets. The measures of recall shaketbatmantic approach did
not miss any correct mappings that were predicted by the RIC-baseaddaet(since it gotll the

mappings sought), and made significant improvements in some cases. Blpfégure 6.13 shows

155

that the semantic approach had significantly improved precision in some cases

Discussion:Many of the experimental schemas we have found do not have complieatethics,
and therefore would not provide differing results unless somewhat lesneprrespondences and
mappings were sought. Most of the differences in this particular expetatnset were due to

situations such as the one illustrated in Example 6.3.2.

6.7 Discussion

We have proposed here an approach to discovering mapping expielssiaveen a pair of relational
schemas. The approach starts from simple table column correspondedagizes the semantics
of the tables, expressed through connections to conceptual modelstst\héiwed several cases
where the current solutions for discovering mappings (based orergi@rintegrity and key con-
straints) does not produce the best results. We then developed athatgor discovering plausible
mappings at the conceptual level, and translated them into sketches ofrralégiecel mappings. In-
tuitively, this algorithm replaces the use of RICs by the notion of "minimal fumetidree” in the
CM, which, interestingly, appear to be related through the theory of Wsav&elations and loss-
less joins. Experimental results demonstrated that the semantic approestedehgenerally better
performance in recovering complex mapping expressions on test dademets from a variety of

domains.

Compared to the traditional schema mapping techniques, e.g., Clio, our solai@mtobvious
limitation, that is, it assumes the semantics of the schemas being mapped areleavdiaien
the additional significant work that has gone into the Clio tool, it may be bedeto the present
work as being complementary and embedded: if the semantics of the schemaitaisie or can
be reconstructed with low cost using tki@PONTO tool, then the present technique could be used
inside Clio to provide some better candidate mappings. The exact detailshof snerger remain

to be worked out.

In terms of future work, we are planning to work on the representatioli cbajunctive queries

over the CM, as well as safe negation in s-trees/s-graphs. As showmainté€® 4, a more careful

156

look at the tree provides hints about when joins should really be treategtesjoins (e.g., when
the minimum cardinality of an edge being traversed is 0, not 1); such informetiold be quite
useful in computing more accurate mappings, expressed as nesteddnplatgng dependencies.
Investigating the related problem of finding complex semantic mappings betweddMs, given

a set of element correspondences, is another future researdiodirec

6.8 Summary

Based on our study on discovering semantics for database schemasiaugitevo chapters, we
developed a new approach to schema mapping by using the semanticsrofisdhehis chapter.
The essential point is to find a pair of associations in the source and tle¢ $afgemas such that
the pair are “semantically similar”. For doing this, we explored various coctstrin the CMs
associated with schemas. These constructs include cardinality constigiets of relationships,
and graph structures. We believe that what we have done in this chalptead to more work in

exploring and utilizing semantics of data.

Chapter 7

Conclusions and Future Directions

Discovering semantic mappings between different data representatiotritisad step for many in-
formation management applications. Since manual creation of semantic maigpaims-intensive
and error-prone, it is important to develop tools to automate the proceissdi$hertation has con-
tributed to both developing tools for semantic mapping creation and unddrgjasemantics for
database schemas. In this chapter, we recapitulate the main contributiomsdi$égartation and

discuss directions for future research.

7.1 Main Contributions

This dissertation makes two major contributions: (i) discovering semanticddefywsed database
schemas in terms of CMs and (ii) using the semantics for discovering mapgingssions between

database schemas.

We approach the problem of discovering semantics for database scherlaming the model-
ing constructs in schemas and given CMs. The alignment is guided by wallrkdatabase design
principles. The underlying assumption is that a mapping expression relatésdmantically sim-

ilar’” associations in different models.

To increase the chance of getting accurate mapping results, we reguasthie user simple

157

158

element correspondences as an additional input for the mapping algofithtimmapproach is sup-
ported by other mapping tools, and simple element correspondencessyzecifeed manually or by
schema matching tools. Starting from the correspondences between thatslenseschema and a
CM, we directed our attention to find an association among elements in the scheama'aemanti-
cally similar” association among elements in the CM. First, we meticulously analyeesighdard
database design methodology. We uncovered a number of notions reldtesl ttansformation
process in addition to a set of standard rules for generating schemtusgsufrom a conceptual
model. These notions, e.g., anchor, play a central role in the developfrteetsemantic mapping

discovery algorithm.

Second, we constructed a CM graph from a CM by taking cardinality ainttrand relation-
ship types into consideration. We differentiate functional paths fromfanctional paths for the
purpose of interpreting the key and foreign key constraints in datalchsena. Third, focusing on
the schemas that could have been generated by the standard design fogthfsrdon conceptual
models, we develop an algorithm that is “complete” and “sound”. This rgswés us a theoretical
confidence for judging the performance of the algorithm on some “régdddabase schemas. To
evaluate the algorithm on a wide variety of practical schemas, we finally imptechand tested
the algorithm in our prototype toMdAPONTO. One lesson we have learned from the experimental
study is that the tool is useful because not only it can produce cansgters for many cases, but
also it could reduce the burden that would be endured by human eveghtltoel answers are in-
correct. The user still could benefit from the incorrect answers byglging them into the desired

ones instead of specifying the correct answers completely from scratch

Our second major contribution is made by taking advantage of the semantatsabéde schemas
that would have been discovered by thePONTO tool for improving schema mapping. We are
motivated by the observation that traditional schema mapping approadyieg @ schema con-
straints and structures sometimes do not produce desired mapping relgsonstween a given
source and a given target schemas. It is in part because logicahastage "semantically impov-
erished”; therefore, it is inherently difficult for computerized tools to ov&r mappings between

heterogeneous schemas. Moreover, traditional mapping techniqués fivstufind logical associ-

159

ations in the source and target schemas and then would pair each logmeib#ien in the source
with each logical association in the target. As a result, the number of candidaigings would be
huge since every combination of a logical association in the source andtallagsociation in the
target is considered as a candidate. The user may be overwhelmed bgulie generated by the

traditional mapping tools.

In order to improve schema mapping, we believe that multiple information soalces schemas
have to be exploited. As we have studied the issues of semantics for datzhasnas, we exploit
the information about schema semantics expressed in semantic mappings toAGhsIgh we
have developed a tool for discovering semantics for schemas in termgeof@Ms, many database
schemas were developed independently from different conceptualsaatfe therefore do not as-
sume that schemas are connected at the CM level. We focus on exploitirentaatic information
encoded in different CMs for discovering possible relationships betwebemas. The underly-
ing assumption is the same as that for discovering schema semantics, thekiisg $er a pair of
“semantically similar” associations in different schemas. To do this, the Chlise@ated as graphs
and the semantics of each relational table is a tree called s-tree. Givermfaceetespondences
between schema elements, we first identify sets of concept nodes in theaphbkg The algorithm
then focuses on finding compatible conceptual subgraphs in both CMgrgmally, these pairs of
compatible subgraphs are translated into algebraic expressions ovenémesselements. A pair of
algebraic expression gives rise to a schema mapping expression. f2uineental results show that

the semantic approach outperforms the traditional techniques in terms ofloathand precision.

The key innovations that we have made in developing the solution to semargimachapping
is that we bring the necessity of explicit representation of semantics ferrshto the forefront
of data integration and we exploit a kind of semantics for improving schemaintapg/e expect

more work ahead for representing and exploiting the full semantics ofusadatabase schemas.

160

7.2 Future Directions

Although we have made significant progress on the problem of discgvenith using semantics for
database schemas, we believe that what we have tackled is just a tip oftbryicepresenting the
long-standing problem of understanding data semantics. To achievedahefg@amless semantic
integration over heterogeneous and multiple information systems, substaskaiemain. We now

discuss several immediate future research directions.

Mapping between CMsOne problem is to discover complex semantic mappings between CMs.
Although we have developed solutions for discovering a semantic mappimgiatabase schemas
to CMs and for discovering schema mapping, it is unclear whether the s@atierirectly applica-
ble for discovering semantic mappings between CMs. What is clear is that&id4o have more
complex structure and richer semantics. A CM language often providel aaiof constructs for
modeling a subject matter. This increases the difficulty in discovering semarigimga between
CMs because there are more variations for modeling the same real wortd. dbjpmetheless, many
applications demand establishing semantic mappings between various CMemi@nt exam-
ple is the Semantic Web, where data are annotated with domain ontologies. It Bsibiipdhat a
single ontology or a few monolithic ontologies would dominate the Semantic Weteabhsdata
would be annotated with numerous, different ontologies. A pressindguoim the realization of

the Semantic Web is to connect these ontologies by semantic mappings.

Although ontology mapping has attracted a steady attention since the adwvet 8émantic
Web, little effort has been put into deriving complex mapping expressietneden ontologies. Most
of the current solutions focus on producing correspondences betsirgle elements in ontologies,
e.g., a concepf’; in an ontology is a synonym of the concepf in another ontology. A semi-
automatic and interactive approach similar to what we have developed in théstdigon would be

appropriate for deriving complex mapping expressions for CMs.

Semantic Mapping ManagementThe second direction is mapping management including main-
taining semantic mappings associated with design process and adapting rmaghérgdomain

models evolve. As we have observed, current practices in databsigm di® not keep the con-

161

ceptual models for late use. One way to reduce legacy data is to maintain thetisemeapping
associated with database design process. A key problem of the mainténtrateschemas change
constantly due to the open and dynamic application environment. When a setielves, the cor-
responding CM and the semantic mapping also need to adapt the schentat®reva order to

maintain the validity of the mapping.

Semantic Mapping CompositionThird, composing a series of semantic mappings to reach a di-
rect mapping is a natural application. Suppose we have a situation wharprdsiders willingly
connect their data sources to acquainted sources and these soarcesrected to other acquain-
tances. A similar situation is that different databases are derived froomanon CM or that
database schemas are connected at their CM level. In almost all these s#uatimantic map-
ping composition plays an important part in direct information exchange ketagurces without
direct mappings. Current solutions for mapping composition focus on mggppetween relational
database schemas. Such a mapping often is specified in the form of-souacget tuple generat-
ing dependency (see Section 2.1). It is worth investigating the compositisenedintic mappings
from two different database schemas to a CM with rich semantics. Moreammaposing a semantic
mapping from a database schema to a CM with a semantic mapping between twalCiénarate

a new semantic mapping for the database schema.

Integrating Schema Matching ToolsThe fourth future work direction is to integrate the schema
matching tools with our tool to achieve fuller automation. Simple corresponddreteveen ele-
ments in different domain models play a key role in our solutions to both the pnaifldiscovering
semantics and the problem of using semantics for database schemasw8dtare assumed that
correspondences are available and there are no questions aboatuh&cs of correspondences.
Almost all schema matching tools, however, are semi-automatic, needing huteareiion in
choosing desired results. Integrating such schema matching tools with taifaoes many chal-
lenges. The biggest one is that the correspondences generatedhmn@asmatching tool may be
ambiguous or incorrect. If we expect to achieve full automation, thesesmndences would be
fed into our tool as part of the input. As a result, the final mapping exipressay be meaningless

and useless. We believe that the semantic information available in both schath@sla can be ex-

162

ploited to inspect the input correspondences in order to generate medmagfping expressions.

Substantial work remains.

Exploiting Data Instances for Ordering the CandidatesA fifth direction is to prioritize the map-
ping candidates according to data instances. A database often has tatadasaccompanying its
schema. A mapping relating a domain modé|l to another domain modé@l/, can be applied to an
instance ofM/; as a query, generating a new instancelfty. If there is an existing instance of,,
we could compare the new generated instance with the existing one in termsmef‘distance”
criteria between them. The closer the two instances are, the higher the pisaggigned to the
mapping. In addition, comprehensive machine learning techniques caeti¢audiscover semantic

patterns for the same purpose.

Better User Interface for Interaction Finally, we need better user interfaces for efficient interac-
tion. The solutions we have developed must interact with the user in ordeive at the final cor-

rect mappings. We consider the development of user-friendly interfacefficient user interaction

is one of the most important problems in developing various mapping tools. uegperience
working with the MAPONTO tool shows that the user can easily get frustrated in browsing large
scale and complex schemas and CMs for verifying the mappings genesatbd tool. Current
data integration systems may involve hundreds and thousands diffetabtidas and conceptual
models. Consequently, a great number of mappings need to be verifiedlipdafore meaning-

ful data integration is provided. A fundamental criterion in developing iatexr$ for efficient user

interaction is to minimize the user input and maximize the yield of the input.

Bibliography

[ABFS02] B. Amann, C. Beeri, I. Fundulaki, and M Scholl. Ontology-dxhsntegration of
XML web resources. IfProceedings of the International Conference on Semantic

Web (ISWC)pages 117-131, 2002.

[ABMO5a] Y. An, A. Borgida, and J. Mylopoulos. Constructing Complean@ntic Mappings
between XML Data and Ontologies. Rroceedings of the International Conference

on Semantic Web (ISWQ)ages 6-20, 2005.

[ABMO5b] Y. An, A. Borgida, and J. Mylopoulos. Inferring Complex 8antic Mappings be-
tween Relational Tables and Ontologies from Simple CorrespondencBsodeed-
ings of International Conference on Ontologies, Databases, and Apipinsaof Se-

mantics (ODBASE)pages 1152-1169, 2005.

[ABMO6] Y. An, A. Borgida, and J. Mylopoulos. Discovering the Semasitaf Relational
Tables through Mappingslournal on Data Semantic¥11:1-32, 2006.

[ABMMO7] Y. An, A. Borgida, R. J. Miller, and J. Mylopoulos. A SemantiggAroach to Discov-
ering Schema Mapping Expressions.Aroceedings of International Conference on

Data Engineering (ICDE)2007.

[AD98] S. Abiteboul and O. M. Duschka. Complexity of answering quetiging materialized
views. InProceedings of the ACM Symposium on Principles of Database Systems

(PODS) pages 254—263, 1998.

163

[AKS96]

[ALO5]

[ALMO2]

[AMBO6]

[An06]

[And94]

[B02]

[BBB+97]

[BCH*05]

[BE97]

164

Y. Arens, C. A. Knoblock, and W. Shen. Query reformulatfondynamic informa-

tion integration.Journal of Intelligent Information Systen®(2-3):99-130, 1996.

M. Arenas and L. Libkin. XML Data Exchange: Consistency &ery Answering.
In Proceedings of the ACM Symposium on Principles of Database Syst@DS{|P
pages 13-24, 2005.

F. A., C. Li, and P. Mitra. Answering queries using views with anithtic compar-

isons. INACM Symposium on Principles of Database Syst@ages 209-220, 2002.

Y. An, J. Mylopoulos, and A. Borgida. Building Semantic Mappéfgom Databases
to Ontologies. InProceedings of American Association for Artificial Intelligence

(AAALI), 2006.
Y. An. http://www.cs.toronto.edu/"yuana/research/maponto/ schepping. 2006.

M. Andersson. Extracting an entity relationship schema fromaioaal database
through reverse engineering. Pmoceedings of International Conference on Concep-

tual Modeling (ER)1994.
F. Baader et alThe Description Logic HandbookCambridge University Press, 2002.

R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler, Aelad, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rusinkiewicz, R. Shea, C. Unniknran,
A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integratiomfof-
mation in open and dynamic environmentsPioceedings of ACM SIGMQIpages

195-206, 1997.

A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and R. PottingePToX: Mar-
ring XML and Heterogeneity in Your P2P DatabasesPtaceedings of International

Conference on Very Large Data Bases (VLDiges 1267-1270, 2005.

R. Barquin and H. EdelsteiRlanning and Designing the Data Warehoufeentice-

Hall, 1997.

165

[Ber03] P. Bernstein. Applying Model Management to Classical Meta Patdlems. In
CIDR, 2003.

[BGKT02] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, éragni, and
I. Zaihrayeu. Database Management for Peer-to-Peer Computing:iénVim The

International Workshop on the Web and Databa&89?2.

[BHPOO] P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. A vision fomnagement of
complex modelsSIGMOD Record (ACM Special Interest Group on Management of

Data), 29(4):55-63, 2000.

[BLHLO1] T. Berners-Lee, J. Hendler, and O. Lassila. The Semanéb . \8cientific American
May 2001.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative as&pf Methodologies
for database schema integratigxCM Computing Survey48(4):323—-264, 1986.

[BMO4] A. Borgida and J. Mylopoulos. Data Semantics Revisited.Ptaceedings of the
Workshop on Semantic Web and Databases (SWDB) in Conjunction witheheain

tional Conference on Very Large Data Bases (VLDOR)ges 9-26, August 2004.

[BMS84] M. L. Brodie, J. Mylopoulos, and J. W. Schmi@n Conceptual ModelingSpringer-
Verlag, New York, 1984.

[BROO] P. A. Bernstein and E. Rahm. Data warehouse scenarios foelmmmhagement.
In International Conference on Conceptual Modeling / the Entity Relationship A

proach pages 1-15, 2000.

[BS85] R. J. Brachman and J. Schmolze. An Overview of the KL-ONEwadge Repre-
sentation SystenCognitive Scienced(2), 1985.

[BSZ03] P. Bouquet, L. Serafini, and S. Zanobini. Semantic CoordinatioRroceedings of

the International Conference on Semantic Web (ISVEQ0)3.

166

[Cas83] M. A. Casanova. Designing Entity-Relationship Schemas foweZuional Infor-
mation Systems. IRroceedings of International Conference on Entity-Relationship

Approach (ER)1983.

[CBS94] R. H. L. Chiang, T. M. Barron, and V. C. Storey. Revensgieeering of relational
databases: extraction of an EER model from a relational databada.and Knowl-

edge Engineeringl2:107-142, 1994.

[CCGLO2] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. Dategimtion under

integrity constraints. IProc. of CAISE’'02, Toronto, Canada002.

[CD97] D. Chaudhuri and U. Dayal. An Overview of Data Warehougtdnd OLAP Tech-
nology. INnSIGMOD Record, 26(1)pages 65-74, 1997.

[CE87] B. Czejdo and D. W. Embley. An approach to schema integrationaeiy formula-
tion in federated database systemah3rd IEEE Conference on Data Engineering

pages 477-484, 1987.

[CGLT01a] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. fRd3ata integration

in data warehouseCooperative Information System€(3):237-271, 2001.

[CGLO1b] D. Calvanese, G. De Giacomo, and M. Lenzerini. Ontology tefgiration and inte-

gration of ontologies. IDescription Logics2001.

[Che75] P. Chen. The Entity-Relationship Model: Towards a Unified VieData. InPro-

ceedings of International Conference on Very Large Data Bases BY,LT975.

[CHS91] C. Collet, M. N. Huhns, and W.-M. Shen. Resource integratsamgua large knowl-
edge base in CarnotEEE Computer24:55—-62, Dec 1991.

[CMT77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctizeries in
relational data bases. Froc. of the 9th ACM Symp. on Theory of Computpeges
77-90, 1977.

[Cod70]

[CV92]

[DA83]

[DDHO1]

[DGLOO]

[DHM*04]

[DLD *04]

[DMDHO02]

[DMQO3]

[DNHO4]

167

E. F. Codd. A Relational Model of Data for Large Shared [Bataks. Communica-
tion of the ACM 6(13), 1970.

S. Chaudhuri and M. Y. Vardi. On the equivalence of reiverand nonrecursive
Datalog programs. IRroceedings of the ACM Symposium on Principles of Database

Systems (PODSpages 5566, 1992.

S. R. Dumpala and S. K. Arora. Schema Translation Using the ERgfationship
Approach. InProceedings of International Conference on Entity-Relationship Ap-

proach (ER) 1983.

A. Doan, P. Domingos, and A. Halevy. Reconciling schemasispatate data

sources: A machine learning approachSIiGMOD’01, 2001.

O. M. Duschka, M. R. Genesereth, and A. Y. Levy. ReimerQuery Plans for Data
Integration.Journal of Logic Programming43(1):49—-73, 2000.

X.Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang. Similaearch for Web
Services. InProc. of International Conference on Very Large Data Bases (VL.DB)

2004.

R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMB&covering
Complex Semantic Matches between Database SchemBsodaedings of the ACM

SIGMOD, pages 383—-394, 2004.

A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Le@aro map between on-

tologies on the semantic web. Rroc. of the International WWW Conferen@902.

D. Dou, D. McDermott, and P. Qi. Ontology Translation on the Seinafeb. In
Proceedings of Intl. Conference on Ontologies, Databases, and Appliseof Se-

mantics (ODBASER003.

A. Doan, N. Noy, and A. Halevy.Introduction to the Special Issue on Semantic

Integration ACM SIGMOD Record 33(4), 2004.

[Doa02]

[DP02]

[DROZ]

[EMO1]

[Fag06]

[FG92]

[FHHT06]

[FHMO5]

[FKMPO3]

[FKPO3]

168

A. Doan. Learning to Map between Structured Representations of Daih.D.

Thesis, University of Washington, 2002.

M. Dahchour and A. Pirotte. The Semantics of Reifying n-ary Relalips as
Classes. Innformation Systems Analysis and Specificatfmges 580-586, 2002.

H. H. Do and E. Rahm. COMA - a system for flexible combination diesta match-
ing approaches. IRroceedings of the International Conference on Very Large Data

bases (VLDB)2002.

D. W. Embley and W. Y. Mok. Developing XML Documents with Guatesd
“Good” Properties. IrProceedings of International Conference on Conceptual Mod-

eling (ER) 2001.

R. Fagin. Inverting Schema Mappings. Aroceedings of the ACM Symposium on
Principles of Database Systems (POD&)06.

M. M. Fonkam and W. A.G. Gray. An approach to eliciting the semaumticelational
databases. IRroceedings of CAISH992.

A. Fuxman, M. A. Hernandez, H. Ho, R. J. Miller, P. Papotti, and ap® Nested
Mappings: Schema Mappings ReloadedPoceedings of International Conference

on Very Large Data Bases (VLDB)006.

M. Franklin, A. Halevy, and D. Maier. From Databases to Daéags: A New Ab-
straction for Information Managemer8lGMOD Recorgd34(4), 2005.

R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data Exchar@gmantics and Query
Answering. InProceedings of International Conference on Database Theory ()}CDT

2003.

R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting to tle.GnProceed-
ings of the ACM Symposium on Principles of Database Systems (P QIE)

[FKPTO4]

[FLMO9]

[FWO04]

[GGM*02]

[GHS+95]

[GLR99]

[GMPQ*+97]

[GRO4]

169

R. Fagin, P. Kolaitis, L. Popa, and W. Tan. Composing Schemppithgs: Second-
Order Dependencies to the RescuePiceedings of the ACM Symposium on Prin-

ciples of Database Systems (POD&E)04.

M. Friedman, A. Levy, and T. Millstein. Navigational plans fortdantegration. In

the National Conference on Artificial Intelligenck999.

D. C. Fallside and P. Walmsley. XML Schema Part 0: Primer SecatitibE. In

W3C Recommendatiphttp://www.w3.0rg/TR/xmlschema-0/, October 2004.

A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneidge&ening On-
tologies with DOLCE. InProceedings of 13th International Conference on Knowl-
edge Engineering and Knowledge Management, Ontologies and the Sekveh
pages 166-181, 2002.

M. J. Garey, L. M. Haas, P. M. Schwarz, M. Arya, W. F. CodyHagin, M. Flick-

ner, A. Luniewski, W. Niblack, D. Petkovic, J. Thomas, J. H. Williams, and_E
Wimmers. Towards Heterogeneous Multimedia Information Systems: The Garlic
Approach. InProceedings of the 5th International Workshop on Research Issues in
Data Engineering - Distributed Object Management (RIDE-DOpgges 124-131,
1995.

F. Goasdoue, V. Lattes, and M. Rousset. The Use of Canguage and Algorithm
for Information Integration: The PICSEL Projed¢nternational Journal of Coopera-

tive Information System8(4):383-401, 1999.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaramaigayiv, J. D.
Ullman, V. Vassalos, and J. Widom. The TSIMMIS Approach to MediationtaDa
Models and Languaged. of Intelligent Information Systen(2):117-132, 1997.

F. Goasdoue and M.-C. Rousset. Answering Queries usingsVeeWRDB Perspec-

tive for the Semantic WebACM TOIT, 4(3):255 — 288, 2004.

[Haios]

[Haloo]

[Halo1]

[Halos]

[HCO6]

[HEH*98]

[HFMO6]

[HIMTO3]

[HISTO3]

[HRW92]

[Hulg4]

170

J.-L. Hainaut. Database reverse engineering

http://citeseer.ist.psu.edu/article/hainaut98database.html, 1998.

A. Y. Halevy. Theory of answering queries using viewSIGMOD Record (ACM
Special Interest Group on Management of Da§(4):40-47, 2000.

A. Y. Halevy. Answering queries using views: A survéL.DB Journal: Very Large

Data Bases10(4):270-294, 2001.
A. Halevy. Why Your Data Won't Mix ACM Queue3(8), 2005.

B. He and K. C.-C. Chang. Automatic Complex Schema Matching a&keb Query
Interfaces: A Correlation Mining ApproachACM Transactions on Database Sys-

tems 31(1), 2006.

J. Henrard, V. Englebert, J.-M. Hick, D. Roland, and J.-L. Hain®uogram Under-
standing in Databases Reverse Engineeringodtabase and Expert Systems Appli-

cations (DEXA)pages 70-79, 1998.

A. Halevy, M. Franklin, and D. Maier. Principle of Dataspagsstems. InProceed-
ings of the ACM Symposium on Principles of Database Systems (P QUI6)

A. Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazzdata management infras-
tructure for semantic web application. Pmoceedings of International Conference on

World Wide Web (WWW2003.

A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Sofee Mediation in Peer
Data Management Systems. Proceedings of the International Conference on Data

Engineering (ICDE)2003.

F. K. Hwang, D. S. Richards, and P. Wintérhe Steiner Tree ProblemAnnals of
Discrete Mathematics, 53, 1992.

R. Hull. Relative information capacity. 18rd ACM SIGACT-SIGMODpages 97—
109, 1984.

[Joh94]

[JS96]

[JTBMO6]

[KB99]

[KCO3]

[KCGS93]

[KFNMO4]

[Kim96]

[KLO1]

171

P. Johannesson. A method for transforming relational schartmsonceptual
schemas. InProceedings of the International Conference on Data Engineering

(ICDE), pages 190-201, 1994.

T. H. Jones and |.-Y. Song. Analysis of Binary/ternary Calitin Combinations
in Entity-Relationship Modeling.Data and Knowledge Engineerin@9(1):39-64,
1996.

L. Jiang, T. Topaloglou, A. Borgida, and J. Mylopouloscdrporating Goal Analysis
in Database Design: A Case Study from Biological Data ManagemenREIAQ6,
2006.

Z. Kedad and M. Bouzeghoub. Discovering View Expressifvom a Multi-Source
Information Systems. IfProceedings of International Conference on Cooperative

Information Systems (Coopl®Jages 57—68, 1999.

G. Klyne and J. J. CarrollResource Description Framework (RDF): Concepts and
Abstract Syntax W3C Working Draft 23, http://www.w3.org/TR/rdf-concepts, Jan-
uary 2003.

W. Kim, I. Choi, S. Gala, and M. Scheevel. On Resolving Schierfketerogeneity
in Multidatabase Systemgnternational Journal of Distributed Parallel Databases

1:251-279, 1993.

H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Mas The Protege OWL
Plugin: An Open Development Environment for Semantic Web Applications. In

Proceedings of International Conference on the Semantic Web (I2003.
R. Kimball. The Data Warehouse Toolkilohn Wiley and Sons, 1996.

C. Kleiner and U. W. Lipeck. Automatic Generation of XML DTDs froConceptual
Database Schemas. Gi Jahrestagung (1)2001.

[KLK91]

[Klu88]

[Kol0S5]

[KS97]

[KS03a]

[KSO03b]

[KX05]

[LCOO]

[Len02]

[LMSS95]

172

R. Krishnamurthy, W. Litwin, and W. Kent. Languages featufaisinteroperability
of databases with schematic discrepancieA@M SIGMOD pages 40-49, 1991.

A. C. Klug. On conjunctive queries containing inequalitiésof the ACM35(1):146—
160, 1988.

P. G. Kolaitis. Schema Mappings, Data Exchange, and Metadatead#snent. In
Proceedings of the ACM Symposium on Principles of Database Syst€)xSjP
2005.

M. Krippendorf and 1.-Y. Song. The Translation of Star Scheima Entity-
Relationship Diagrams. IREXA '97: Proceedings of the 8th International Workshop
on Database and Expert Systems Applicatiqgmege 390, Washington, DC, USA,
1997. IEEE Computer Society.

Y. Kalfoglou and M. Scholemmer. Ontology Mapping: The State efAlt. The
Knowledge Engineering Revie®8(1):1-31, 2003.

Y. Kalfoglou and M. Schorlemmer. IF-Map: An Ontology-Mappiklethod Based
on Information-Flow TheoryJ. on Data Semanti¢d:98-127, 2003.

Z. Kedad and X. Xue. Mapping Discovery for XML Data Integjom. In Proceedings

of International Conference on Cooperative Information Systems (SQ&005.

D. Lee and W. W. Chu. Constraint-Preserving TransformatiomfXML Document
Type Definition to Relational Schema. Rroceedings of International Conference

on Conceptual Modeling (ER2000.

M. Lenzerini. Data integration: a theoretical perspectivdrbreedings of the ACM

Symposium on Principles of Database Systems (PQOi8es 233—-246, 2002.

A. Y. Levy, A. O. Mendelzon, Y. Sagiv, and D. Srivasta\Answering queries using
views. InProceedings of the ACM Symposium on Principles of Database Systems

(PODS) 1995.

[LNES9]

[LRO96]

[LSO3]

[LSK96]

[MB*02]

[MBDHO5]

[MBHRO5]

[MBJK90]

[MBRO1]

173

J. Larson, S. Navathe, and R. Elmasri. A theory of attributévedégnce in database

with application to schema integratiolEEE trans. Software Engl5, 1989.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying Hetemgpus Information
Sources Using Source Descriptions. Rroceedings of the Twenty-second Interna-

tional Conference on Very Large Databases (VLORges 251-262, 1996.

L. V. S. Lakshmanan and F. Sadri. Interoperability on XML DateProceedings of

the International Conference on Semantic Web (ISVEQ)3.

A. Y. Levy, D. Srivastava, and T. Kirk. Data model and quewaluation in global
information systemsJournal of Intelligent Information Systenty2):121-143, Dec.

1996.

J. Madhavan, P. A. Bernstein, et al. Representing and reasabimgt mappings

between domain models. Proceedings of AAAROO2.

J. Madhavan, P. Bernstein, A. Doan, and A. Halevy. @srBased Schema Matching.
In Proceedings of the International Conference on Data Engineering BCpPages

57-68, 2005.

S. Melnik, P. A. Bernstein, A. Halevy, and E. Rahm. Suppgrixecutable Mappings
in Model Management. IRroceedings of ACM SIGMQR2005.

J. Mylopoulos, A. Borgida, M. Jarke, and M. Koubarakisielos: representing
knowledge about information system&CM Transaction on Information Systems

8(4):325-362, October 1990.

J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schernthimg with Cupid.
In Proceedings of the International Conference on Very Large Data b@4eSB),

pages 49-58, 2001.

174

[MFKO1] I. Manolescu, D. Florescu, and D. Kossmann. AnsweringlX®Queries on Hetero-
geneous Data Sources. Pnoceedings of Intl. Conference on Very Large Data Bases

(VLDB), pages 241-250, 2001.

[MGMRO02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: asatile graph
matching algorithm and its application to schema matchingPrbbceedings of the

International Conference on Data Engineering (ICDBages 117-128, 2002.

[MHO3] J. Madhavan and A. Halevy. Composing Mappings Among Data &surInPro-

ceedings of the International Conference on Very Large Data badd3g§) 2003.

[MHHOO0] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mags Query Discovery.
In Proceedings of the International Conference on Very Large Data BRQA4d3B),

pages 77-88, 2000.

[MIKS96] E. Mena, A. lllarramendi, V. Kashyap, and A. P. Sheth. GIRYER: An approach
for query processing in global information systems based on interoperati@ss

pre-existing ontologies. IRroceedings of CooplS’'9®ages 14-25, 1996.

[MIR93] R. J. Miller, Y. E. loannidis, and R. Ramakrishnan. The Usén&frmation Capacity
in Schema Integration and Translation. Rroceedings of International Conference

on Very Large Data Bases (VLDR)993.

[MM90] V. M. Markowitz and J. A. Makowsky. Identifying Extended EntiBelationship Ob-
ject Structures in Relational SchemadBEE Transactions on Software Engineering

16(8):777-790, August 1990.

[MRBO03] S. Melnik, E. Rahm, and P. A. Bernstein. Rondo: A Programmiftegfétm for
Generic Model Management. Rroc. of ACM SIGMOD2003.

[MS92] V. M. Markowitz and A. Shoshani. Representing Extended ER&ationship Struc-
tures in Relational Databases: A Modular Approad@M Transactions on Database

Systemgsl7(3):423—-464, September 1992.

175

[MvHO4] D. L. McGuinness and F. v. HarmelerOWL Web Ontology Language Overview

W3C Recommendation 10, http://www.w3c.org/TR/owl-features, 2004.

[Myl98] J. Mylopoulos. Information Modeling in the Time of the Revolutiomformation

Systems23:127-155, 1998.

[MZ98] T. Milo and S. Zohar. Using Schema Matching to Simplify HeterogeiseData
Translation. InProceedings of International Conference on Very Large Data Bases

(VLDB), pages 122-133, 1998.

[NA87] S. B. Navathe and A. M. Avong. Abstracting Relational and Hiehical Data with
a Semantic Data Model. IRroceedings of International Conference on Entity-

Relationship Approach (ER}1987.

[NBMO5] A. Nash, P. Bernstein, and S. Melnik. Composition of Mappingse6 by Embedded
Dependencies. IProceedings of the ACM Symposium on Principles of Database

Systems (PODS2005.

[NDHO05] N. F. Noy, A. Doan, and A. Y. Halevy. Semantic Integratiéh Magazine 26(1):7-9,
2005.

[NMO1a] N. F. Noy and M. A. Musen. Anchor-PROMPT: Using Nondab Context for Se-
mantic Matching. InNorkshop on ontologies and information sharing at IJCAI-2001

2001.

[NMO1b] N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-dbcontext for semantic
matching. InlJCAI-2001, Seattle, W/R2001.

[NMO3] N. F. Noy and M. A. Musen. The PROMPT Suite: Interactive [Bofor Ontol-
ogy Merging and Mapping. International Journal of Human-Computer Studies

59(6):983-1024, 2003.

176

[PBO3] R. A. Pottingerand and P. A. Bernstein. Merging Models Base&Given Corre-
spondences. IRroceedings of International Conference on Very Large Data Bases

(VLDB), 2003.

[PHO1] R. Pottinger and A. Halevy. Minicon: A scalable algorithm for a@smag queries
using views.VLDB journal 10(2-3), 2001.

[PKBT94] J.-M. Petit, J. Kouloumdjian, J.-F. Boulicaut, and F. Toumani. g€ueries to Im-
prove Database Reverse EngineeringPtaceedings of the 13th International Con-

ference on the Entity-Relationship Approach (Efjges 369-386, 1994.

[PS05] J. Euzenat P. Shvaiko. A Survey of Schema-based MatchipmpAchesJournal on
Data Semantig2005.

[PVMT02] L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and R. Fagdiranslating Web
Data. InProceedings of the International Conference on Very Large Datashase

(VLDB), pages 598-609, 2002.

[Qia96] X. Qian. Query Folding. IfProceedings of 12th International Conference on Data

Engineering pages 48-55, 1996.

[Qui68] M. R. Quillian. Semantic Memory. ISemantic Information Processingages 227—

270. The MIT Press, 1968.

[RBO1] E. Rahm and P. A. Bernstein. A Survey of Approaches to Autmn$echema Match-
ing. VLDB Journal 10:334-350, 2001.

[RGO2] R. Ramakrishnan and M. Gehri@gatabase Management Systems (3rd.@dgGraw
Hill, 2002.

[SdJPAO2] P. Sousa, L. Pedro de Jesus, G. Pereira, and F. BuAl@lustering relations into
abstract ER schemas for database reverse engineefiognce of Computer Pro-

gramming 45(2-3):137-153, 2002.

177

[She95] A. Sheth. Data Semantics: what, where and howPréiteedings of the 6th IFIP

Working Conference on Data Semantics (DS18P5.

[SJ95] l.-Y. Song and T. H. Jones. Ternary Relationship Decompo$Sti@tegies Based on
Binary Imposition Rules. IfProc. of 11th Int'| Conf. on Data Engineering (ICDE
'95), pages 485-492, March 6-10, 1995.

[SK92] A. P. Sheth and V. Kashyap. So Far (Schematically) yet So (S=nantically). In
DS-5 pages 283-312, 1992.

[SL90] A. Sheth and Larson. Federated Database Systems for Mandiginibuted, het-
erogeneous, and autonomous databa#€3M Computing Survey22(3):183-236,
1990.

[SMO1] G. Stumme and A. Madche. FCA-Merge: Bottom-up Merging of Omfiel®. In
Proceedings of Intl. Conference on Atrtificial Intelligence (IJGAdxges 225-230,
2001.

[Sou96] C. Soutou. Extracting N-ary Relationships Through DatabaserBe Engineering.
In Proceedings of International Conference on Conceptual Modeling,(B&jes

392-405, 1996.

[Sou98] C. Soutou. Inference of Aggregate Relationships throughtdaae Reverse Engi-
neering. InProceedings of International Conference on Conceptual Modeling,(ER

pages 135-149, 1998.

[SP94] S. Spaccapietra and C. Parent. View Integration: A Step Fdrw&olving Struc-
tural Conflicts. TKDE, 6(2):258-274, 1994.

[STHT99] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang, D. DeWitt, adduljhton. Re-
lational Database for Querying XML Documents: Limitations and Opportunitres.

Proceedings of the International Conference on Very Large Datab@4eDB) 1999.

178

[SY80] Y. Sagiv and M. Yannakakis. Equivalence among relationglressions with the

union and difference operatord. of ACM 27(4):633-655, 1980.

[U1100] J. D. Ullman. Information integration using logical views heoretical Computer

Science239(2):189-210, 2000.

[vdM92] R. van der MeydenThe complexity of querying indefinite informatidph.D. thesis,

Rutgers University, 1992.

[VMPO3] Y. Velegrakis, R. Miller, and L. Popa. Mapping Adaptation unggolving Schemas.

In Proceedings of International Conference on Very Large Data Bage®B), 2003.

[Wid95] J. Widom. Research Problems in Data WarehousindPréweedings of the ACM In-
ternational Conference on Information and Knowledge ManagemerN(EIpages

25-30, 1995.

[Wie92a] G. Wiederhold. Mediators in the architecture of future informasigstems.|EEE
Computer 25(3):38—49, 1992.

[Wie92b] G. Wiederhold. Mediators in the Architecture of Future InformatystemsIEEE
Compute 25(3):38—49, 1992.

[Woo75] W. Woods. What's in a link: Foundations for Semantic Networkd) | Bobrow and

A. Collins, editor,Representation and Understandirgcademic Press, 1975.

[WS84] J. A. Wald and P. G. Sorenson. Resolving the Query InferEngblem Using Steiner
Trees.ACM TODS 9(3):348-368, 1984.

[WVV T01] H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schusteddmann, and
S. Hubner. Ontology-Based Integration of Information - A Survey aftxg Ap-
proaches. IrProceedings of Workshop on Ontologies and Information Sharing in
conjunction with the International Joint Conferences on Atrtificial Intelligeeifid-

CAl), 2001.

[XEO3a]

[XEO3b]

[YMHFO1]

[YPO4]

[YPO5]

[ZM83]

179

L. Xu and D. Embley. Discovering Direct and Indirect MatcfersSchema Elements.

In DASFAA 2003.

L. Xu and D. Embley. Using Domain Ontologies to Discover Direal &mdirect

Matches for Schema Elements.3emantic Integration Workshop in ISWC,@B03.

L.L.Yan, R. J. Miller, L. Haas, and R. Fagin. Data-Drivenderstanding and Refine-
ment of Schema Mappings. Proceedings of the ACM SIGMQIpages 485-496,
May 2001.

C. Yu and L. Popa. Constraint-based XML query rewriting fatadintegration. In
Proceedings of ACM SIGMQ[pages 371-382, 2004.

C. YuandL. Popa. Semantic Adaptation of Schema Mappings wtieensas Evolve.
In Proceedings of the International Conference on Very Large Data b@4d3sB),

2005.

Z.Zhang and A. O. Mendelzon. A Graphical Query Langufagé&ntity-Relationship
Databases. IER'83 pages 441-444, 1983.

