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Abstract

Computer science literature, as many other natural systems behave, @rected graph—we
call it Citation Graph of Computer Science Literature, whose nodes arteardind edges are links
to the articles cited in a paper. With hundreds and thousands of publicagtirsggpublished
each year in computer science, people are more interested in exploringtheegehidden behind
such huge directed graph by modern graph-theoretic techniques. Istilig we constructed a
web robot querying the prominent computer science digital libRegearchindeto build citation
graphs. With the reasonable size citation graph in hand, we first verifegdhé in-degrees of
nodes(i.e., the citations of articles) follow the Power law distribution. Next,mpéyaa series graph
theoretic algorithms on itWeakly Connected Component, Strongly Connected Component, Bicon-
nected Component, Global Minimum Cut, Max-flow Min-cut and Dijkstra@test Path algorithm
and do numerical analysis of these results. Our study indicate that the cgedjgmformed by com-
puter science literature are connected very well and its widespreaéativity doesn’'t depend on
“hubs” and “authorities”. The experimental results also show that theanegpic structure of the
citation graph is different from the macroscopic structure of Web grdpikhwis Bow Tie model.
Also, based on the citation graph built by queryiRgsearchindewhich is a subset and snapshot
of whole citation graph, we provide the diameter measurements.
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1 Introduction

Many natural systems form a huge dynamic directed graph, such thabtles are the elements
of the natural systems and the edges are the interactions among these eldtesetarchers and
scientists from different fields have common interests to explore the fedtidden behind these
huge directed graph. Since for a huge directed graph, the number afties mnd edges usually
is millions and billions. It is infeasible to construct a detailed directed grapbtsteito depict it.
However, many researches have developed alternate methods to exulardliae the character-
istics of huge dynamic directed graphs. Particularly, the development ofmmaglaph theory and
graph-theoretic algorithms facilitates the study in these systems.

Developing and understanding huge dynamic networks greatly aid peopfédient and ef-
fective information location and knowledge discovery. For example, thearitgraph formed by
scientific literature whose nodes are articles and whose edges are linltslEsanited in a paper
conveys information about scholarly activities and spawns measuregeotiic productivity. In-
tuitively, well-known papers tend to be cited frequently and papers deaithghe same specialty
tend to connect to one another. There have been a number of sciengBtigations on quantifying
citations as measures of academic output. Nevertheless, interpreting linkgpd the citation
graph and offering insights into the nature of underlying inter-relatiossdiyzh as those among
people or specialties have not advanced greatly, and are still attrastiygramising.

People in Information Science have studied the output of science for nearg pased on ci-
tation and co-citation analysis. Bibliometrics, Informetrics are the technicaéador a range of
analytical methods using publishing materials to develop statistics, multidimensiahgesn Yet
the questions that what is the structure of citation graph? and what areperpes? still remained.
Now things have changed. There are more and more published repegeas available in WWW.
The emergence of digital libraries gives us the chance to explore citatiph gygemploying mod-
ern graph-theoretic techniqueResearchindg47], as one of such digital libraries, provides a very
convenient way to do computer science article search and allows peo@artdgelevant papers
by navigating the links between papers formed by the citations, i.e., nhavigatimg ctation graph
to find useful information. Given a such easily accessible digital libraigoafiputer science liter-
ature, we are eager to explore the Citation Graph of Computer Scienceliiteaad mine its link
structure for structural pattern discovery.

The following considerations motivated our study. Understanding the lirddagy of the cita-
tion graph using graph-theoretic tools may:

1. yield valuable insight into other citation or co-citation analyses.

2. facilitate knowledge discovery relying on link information such as similaritgutation, and
finding communities.

3. help in citation graph visualization.

4. help evaluate the evolution of specialties or research themes over time.

Motivated, we constructed a web robot to quBgsearchindeto extract and build the citation
graph autonomously. Due to the time and space limitation, the constructed citajmnigronly a
shapshot and subset of real citation graph of computer science lierdtuthis citation graph, we
did three sets of experiments: 1. generated the in- and out- degreeead disttibutions, verifying
that they follow the ubiquitous Power law distribution. 2. applied a seriehgregoretic algorithms
on this graph, checking its connectivity and finding various types of comms. 3. using global



minimum cut algorithm sliced this graph into pieces, exploring its interior structWeswill report
our main results momentarily.

1.1 Main results

By constructing a robot for queryingesearchindexwe built a collection of citation graphs. The
results of our three sets of experiments on them indicated consistentiehestics existing among
them:the first set of experiments of being to generate in- degree distribstiomged that the in-
degree numbers follow Power law distribution with 1.71 as exponent, i.e.,abtdin of literature
with K citations is proportional ta /&'t

Our analysis of second set and third set of experiments, which ar&iogearious types of
components and applying global minimum cut algorithm, indicated~h&6% of all nodes form
a single Weakly Connected Component(WCC) if citations are treated as ctediredges. In such
giant WCC, almost 68.5% of the nodes have no any incoming link see Figwagfjesting that
68.5% of the publications have not been cited yet. Furthermore, in suchWi@e, around 58%
of the nodes account for a big Biconnected Component(BCC), and asthosst of nodes fall into
trivial BCCs each of which consists of only one distinct node. Our arsabfsthe big BCC shows
that there are 43% of its nodes without incoming link, and rest of its nodeshath incoming and
outgoing links. Instead of being Bow Tie model as web graph, the magrimsstvucture is a half
Bow Tie with one side wing cut off (see Figure 2).

papers inside this areg
haven't been cited yet.

S

papers inside this aree
have been cited.

w

Figure 1: The connectivity of the citation graph: 68.5% of the nodes in W& Imo incoming
link.

Treating the citations as directed edges in the citation graph, we showedelthtetted diam-
eter is 29. The diameter is defined as the maximum over all orderedpaiysf the shortest path
from u to v. However, the probability of existing a directed path between any pairdgss only
2%. The undirected diameter is 18 measured by ignoring the direction of edges.

The remainder of this thesis is organized as five additional sections arappeadix. Citation
and co-citation analysis in scientific literature has been studied for dedbidaglated to our work
in some point. Other related work is the efforts of characterizing and miningr ¢dinge scale
networks such as web graph, we discuss them in Section 2. In Sectiongdveve description of
the dataset which our study relies on. Graph theory terminology and algsrdls main tools for
this study are reviewed in Section 4. Section 5 contains the bulk of ourime@s and analysis of
results. Finally, Section 6 contains our conclusion and discussion o&fateas of research for the



papers form a biconnecte:
nucleus, it takes 58%.

Figure 2: The connectivity of the citation graph: 58% of the nodes in thd fieakly Connected
Component(WCC) account for a big Biconnected Component(BCC). 43temodes in the big

BCC have no incoming link.

citation graph. We demonstrate our robot algorithm for data collection andstishe consideration
for building citation graphs frorResearchindein the appendix A.



2 Related work and literature review

Broadly speaking, related prior work can be divided into three categljecitation and co-citation
analysis on scientific literature, including visualization of citation networkcl@yacterizing work
on other large scale networks, including various measurements, arftb¢® ef mining link struc-
ture of networks for information location.

In this section, when we discuss the prior related work, we always makesponding compar-
isons to our own study on the citation graph. The commonality consists in utilizaqghgheory
approaches for characterizing large scale networks as well as miningirtkéopology for efficient
and effective knowledge discovery.

2.1 Citation and co-citation analyses of scientific literatire

Many current approaches and algorithms for characterizing larde seworks such as World
Wide Web, extend the research in the field of bibliometrics. Bibliometrics is the stgritten
literature and their citation structure. Someone might think that our study on oitgtaph of
computer science literature is bibliometrics study on the citation of those literaBurteactually,
our work was inspired by work of characterizing Web graph. We areermierested in the graph
structure formed by citations of literature instead of impact factor of eaatearWe consider our
work is complementary to bibliometrics, and is a different view of citation strectiesearch in
bibliometrics has long been concerned with the use of citations to producditgtige estimates
of the importance and impact of individual scientific publication and journdlse most well-
known measure in this field is Garfield’'s impact factor[10], used to proemaputer-compiled
statistical reports of Journal Citation Reports(JCR) of the Institute fon8fieelnformation(1SI). It
is a measure of the frequency with which the average article in a journbbeascited in a particular
year of period. It is observed that the impact factor is a ranking scheseddundamentally on
a pure counting of the in-degree of nodes in the citation graph, but itmategive us any picture
of such graph. Bibliometrics can take a number of technical forms, aadkesized as follows:(1)
citation analysis: identify the number of times a specific publication is cited in ottientdic
publications, (2) co-citation analysis: identify pairs or groups of publioatibat are cited together
in other publications, (3) co-word analysis: assign keywords to a ptioiicdy a professional
reader; publications which have same keywords and sets of words leed lio each other via a
clustering technique, and (4) scientific mapping: develop a visual modekaoktim of scientific
fields representing the structure of literature output of particular sciefidlits.

Instead of analyzing the average or total number of citations such as ifapsmt Redner[26]
focuses on the more fundamental distribution of citations of scientific literatareely, the number
of papers which have been cited a totakaimes, N(x). The study in [26] is based on two rela-
tively large data sets: one is the citation distribution of 783,339 papers dhengeriod 1981-June
1997 that have been catalogued by the Institute for Scientific Informa8brifie second is the ci-
tation distribution , as of June 1997, of the 24,296 papers cited at leastdrich were published
in volumes 11 through 50 of Physical Review D(PRD), 1975-1994. ttagas on citations of pub-
lications rather than citations of specific authors. The main result of this &uldgt the asymptotic
tail of the citation distribution appears to be described by a PowerNgw) ~ ==, with a ~ 3.
Another important aspect of citation statistics is its continuing temporal evolutibis. f&ature is
nicely illustrated by the annual citation statistics of Physical Review D(PRD)iqations, where
the average number of citations for articles published in a given year isatiypiecreasing slowly
with time. The citation distribution provides basic insights about the relativelpofyuof scientific

4



publications and provides a much more complete measure of popularity thavettag@e or total
number of citations such as impact factor. [26] shows, at a basic level,pubkcations are mini-
mally recognized, with~ 47% of the papers in the Institute for Scientific Information(1SI) data set
uncited, more thaB0% cited 10 times or less, ard 0.01% cited more than 1000 times.

As scientific mapping, Chen [6, 7] develop a set of methods that extemtigramsforms tra-
ditional author co-citation analysis by extracting structural patterns frgemtfic literature and
representing them in a 3D knowledge landscape. [6] address the mrodbleffectively and in-
tuitively access and explore information in a digital library by a set of visatim tools. Their
work focuses on two major datasets: the ACM SIGCHI conference sepiggining 169 papers
published in three conference proceedings, and the ACM Hyperteemmmce series including
all the papers published in the ACM Hypertext conference procegdifgs-1998). In [7], the
authors show their procedure for extracting intellectual structure fr@ensfic literature. Their
approach to knowledge visualization work particularly well for identifyinteilectual groupings
based on an extension of the traditional author co-citation analysis. Hseilts reveal many chal-
lenges for understanding knowledge structure, they argue thatdeecdation analysis builds on
scientists’ long-established citation practice, approaches that focugbrb¥ged citation resource
hold promise. Our work is based on such citation resoResearchindexAs we listed above, the
visualization approaches of extracting intellectual structure from scielitédfature developed in
[6, 7] give useful insights into understanding the structure of citatioptgd scientific literature.
Users can apply such visualizations to discover patterns and make vaboaiplections between
articles. We consider that our work on characterizing citation graphiefific literature will shed
additional light on visualization of citation graphs.

2.2 Characteristics of large scale networks: Web graph

Consider the directed graph whose nodes correspond to static patiesweb, and whose edges
correspond to hyperlinks between these pages. A.Broder and otH8tstndy various properties
of this graph including its diameter, degree distributions, connected comizoad macroscopic
structure. They performed a number of experiments on web crawls fragn M99 and October
1999—-approximately 200 million pages and 1.5 billion hyperlinks. First, thefiegthe in- and
out- degree distribution follow the Power law distribution with exponent ascffirming it as
a basic web property. In their second set of experiments they studiedréieted and undirected
connected components of the web. Their analyses reveals an interasting pf the web’s macro-
scopic structure. Most (over 90%) of the nodes form a single comheamponent if hyperlinks
are treated as undirected edges. This connected component braatdlynanto four pieces. The
first piece is a central core, all of whose pages can reach one ambbing directed hyperlinks—
this “giant strongly connected component” (SCC) is at the heart of the Web second and third
pieces are called IN and OUT. IN consists of pages that can reachis®€€annot be reached from
it—-possibly new sites that people have not yet discovered and linked t®.00kkists of pages that
accessible from SCC, but don't link back to it, such as corporate welsitetaining only internal
links. Finally, the TENTRILS contain pages that can not reach SCC, andat be reached from
SCC. Perhaps the most surprising fact is that the size of SCC is relatiali~st comprises about
% of all pages. Each of other three sets contain about other ﬁhpmtions of all pages—thus, all
four sets have roughly the same size. They call it as Bow Tie model.

Defining the diameter as the expected length of the shortest path whereptwtation is over
uniform choices from the set of all ordered pairs of nodes) such that there is a path from
to v, A.Broder et.al in [3] show that the diameter of the central core(SCC)lmsaat 28, and that



the diameter of the graph as a whole is over 500. They show that formana@tosen source and
destination pages, the probability that any path exists from the source teestiaadion is only
24%. They also show that, if a directed path exists, its average length witidag &6, likewise, if
a undirected path exists, its average length will be about 6.

The work of A.Broder et.al in [3] confirms the early work of Barabasi([2, 2]) in which
Barabasi introduce the scale-free characteristics of random netwbek probabilityP (k) that a
vertex in the network is connected tmther vertices decays as a Power law in some large random
networks. Barabasi in [2] claim that the scale-free characteristics ieximany natural systems.
In particular, many of these systems form complex networks. For examyitey Bystems form a
huge genetic network, whose vertices are proteins, the edges mjprgghe chemical interactions
between them. Similarly, a large network is formed by the nervous systemewkdices are the
nerve cells, connected by axons. But equally complex networks oceocial science, where ver-
tices are individuals or organizations, and the edges characterize trectites between them, in
the business world, where vertices are companies and edges repiresese trade relationships. In
order to find the generic features of such network development, thégrexpe large database de-
scribing the topology of large network as WWW. To determine the local aziivity of the WWW,
they constructed a robot. The data were obtained from the complete map rd.gdidomain,
that contains 325,719 documents and 1,469,680 links. From the collectethdptdetermined
the probability P, (k)(P;,(k)) that a document hak outgoing(incoming) links follow a Power
law, with 2.45(2.1) as exponent. Another particularly important quantity ireeckeprocess is the
shortest path between two documentsijefined as the smallest number of URL links that must be
followed to navigate from one document to the other. They find that thegeesfd over all pairs
of vertices is 19. Connecting to its scale-free stationary state of largemandtworks, we expect
that citation graph exhibit the same scale-free state rather in differenbsizine issue is that what
is its exponent? Scale-free stationary state gives us such insight thatyweisheato understand the
link structure of citation graph by exploiting a subgraph, provided the siiiighas enough nodes
and edges.

2.3 literature review on mining link structure of large scale networks for informa-
tion location

Understanding the topology and local connectivity of large random m&saadlows us to predict
the behavior of diverse algorithms for locating information and patterns sethetworks. To my
understand, searching information and patterns in Hypertext strudiyresploiting link topology
started as early as Botafogo in [5] in 1991. The authors define two tyfpegortant nodes:index
and reference. Anindex node is a node whose out-degree is great@vérage out-degree, a refer-
ence node is a node whose in-degree is greater than average ie-dagreder to better capture the
notion of how complex a hypertext is, ttempactnesmetric is developed. Informally, the com-
pactness is measured by the distances between nodes. Giving the defiht@mnpactness, they
define a semantic cluster of a hypertext as a set of nodes and links Weatlaproperties:(1) they
are a subgraph of the hypertext, (b) the compactness of the subgrhaigihés than the compact-
ness of the whole graph. Having the definition of semantic cluster of hygpettey introduce two
types of algorithms to find semantic clusters in the hypertext:(1) Biconnectepgaments , and (2)
Strongly connected components. By analyzing the structure of a hypadieg both algorithms,
[5] show that it is possible to identify groups of nodes that have a highmsoralation. In citation
graph domain, we expect to find Biconnected component and Stronghgctad component struc-
tures. The main insight brought by [5] is that could we capture the notipalfcation community



by compactness? and how to identify communities in the context of citation graph?

Many achievements have been fulfilled in exploiting link topology of Web to loicédemation
in recent researches. Kleinberg[16] proposes an algorithm that giopic, finds pages that are
considered authorities on that topic. The algorithm, known as HITS, isllmasthe hypothesis that
for broad topics, authority is conferred by a set of hub pages, whiehezursively defined as a
set of pages with a large number of links to many relevant authorities. Syadigiftheir approach
mainly address the problem of distilling and filtering authorities from large volomeelevant
information. It consists of two processes: first, they need to constfocuaed subgraph of WWW
with these properties: (1) it's relatively small, (2) it rich in relevant pages, (3) it contains most
of the strongest authorities. Second, based on their hypothesis thattiediub pages which have
links to multiple relevant authoritative pages;hubs and authorities exhibit ecuddl be called a
mutually reinforcing relationship:a good hub is a page that point to many gaborities;a good
authority is a page that is pointed to by many good hubs, they apply a iterigtivélam to compute
the hub weights and authority weight of each web page. They show thaetters of hub and
authority weights correspond to the principal eigenvectors of matricesedférom the adjacency
matrix of the focused subgraph of WWW. The main concerns are fundafhedifferent from
problems of clustering. Clustering addresses the issue of dissectingegeeteous population into
sub-populations that are in some way more cohesive; thus, clusteringnsiicafly different from
the issue of distilling authorities from a relevant corpus of broad topics.hpothesis of hubs and
authorities exhibiting mutually reinforcing relationship on which the HITS algoritiased is not
likely to be expected in the context of scientific literature—citation graph. Vit&rbegan with the
goal of discovering authoritative pages, they are expecting mutuallyoreinfy relationship is the
intrinsic property of WWW. On the other hand, their approach in fact idexdtifi more complex
pattern of social organization on the WWW, in which hub pages link densalgéb of thematically
related authorities. This equilibrium between hubs and authorities is a phaoartieat recurs in
the context of a wide variety of topics on the WWW. But in the context of sifiediterature,
it has typically lacked, and arguably not required, an analogous fotimlaf the role that hubs
play in WWW. Therefore, when we explore citation graph of scientific litemgtwe have to avoid
the pitfalls of using the notions of hub and authority. We argue that the frankes¥ [16] seems
appropriate as a model of the way in which authority is conferred by hubas anvironment such
as the Web.

In addition to the two-level algorithm such as HITS in [16] to filter authoritiesirWWW,
there have been several one-level approaches to ranking pages @ortext of hypertext and
the WWW. Brin and Page [25] proposed a ranking measure based odeatmmode weight-
propagation scheme and its analysis via eigenvectors. Their approades dn a model in which
authority is passed directly from authorities to other authorities, without inéémg a notion of hub
pages. Such model is more likely to be expected in the context of citation gfaientific liter-
ature, therefore, we would like to say much about it here. They makefustk dopology of the
WWW to calculate a quality ranking for each web page; this ranking is callge®ank. They show
that PageRank is an objective measure of its citation importance that cordssgell with people’s
subjective idea of importance; we would have the same feeling in citation gfagaentific litera-
ture. Analogous to scientific literature, they calculate page’s importanceatitygoly counting the
citations of a given page. Instead of counting the citation directly, Page®dands this idea by
not counting links from all pages equally. It is worth noting a basic cangethe application of
this approach to WWW. The PageRank algorithm is applied to compute ran&#i tbe nodes in
millions pages of the WWW; these ranks are then primarily used to order thiksressubsequent
text-based searches. In the context of citation graph of scientific litetatermore concern finding



the activities of specialties instead of identifying ranks of all documents ¥draie.

There are many approaches in knowledge discovery or similarity calculzied on link analy-
ses of directed or undirected graphs representing the underlyingatRadiei and Mendelzon [22]
consider a question of finding reputation of a given page by analyzingiggborhood connection.
Specifically, in the context of Web, they propose two methods for computagetputation of web
page in terms of random walks on the Web graph. Their first method is loasede-level weight
propagation, PageRank, model proposed by Brin and Page [25jeadeheir second method is
based on two-level weight propagation, hubs and authorities modedgedpy Kleinberg [16].

Kumar and others [24] show that a large number of Web communities canridigtefrom their
signatures in the form of complete bipartite subgraph of the web based dwlbhand-authority
structure of community proposed in [16]. Their main concerns are to firmktimeplicitly defined
communities in the Web. Specifically, they mainly focus on the co-citation relaijpo$tvebpages
which occurs repeatedly. The main idea is that related pages are ftiygquefarenced together,
a phenomenon originated in the scientific literature. Their thesis is that co-gifatioot just a
characteristic of well-developed and explicitly-known communities but dy gaticator of newly
emerging communities. In other word, they can exploit co-citation in the welhgrmaextract all
communities that have taken shape on the web, even before the participeamtehlized that they
have formed a community. The process and results of trawling implicitly-defitlebdcommunities
indicate that hub-and-authority structure is well appropriate in the ermieath such as WWW. In
our citation graph of scientific literature domain, We also concern to find implidéfjre commu-
nities before participants have realized that they have formed such commjih&se communities
are early indicators of emerging specialties. The finding of emerging $jpesiaould be help for
researchers to justify their current research and identify their fuasearch direction.

There are two more types of efforts in finding relevancy among web phgasgh exploiting
link connection information of Web graph. One [8] such work is based erhtib-and-authority
structure proposed by [16]; another [12] is based on the graphetieatgorithm—Max-flow and
Min-cut—to identify web communities defined in terms of connectivity among wekbgqa

Dean and Henzinger [8] describe the Companion and Cocitation algorithrasalgerithms
which use only the hyperlink structure of the web to identify related webspabeeir Companion
algorithm is derived from the HITS [16] algorithm, and their Cocitation algamifinds pages that
are frequently cocited with the input page(that is, it finds other pagestbaiointed to by many
other pages that all also point to the input page).

Flake, Lawrence and Giles in [12] propose an efficient approach doVfiab communities by
computing Min-cut through Max-flow on a derived underlying local wedpdn. They argue that if
time and space complexity issues were irrelevant, then one could identify tighthterd commu-
nities by solving the problem as a balanced minimum cut problem, where thésgoglartition a
graph such that the edge weight between the partitions is minimized while maintpanitigpns
of a minimal size. But unfortunately, most generic versions of balanced mimioui graph parti-
tioning are NP-complete. If balanced restriction is removed, the algorithnsisre@®ut one will
suffer from the problem of highly unbalanced and trivial partitions inapbr In order to avoid the
problems mentioned above, they propose the approach to find communitiescmdax flow-
Min cuts algorithm with expectation maximization technique. They show that a coityrzam
be identified by calculating the — ¢ minimum cut of graph withs andt¢ being used as the source
and sink, respectively.In our domain of citation graph of scientific literatweenotice that since
we have a moderately size graph comparing to web graph, we would be abentiy research
communities by balanced minimum cut graph partitioning. Actually, we define atiomof com-



munity analogous to web community defined in [12], and we propose a heaigtioach to solve
the balanced minimum cut graph partitioning problem to identify communities in auexoof the
citation graph. We detail our approach in corresponding later section.



3 Description of dataset: digital library and autonomous citation in-
dex: Researchindex

Researchindejd 5] is a Web-based digital library and citation database of scientific litexathich
are accessible from WWW. Traditionally, most published scientific literatppears in paper doc-
uments such as scholarly journals or conference proceedings. ButhgiWWW becoming an
important distribution medium for scientific research, Web publications den @vailable, and
they also eliminate the time lag between the completion of research and the availdbdlitgho
publication in terms of paper documents. In order to assist the user in firelmgnt Web based
research publications, Bollacker, Lawrence and Giles[17] develGie&eeran “assistant agent”
which improves research paper searching. Their results producedimenent digital library and
citation database of Computer Science literaResearchindex

As a citation databas®esearchindekeeps staying up-to-date with recently published articles.
Researchindezhould complement commercial citation indices such as the Institute for Scientific
Information’s Science Citation Index(SCI). But in our study, we condidatResearchindeis suf-
ficiently accurate and useful. A citation index catalogues the citations thatiele anakes, linking
the articles with the cited works. Citation indices were originally designed mainlypformation
retrieval and to allow navigate the literature in unique ways, such as batkwtame(through the
list of cited articles) or forward in time(to find more recent, related articlelsg dvailability ofRe-
searchindexyrovides the opportunity to us to build snapshots of citation graphs of congmig¢eice
literature for our study by autonomously queryiRgsearchindex

As being the dataset of this studgesearchindekas its inherent shortcomings. First of all,
Researchindexvas created by a robot crawling the Web, the information of its databasetis tha
which is only accessible in the Web. Secondly, the same paper cited byediffarticles may
appear in different formats, it may not appear in the databag&eséarchindenniquely. Thirdly,
the database dResearchindernly gathers works in the Web beyond a point in time, older papers
may not present.

10



4 Terminology of graph theory and review of graph theoretic algo-
rithms

In this section we briefly review the topics of graph theory and useful tedogy as well as graph-
theoretic algorithms. More details about graph theory could be found ian@jin-depth develop-
ment and implementation of graph-theoretic algorithms are described in ddt&DA[19].

A graph(undirected) is a pai€’ = (V, E) of sets satisfyingz C [V];thus the elements of
are 2-element subsets df. The elements of/ are theverticesof graphG, the elements of¢
are itsedgesA graph with vertex seV’ is said to be a graph on The vertex set of a grapfi is
referred to ad/(G), its edge set a&(G). The number of vertices of a gragh is its order. A
vertexwv is incident with an edge e if € e. Two verticesz, y of G are adjacent, or neighbors, if
xy is an edge ofy. Two edges # f are adjacent if they have an end in common. If all vertices
of G are pairwise adjacent, the&ris complete A complete graph on vertices is aK™. Pairwise
non-adjacent vertices or edges are called independent.

LetG' = (V/,E'), if V/ C VandE’ C E, thenG' is a subgraph of, written asG’ C G. if
G’ C G contains all the edgesy € FE with z,y € V/, thenG" is an induced subgraph 6f.

Thedegreeof a vertexv is the number of edges incident@gtdenoted ad(v). A vertex of de-
gree 0 issolated The numbeb(G) = min{d(v)|v € V} is theminimum degreef G, the number
A(G) = mazx{d(v)|v € V'} is its maximum degredf all the vertices ofG have the same degrée
thendG is k-regular. The number

d(G) = |V1\ > d(v)

veV

is theaverage degreef G.

A non-empty graplts is called connected if any two of its vertices are linked by a patf.idr
is calledk-connectedf |G| > k andG — X is connected for every s&f C V with | X| < k. The
greatest integek such thatG is k-connected is theonnectivity<(G) of G. If |G| > landG — F'is
connected for every sét C F of fewer than/ edges, theid- is called! — edge — connected. The
greatest integdrsuch thatG is I-edge-connected is theglge-connectivity (G) of G.

An acyclicgraph, one not containing any cycles, is callddrast A connected forest is called
tree

Letr > 2 be an integer, A graply = (V, E) is calledr-partite if V' admits a partition into
r classes such that every edge has its ends in different classes: s/ertibe same partition class
must not be adjacent. When= 2, it is calledbipartite.

A directed graph (or digraphj)s a pair(V, E) of disjoint sets (of vertices and edges) together
with functions associating with eaehe E asourcesource(e) € V and atargettarget(e) € V.
In other words, each edge has teednodes, to which it is said to becident and a direction from
one(source}o another(target) The terminology and notation of digraph theory is similar to that
of undirected graph theory. In fact, to every digraph there corretpa graph, obtained by letting
the edges to be the edges and ignoring the edge directions. Two edgdigyodzh isparallel if
they have the same source and target, and a digregimseis it has no loops or parallel edges. A
digraph may be simple as a digraph, but not as a graph.

Given a digraph, the out-degreeof a vertexv is the number of edges incidentletting v as
source;then-degreeof a vertexv is the number of edges incidentetting v as target.

When we writee = vw, e € E for an edge of7, we mean that = source(e), w = target(e).

11
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An edge of a pattP = vy, e, v1, ..., ex, v IS forward if source(e;) = v;—1 andtarget(e;) = v;
and isreverseotherwise. A path in which every edge is forward igieected path or dipath A
directed cyclds a dipath that is also a cycle.

LetG = (V, E) be a directed graph and letandw be two vertices o7. w is reachablefrom v
if there is a path irG from v to w, i.e., if eitherv = w or there is a sequeneg, ....e;, of edges of7
with & > 1, v = source(ey), w = target(ex), andtarget(e;) = source(e;+1) forall 7,1 <i < k.

A directed graplt~ is calledstrongly connected from any node ofG there is a path to any other
node ofG. A Strongly Connected Component(SQ@Exn graphG is a maximal strongly connected
subgraphLEDA19] implemented a procedure to compute Strongly Connected Component as:

i nt STRONG.COVPONENTS(const graph & G node_array<int> & conp_num

This procedure returns the number of strongly connected componers afd computes a
nodearray < int > compnumwith encoding the strongly connected components;oflt runs
in linear timeO(n + m), wheren = |V| andm = |E|.

Let G = (V, E) be an undirected graph, Weakly Connected Component(WQ@CEY~ is a max-
imal connected subgraph 6f. The procedure implemented lifrEDA[19]

i nt COWPONENTS(const graph & G node_array<int>& conp_num

computes the number of connected component& ofit runs in linear timeO(n + m), where
n = |V]|andm = |E|.

A connected undirected gragh= (V, E) is calledbiconnectedf G — v is connected for every
v € V. Here

G—v=(V—-uv{eec Eandvne=10})

is the graph obtained by removing the verteand all edges incident tefrom GG. A Biconnected
Component(BCO}p a maximal biconnected subgraph. A verteg called acutvertexof G if G —v
is not connected. The procedureliBDA[19]

i nt Bl CONNECTED_.COVPONENTS( const graph& G edge.array<int> &
conmp_num

returns the number of bccs of undirected versiotzaind the running time i©(n + m).

Let G = (V,E) be an undirected graph(self-loops and parallel edges are allowedetn
w : E — R>o(R is real set) be aon-negativeveight function on the edges @¢f. A cut C of
G is any subset o with ¢ = C # V. The weight of a cut is the total weight of the edges crossing
the cut, i.e.,

w@= 3  we)

e€E;lenC|=1

A minimum cuis a cut of minimum weight. The function implementedBDA [19]

int MNCUT(const graph & G const edge._array<int>& wei ght,
i st<node> & C, bool use_heuristic=true)
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takes a graplix and a weight function on the edges and computes a minimum cut. The running
time of the algorithm i€ (nm + n?logn).

Let G = (V, ) be a directed graph, Istandt be distinct vertices itz andcap : E — R>o(R
is real set) be a non-negative function on the edgé&s.dfor an edge, we callcap(e) the capacity
of e. An (s,t) — flowis afunctionf : E — R>( satisfying the capacity constrains and the conser-
vation constrains:

(1)0 < f(e) < cap(e) forVe € £

(2) Ze;source(e):v f(e) = Ze;ta'rget(e):v f(e) forvu € V\{87 t}

We call s andt the source and the sink of the flow problem, respectively. The value @ina fl
f, denoted f|, is the excess of the sink, i.e.,

fl=" > flo- > fle

e;source(e)=t estarget(e)=t

A flow is calledmaximumif its value is at least as large as the value of any other flow. The function
implemented il .LEDA[19]

NT MAX_FLOWT(const graph& G node s, node t, const edge_array<NT>
& cap, edge._array<NT> & f)

computes a maximum floy in the network(G, s, t, cap) and returns the value of the flow.

We close this section with the famous max-flow-min-cut theorem(An) — cut is a setS of
nodes withs € .S and¢ not in .S. The capacity of a cut is the total capacity of the edges leaving the
cut, i.e.,

cap(S) = Z cap(e)

e€cEN(SXT)

Then

maz{|f|: fa(s,t) — flow} = min{cap(S) : S a (s,t) — cut}



5 Characteristics of the Citation Graph of Computer Science Litera-
ture

It has been observed that a number of random networks spannirigeasedfields as the WWW
or the people interaction social network exhibit consistent characterjgjitisat are independent
of the nature of the system and the identity of its constituents. One suchctdristic is that
the in- and out- degrees follow Power law distributions. In addition, with tlaahility of large
dataset of WWW, people have studied the linkage structure of web grajtiereloped approaches
of exploiting link structure for information discovery. People’s investigatibriscientific citation
numbers in Physics [26] only shows the existence of power law in degséibdtions without
exploring its citation graph. The availability of digital library and citation indexat@as us to
build the citation graph formed by computer science literature as an examplayefrietworks
with thousands of nodes and millions of edges. We now examine the Citatioilh Gf&mpmputer
Science Literature in greater detail. In this section, our study is answar#gigns such like: does
the citation graph, as other huge networks display, exhibits the power lawdi®n existing in
its degrees? how is the connectivity of the citation graph? can we find gaggranformation of
the citation graph by applying those developed efficient graph-theotgtidthms? what does the
macroscopic structure of the citation graph look like? Consequently, in tbi®sewe not only
verify its degree distributions, but also explore its connectivity, comporamisnterior structure.

5.1 Building Citation Graph by querying Researchindex

The first step of characterizing the citation graph is building it from citatidalmkse. After con-
structing a robot, we built citation graphs by queryiRgsearchindemautonomously. We choose
three subtopics of computer science as start points to fulfill our task ofibgiditation graph. The
three topics areNeural Networks, Automata and Software Engineering

After we provide the topics tResearchinde»t will retrieve 1000-2000 papers related to each
of these topics. For each topic, taking returned papers as a bagewetstart building citation
graphCG through following procedure:

1. while |CG| < predefinedthreshold and new paper is adding to g3
2 for each ve 3 has not been visited

3. add v’ s nei ghbors who point to v to g8

4. add v's neighbors to whom are pointed by v to g3
5 mark v visited

6 et CG be the graph induced by papers in g

7 end while

We have observed that there are two types of articld@dsearchindexone type of articles con-
tributes fully information to citation graph, they are Researchindex database; another type of
articles only contributes half information to citation graph, i.e., we have no wapaw who are
their references, they were brought ilResearchindeky references of other papers, but they are
not in Researchindéx database themselves.

After crawling for months, three citation graphs were built and one uniotiaitgraph was
created by combining these three citation graphs. A preliminary analysis adfibetion of citation
graphs is shown in Table 1.

14
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1) 2) 3) 4)
Number of | Number of | Number of papers Number of citations
papers papers without citation over (2)| of most-cited paper
be visited | in database

citation graph—N.N. 109,519 23,371 16,555 739

citation graph—Automata 117,702 28,168 19,809 503

citation graph-S.E. 94,179 19,018 12,934 186

union citation graph 261,708 | 57,239 37,348 739

Table 1: The preliminary analysis of the collection of citation graphs.

5.2 Measurements of Citation Graphs of Computer Science Liteature

In this section we describe empirical observations drawn from a numbeuraheasurement ex-
periments on the citation graphs obtained by querjRegearchindeas above. The measurements
include degree distribution results and diameters.

5.2.1 Degree distributions

We begin by considering the in-degree of nodes in the citation graph. itRigon with an inverse
polynomial tail have been observed in a number of contexts. The earbsstv@tion is in the
context of economic models [21]. Subsequently, these statistical belexierbeen observed in
context of literacy vocabulary [14], sociological models [13] étc’Most recently, people have
observed that the degree distributions in web graph [2, 3] and the saaritiftions [26] follow

power law as well.

In our context of citation graph of computer science literature, we alseredd that the in-
degree distributions follow a power law: the fraction of papers with in-elegiis proportional to

1/ for somey > 1.

Our empirical experiments on all three citation graphs built from differguittoas well as the
union citation graph confirmed this result at a variety of scales. In all tgseriments, the value
of the exponeny in the power law for in-degrees is a remarkably consistent 1.71.

Figure 3 is a log-log plot of the in-degree distribution of the union citation lyrde tail end
of the distribution is ‘messy’ - there are only a few papers with a large numibeitations. For
example, the most cited papers had 739 citations, but the next most cited hage639 citations.
It might be tempted to fit the curve in Figure 3 to a line to extract the exponeHbwever, there
are so few data points in that range, simply fitting a straight line to the data waddgt good
slope. To get the proper fit, we need to bin the data into exponentially wideabishown in Figure
4. The valuey = 1.71 is derived from the slope of the line providing the best linear fit to the data

in the figure.

The out-degree of a paper in our citation graphs depends on the age pépler, since older
papers will have fewer references that are in the database. Trertfese out-degrees do not give
an accurate picture of the out-degrees of nodes in the complete citatiors geayhtherefore their
distribution has not been considered here.

lsee[3]
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computer science literature:it subscribes to the power law with exponent=1.71
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5.2.2 Diameters

We turn next to the diameter measurement of citation graphs. In this studyathetdr is defined
as the maximum over all ordered pairs() of the shortest path from to v in citation graph.
We measured two types of diameters of citation graph: directed diameter dindated diameter.
Directed diameter is measured by directed shortest path or dipath, whileectedirdiameter is
obtained by treating edges without direction.

Before we measure diameters, we tested the connectivity of citation graphmaéundirected
graph. The results revealed that the citation graph is not connectedevdow 80% — 90% of the
nodes are in one connected component, while the rest form a few vetycemmponents. Details
are described in Section 5.3. Focusing on connected component, werendasdiameters upon
the giant connected component of citation graph.

Applying Dijkstra’s shortest path algorithm on the giant connected commpisécitation graphs
built from three different topics and union graph, we show the diameteliff@ment graphs in Table
2.

graph | directed | undirected
size diameter| diameter
citation graph—N.N. 23,371| 24 18
citation graph—Automata 28,168 | 33 19
citation graph-S.E. 19,018] 22 16
union citation graph 57,239| 37 19
average 29 18

Table 2: The diameters of citation graphs built from different topics asasgalinion citation graph.
Topic: N.N.: Neural Networks, S.E.: Software Engineering.

Ignoring the orientation of edges in citation graph, we observed that th#ooitgraph is a
‘small world’, the undirected diameter is around 18, consistent at varfedgales and topics. In
contrast, we don't have such ‘small world’ directedcitation graph. Our statistical study shows
that the probability of existing a directed path between any pair of nodedyi2éf) even though
the measured directed diameter is around 30.

5.3 Reachability and components

We now consider the connectivity of Citation Graph of Computer Sciencealtite, involving
examining the various types of connected components and reachabilitge$.nGiven a citation
graphG = (V, E), we will view G as a directed graph as well as undirected graph by ignoring the
direction of all edges. We now ask how well-connected the citation grajis isonnectivity can be
examined in terms of both directed version and undirected versiéh Bbr the undirected version

of GG, we ask: is the citation graph connected? what is its biconnectivity? Foiréeteat] version

of G, we make crucial use of the orientation of edges: is the citation graph Btromgnected?

We apply a set of algorithms that compute reachability information and struistigamation of
directed and undirected citation graphgeakly Connected Component(WCC), Strongly Connected
Component(SCC) and Biconnected Component(BCC)

As we mentioned before, we created three subgraphs formed by aréteesdrto three different
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topics and one union graph. These raw graphs contain both notResearchindex database as
well as nodes not iResearchindéxlatabase. We cleaned up raw graphs by discarding nodes who
are not inResearchindex database, keeping only the nodes that contribute full information to cita-
tion graphs. After clean up, the graph sizes become: subgraph commgn&ural networks papers
contains 23,371 nodes; subgraph coming from automata papers cor8di63 2odes; subgraph
coming from software engineering contains 19,017 nodes; union graghins 57,238 nodes (see
Table 1). Our connected component experiments are applied to thosectlgagraphs.

5.3.1 Weakly connected components

Mathematically, aMeakly Connected Component(W@Eundirected grapli = (V, E) is a max-
imal connected subgraph 6f. A WCC of a citation graph is a set of articles each of which is
reachable from any other if links may be followed either forwards or ac#ts. In the context of a
citation graph, links stand for the citations from one article to other articles icitée former one.
The WCC structure of a citation graph gives us an aggregate pictur@gpgof articles that are
loosely related to each other.

The results drawn from the weakly connected component experimentsatiorc graphs are
shown in Table 3. The results reveal that the citation graph is well corthecggnificant constant
fractiona 80% — 90% of all nodes fall into one giant connected component. It is remarkable that
the same general results on connectivity are observed in each of teddpie subgraphs. In turn,
the same behavior is observed for the union graph, suggesting a cegagewf self-similarity.

graph | size of largest percentage of size of second
size WCC largest WCC | largest WCC
citation graph—N.N. 23,371 18,603 79.6% 21
citation graph—Automata 28,168 | 25,922 92% 20
citation graph—S.E. 19,018 16,723 87.9% 12
union citation graph 57,239| 50,228 87.8% 21

Table 3: The results of Weakly Connected Component experiments onediffeitation graphs:
the majority & 90%) of articles are connected to each other if links are treated as without direc
tions.citation graph:N.N stands for Neural Networks; S.E. stands for Softlengineering.

Derived from the results of WCC experiments, a picture represents theected component of
the citation graph is shown in Figure 5.

5.3.2 Strongly connected components

We turn next to the extraction &trongly Connected Component(S@Cthe connected components
of the three topical citation graphs and their union grapltstdngly Connected Component(SCC)
of a directed graph is a maximal subgraph such that for all pairs of veftice) of the subgraph,
there exists a directed path (dipath) franto v. In the context of the citation graph, a dipath from

u to v means that article directly cites articlev or articlew cites a intermediate articke, w cites

next intermediate article and so on, until it reaches articliedirectly. Since there is a temporal
direction between citing article and cited article, if artigldirectly or indirectly cites article, then

v would not cite back ta:. As a result, we might expect that there is no SCC in the citation graph.
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Figure 5: The connectivity of the citation graph: around 90% of the nfadldato a giant connected
component, the rest forms a several very small components.

But contrary to our expectation, the results of SCC experiments on thetamtiet citation graphs
reveal that there exist one to three sizable SCC'’s in each of the citatiphgyias well as a few very
small SCC's. The results drawn from the experiments are shown in Table 4.

graph | size of largest size of second size of third
size SCC largest SCC | largest SCC
citation graph—N.N. 18,603| 144 14 10
citation graph—Automata 25,922| 192 29 24
citation graph-S.E. 16,723| 17 11 8
union citation graph 50,228 239 155 60

Table 4: The results of Strongly Connected Component experiments enediffcitation graphs:
there exist many small SCCs, among them there are one -three bigger SBE(Hst are even

smaller comparing those bigger ones. citation graph:N.N stands for Neetabhks; S.E. stands
for Software Engineering.

In order to know which publications formed the SCCs, i.e. how the directelé€yvere gener-
ated in those citation graphs, we extracted some SCCs from citation grappheamhed articles of
these SCCs directly iResearchindéx database to find their titles, abstracts, authors, journals and
published years. Our study shows that several types of publicatiomefbSCCs: (1) publications
written by same authors tend to cite each other, they usually produce setrstd2) publications
which are tightly relevant tend to cite each other, e.g., publications, whakeraun same insti-
tute, dealing with same specialty and getting published concurrently are haélant and tend to
cite each other, (3) publication which got published in different publicaifpes such as journals,
inproceedings or technical reports in different time formed directed syeith other publications.
Such a publication was considered as the same one during our creati@spwd citation graph.
(4) books or other publications which got published in several editiongfareht time often acted
as jump points in citation graph. Since different editions of publication weetedeas the same
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one node in citation graph, acting as jump point forming directed cycles in citgtaph; that is
the reason of the existence of one to three bigger SCCs, while (1) - (& tfparticles often fell
into even smaller SCCs containing 2-5 articles. For example, the paper en@gdifi Decision
Trees with Majority Votes(1997)” by R. Kohavi appearing on “Machireatning:Proceedings of
the Fourteenth International Conference” and the paper entitled “Datam@/using MLC++ — A
Machine Learning Library in C++(1997)” by R. Kohavi and otherseaming on “Tools with Arti-
ficial Intelligence” are cited by each other. One more example is, thereraeehapers who are pa-
perl entitled “Efficient Distribution-free Learning of Probabilistic Corts€p994)” by M.J.Kearns
et al. appearing on “Computational Learning Theory and Natural liegr@ystems, Volume |,
paper2 entitled “Toward Efficient Agnostic Learning(1992)” by M.J.iesaet al. appearing on “In
Proceedings of the Fifth Annual ACM Workshop on Computational Legriiimeory” and paper3
entitled “Learning Switching Concepts(1992)” by A. Blum appearing o®LT:Proceedings of
the Workshop on Computational Learning Theory” forming a directed ayclehich paperl cites
paper2, paper2 cites paper3 and paper3 cites the earlier appesfrpaperl on “In Proceedings of
the Thirty-First Annual Symposium on Foundation of Computer Scien®&&)19

A conceptual map that is elicited from analysis of results of SCC experimetiieounion ci-
tation graph is depicted in Figure 6. A number of small SCCs are embeddedéti eonnected
background net. This background net is a directed acyclic structurehieee is no directed cycle
in background net.

e R
scc
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Figure 6: The directed connectivity of the citation graph: a number of sn@llsSembedded in a
background net;the background net is a directed acyclic graph.

5.3.3 Biconnected components

We are not satisfied with the coarse structural information drawn from & j@riments on the
undirected version of the citation graph such that there exists a uniquecgramected component.
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However, our effort of further refining the structure of the citatiorpgray looking at SCC which
makes use of orientation of edges revealed that this giant connected membgoes not generally
contain any large strongly connected subgraphs—we couldn’t obtpiitieaggregate information
in terms of directed version of the citation graph. Consequently, we turdogus to stronger
connectivity measure in terms of undirected gragbennectivity

A Biconnected Component(BCiD)the citation graph is a set of nodes such that two nades
andv are biconnected if there is no third nodeso thatw lies on allu — v paths if links may
be followed either forwards or backwards. Applying the biconnectedpament algorithm on the
giant connected components of citation graphs, we find that each gianécted component of
each citation graph contains a giant biconnected component. The gianhbated component acts
as a central biconnected nucleus, with small pieces connected to this s\bgleutvertices, and
other single trivial nodes connected to this nucleus or some small piecemrsedree structure in
terms of biconnected components is a biparitfe= (A U B, E), whereA is the set of cutvertices
and B is the set of its BCCs. Thus, we can intuitively picture the structure of citatiaptgas
Figure 7.

®. represents cutvertex O, represents small BCC

— : short lines represent trivial BCCs.

Figure 7: The biconnectivity of the citation graph:a giant BCC acts as nsicleith small pieces
connected to it by cutvertices, and other single trivial nodes connectedcteus or some small
pieces. Such a bipartite is formed by a set of cutvertices and a set of. BCCs

The numerical analysis of sizes of BCCs indicated th&8% of all nodes account for the giant
biconnected nucleus, the rest40% of all nodes are in trivial BCCs each of which contains single
distinct node, remaining: 2% of all nodes fall into a few small pieces. A histogram of size analysis
is depicted in Figure 8. Our analysis of the big BCC shows that there areofiB%mnodes without
incoming link, and rest of its nodes have both incoming and outgoing links.

5.3.4 Aggregate picture

By performing a set of connected component algorithms, we are able toaslieijgregate picture
of the citation graph as an undirected graph. Our analysis of WCC exp#ringécates thats 90%
of the nodes form a giant Weakly Connected Component(WCC); suclyke giimant WCC can be
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Figure 8: Analysis of sizes of BCCs: average 58% of the nodes formi#im biconnected nucleus,
average 40% of the nodes are in trivial BCCs connected to other noal-BICCs, average 2% of
the nodes fall into a few small pieces. Citation graph:N.N. stands for NBlet&lorks, S.E. stands
for Software Engineering, Union stands for Union citation graph.

divided into two parts: one part contains almost 68.5% of the nodes witmyuinaoming link,
suggesting that 68.5% of publications have not been cited yet, anothecquaains the rest of
publications with at least one citation. Finally, in such a giant WCC, arouftl &nodes form a
big Biconnected Component(BCC) act as a biconnected nucleus, withsarfelvBCCs connected
to this nucleus by cut vertices, and all rest of nodes fall into trivial BE&sh of which consists of
single distinct node connected to this nucleus or some other small pieceag@itegate picture is
shown in Figure 1 and Figure 2.

5.4 Does connectivity depend on some key articles?

We have observed that the citation graph is well connected—90% of thes mmod giant connected
component containing another biconnected nucleus, 58% of the nodes,ti€at citation graph
as undirected graph. The result that the in-degree distributions folloRdiver law indicates that
there are a few nodes of large in-degree. We are interested in determimiriger the widespread
connectivity of the citation graph results from a few nodes of large imegegcting as “authorities”.
As to the out-degree, since we clean up the raw citation graph by discamfiteg without complete
contributions to the citation graph, the out-degree of the kept nodes dbestnally represent the
number of references of the corresponding papers. Yet we are &ilbgied in knowing whether
the connectivity of the citation graph depends on nodes with large outelegting as “hubs” in

the citation graph. We test this connectivity by removing those nodes with ilugegree or out-

degree, and computing again the size of the largest WCC. The resultscava i Table 5 and

Table 6.

Testing connectivity of union citation graph

Surprisingly, the results show that the widespread connectivity doedepaind on “hubs” and
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size of graph 50,228
k 200 150 100 50 10 5 4 3
size of graph | 50,222| 50,215| 50,152 | 49,775| 46,850 43,962 | 42,969| 41,246
after removing
size of largest| 50,107 | 49,990| 48,973| 43,073| 26,098 | 14,677 | 9,963 | 1,140
wcCC

Table 5: Sizes of the largest Weakly Connected Components(WCCs)noldess with in-degree at
leastk are removed from the giant connected component of union citation graph

size of graph 50,228
k 200 150 100 50 10 5 4 3
size of graph | 50,225| 50,225| 50,224 | 50,205| 48,061 | 43,964 | 42,238| 39,622
after removing
size of largest| 50,202| 50,202| 50,198| 50,131| 46,092 37,556 | 33,279| 26,489
wCC

Table 6: Sizes of the largest Weakly Connected Components(WCCs) vaues with out-degree
at leastk are removed from the giant connected component of union citation graph

“authorities”. Indeed, even if all links to nodes with in-degree 5 or higirerremoved(certainly
including links to every well-known articles on computer science), the gséipltontains a giant
Weakly Connected Component(WCC). Similarly, if all links to nodes with oureke@ or higher
are removed, the graph is still well connected. In order to measure how ¢ggdph connected after
removing “authorities ” and “hubs”, two histograms are obtained, repteggthe percentage of the
giant WCC over the graph after removing “authorities” and “hubs” in Fegluand Figure 10.

The analysis of sizes of giant WCCs indicate that “authorities” have mareyheafluence on
connectivity than “hubs”, relatively. Since even nodes with 3 out-deegre removed, there still
are more than 60% nodes falling in a giant WCC; in contrast, when “authOntiés in-degree 3
are removed, the graph has a great number of isolated componentsh€@uvaiions drawn from
widespread connectivity tests have two interesting aspects: first, theatonty of citation graph
is extremely resilient and does not due to the existence of “hubs” anddiatigls”; second, “hubs”
and “authorities” are embedded in a graph that is well connected withoutthdiibutions.

5.5 Minimum cuts

A question related to understanding the structure of the citation graph is hiimdtthematically
cohesive communities. So far, our study of various types of connecotedanents has resulted in a
well-connected citation graph with a giant biconnected nucleus. The nestign is whether there
is any further structure within that nucleus. We attack this problem using minicuti@gorithms,
both for global minimum cut and for minimum cuts between specific pairs ofsiode

Mathematically, an (edge) cuat of graphH = (V, E) is a set of edges which, when removed,

disconnect the graph. The size of a cut is the number of edges in the iwein & edge weight
functionw : £ — R, a minimum cut is a cut whose total weight is minimum.
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Figure 9: Analysis of sizes of giant WCC after removing “authorities”: thleght of each
bar indicates the percentage of the largest WCC of the graph after rgmowettes withk =
200, 150, 100, 50, 10, 5, 4, 3 in-degree.

The percentage of largest WCC after removing -?2;;325”3 > 200
nodes with greater out-degree > 150,
0> 100.
! o> 50.
0.8
The percentage of 0.6 > 10.
largest WCC
’ 04 m> 5.
0.2
0 m> 4.
1
o> 3.

Figure 10: Analysis of sizes of giant WCC after removing “hubs”. the hieigf each bar
indicates the percentage of the largest WCC of the graph after removidgs noith & =
200, 150, 100, 50, 10, 5, 4, 3 out-degree
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Our min-cut experiments focus on the giant connected component of citédion graph. After
extracting the giant connected componéht= (V, E') from the union citation graph, we assign
edge weightv(e) = 1, for all e € E, and we apply the global minimum cut algorithm &h In
order to explore the interior structure of grafih we implemented the min-cut exploring procedure
as below:

1 procedure ExploreM n_Cut(H = (V,E))

2 while |H| >0

3 compute mn-cut C of H

4, cal cul at e edge wei ght over crossing edge set F
5. let Hy=(C,E,) be graph induced by C

6 let Hy=(V—C,Es) be graph induced by V-C

7 Expl ore_M n_Cut ( Hy)

8 Expl ore_M n_Cut ( Hs)

9 end while

Most of the resulting cuts of the above procedure reveals are trivig] each of which separates
only one node from the rest of the graph.

When the procedurExplore Min_Cut(H) is applied to grapt{ recursively until the fragments
become trivially small, we find that the percentage of trivial cuts is 99%.

From these experiments we conclude that the interior link structure of the oitaph is dense;
also that there iso such explicit community information discernible through global minimum cuts,
and we need more sophisticated tools for finding communities in citation graph.

Since the global minimum cut approach does not give us communities, we tilma tomputa-
tion of minimum cuts between specific nodes. If two nodes are selected taglieldifferent topics,
then possibly the minimum cut between them might separate the papers belmiiadwo topics.
To investigate this hypothesis we selected authority papers (papers withradggree) belonging
to the topics of Neural Networks, Automata and Software Engineeringwar@bmputed the mini-
mum cuts of the union graph between pairs of such papers. For the mininmiworoputation, we
made two modifications to the (directed) union graph of 50,228 nodes:

1. We add the reverse edges to all the edges of the graph, so as tivelffeireat it as an
undirected graph.

2. We add node capacities equal to 1, by the following construction. ieceepach node by
two nodesv;,, andv,,; and an edge from;,, to v..:, and we connect all the edges int®o v;,, and
all the edges out of to v,;:. All edges have capacity 1, thus allowing us to associate capacities 1
to all the nodes, as well.

The resulting graph has 100,456 nodes.

From these experiments we obtain highly unbalanced partitions of the urgiph.grhe cut sizes
are similar to the in-degree of the nodes, and the smaller partition contains taa fiegs hundred
nodes while the larger partition contains the rest of the nodes (approxirS&t€i9o0).



6 Conclusion and future work

We now make conclusion of our work and indicate the revealed challengefitbre work needs
to resolve.

6.1 Conclusion

To the extent of traditional scientific citation analysis, our study of chariastg the citation graph
of computer science literature facilitates understanding the intellectual seadtucomputer sci-
ence based on citation index of computer science literature. First of all,etreeal distributions
provide basic insights about the relative popularity of publications in comgatence. At a ba-
sic level, most publications are minimally recognized— only 1/3 of publicationsite@, and 83%
of those cited publications are cited 10 times or less. Publication with citationtegtkan 10 is
relatively rarer. Secondly, being ignored the direction of links reprisg the citations from one
article to others, the citation graph is well connected, manifesting a ‘small wditavever, it is
worthwhile to note that the probability of existing a directed path between angfpaodes is only
2%, if the links may only be followed forwards. Thirdly, our approachfestrmctural analysis of ci-
tation graph augment the traditional citation co-citation analysis of scientifictlireraParticularly,
the integration of various citation patterns and the graph theoretic analgsides a rich represen-
tation of a knowledge domain. People can apply such structural analysisctivelr patterns and
make valuable connections between publications or authors.

6.2 Future work

There a number of interesting further directions suggested by this studst, the citation of a
scientific article is a function of time, suggesting that the structure of citatigphgisadynamic
instead of static. In real life, the reputation of paper is fading with time. Bualhpapers are being
known and forgotten in same time function. Intuitively, some well-known papes getting more
and more citations, then replaced by newly emerging papers in same spacalg/papers have not
been cited yet, probably never; some papers drew attention in a certimid pktime, then forgotten
quickly. All these varieties of citations affects the structure of citation goein time. We have not
taken time factor into consideration in our study of characterizing. Thera aumber of interesting
and fundamental questions that can be asked about the evolution of cgedjoim, involving both
evolution of in-degree of individual articles and evolution of link topologyttaf graph. With the
assistance of citation indices and digital libraries, we can easily build citatewhgrwith time
stamp and individual nodes with time stamps too. Applying same graph-thedggtigtam as in
this study, we can obtained more statistical measures relating to characterfistitzgion graph,
such that the life expectancy of computer science articles, age distributlonsover, it challenges
us to develop more sophisticated tools to study the evolution of local link steustwitation graph
for predicting the research trends. Also, we can study the life spareofaples and communities,
helping the researchers and scientists to predict their research outputs.

Second, there is a challenge of “hubs” and “authorities” analysis in citgtiaph. We have re-
viewed the related work for analyzing “hubs” and “authorities” in wekpgrin section 2. Although
we have claimed that scientific citation graph and web graph are goveyndiffdrent principles,
and the equilibrium between “hubs” and “authorities” is an appropriate hfodeertain environ-
ment such as WWW, we do notice that there are a number of ‘surveyrami@éw’ papers existing
in many specialties of computer science field. Kleinberg [16] has made a ebanmive compari-
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son of scientific citation standing and hub/authority measure in WWW. Outiqués whether to

ignore the existence of ‘survey’ or ‘review’ papers acting as “hubstientific citation. Since most
work in measuring the scientific citation is based on one-level model sucle aseatinod extended
by PageRank [25], we expect that such two-level [16] model as hthwety will give us insights

to identify authorities in scientific citation graph. All ‘survey’ and ‘reviewdgers acting as “hubs”
in citation graph emerged in a certain time when a specialty has developed taia seage. Com-
bining the evolution of graph discussed above, we can study the chahgjestions of papers cited
by “hubs” after survey or review. It will shed more lights on life spansmécialties.

Third, community identification and similarity calculation are still interesting problenstuidy.
People have developed many other approaches purely exploiting link gyptoldind communities
or compute similarity in web graph, involving hub/authority model[8], max flow-mitjx2]. The
hub/authority model focuses on distill authorities from a corpus of tonglef/ant pages, while
max flow-min cut has mainly been used in focused crawling. Both are effiaigh effective in
the sense of online replying. In the case of identifying specialties andcgregresearch trends in
long-term sense, we believe that graph decomposition and partitioningarepaiate models. It
should be pointed out that the balanced graph partitioning problem is MH2], but local search
strategies have been proposed for them [18, 11]. The strategyighiamgsweights to edges for
different relationships between nodes is still not fully understood inratelevel.

Finally, we believe that characterizing the link topology of scientific citatioplgitaas the po-
tential for beneficial overlap with a number of areas. one of these ardas field of information
retrieval. On the other hand, combining textural content of individuaée@s well as link topology
of citation graph leads us to a promising future of knowledge discovery inldingain of scien-
tific literature. One direction is how can we annotate autonomously the commurstes'ered by
graph partitioning process without human intervention? we expect theieetfy and effectively
discovering research patterns and filtering finer topics from broaahererwill boost the computer
scientists’ theoretical and practical research activities.
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A The citation graph in Researchindex

A.1 Article distributions in Researchindex

We apply a set of graph-theoretic algorithms on the citation graph to exploliektsopology.
There are several commercial citation indices such as ISI which contaimg sognce fields in a
single citation index. These citation indices of many science fields couple withather so that
to characterize citation graph in one special field becomes difficult byyongelSI citation indices.
Moreover, the term format in IS is more appropriate to researches imiafion science. Our goals
of study mainly focus on exploring the linkage structure of Citation Graphoofi@uter Science Lit-
erature. We observed that tResearchindeis an appropriate data resource for our study. We have
introduceResearchindeas a digital library of computer science literature in SectioR&searchin-
dexcontains almost all publications available across WWW and their citations in dengience
specialty. In this appendix, we introduce the considerations of queR@wparchindexo create
citation graph and algorithms of our robot. Before we construct anyt itobqueryResearchindex
we have to understand the operation mechanisnReskarchindex We need to answer several
qguestions as below:

1. What is the format of searching resultRésearchindeafter submitting a query term?

2. How to effectively and efficiently perform the Breadth-First SeancResearchindeio get
citation graph?

3. What does the citation graph roughly look likeResearchindex

The collection of computer science bibliographies[4] gives us the followsiatjstical data in Table
7 about the literature in computer science by Oct. 2000:

How many publications ilResearchindeéX In its homepage [15], it says that it contains around
300,000 documents and 4 million citations. But not all documents’ full-text altddferences are
available inResearchindéx databaseResearchinderontains two types of documents: one type
is that its full text had been downloaded into databasResfearchindeand its full references had
got parsed; one type is that only its citation information had been parsedfiefirst type of doc-
uments and its full text is not available in the databaseedearchindexThat means there are two
types of nodes in citation graph after queryiRgsearchindexone type of nodes have complete
contribution to citation graph; another type of nodes only have citation informatithout refer-
ence information, they have no complete contribution to citation graph. Whewollo¢ query the
database oResearchindext will retrieve both types of nodes, so it influence the effectiveness of
results of characterizing the citation graph.

Let’s define:

Complete node in citation graphThe retrieved node in citation graph has its complete incoming
links as well as outgoing links. In other words, if we start a certain seaggdrithm from this type

of node, we can reach its children as well as its parents.

End node in citation graph:The retrieved node in citation graph only has its incoming links from
other nodes, its outgoing links are lost. In other words, we couldn'’t fotldg/type node to reach
its children.

Let's guess how many complete nodesRasearchindexan be used to characterize the citation
graph:

(1) Using query topic: Neural Networks:
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Subject Area

Journal Articles

Conference Paper

sTechnical Report

All Entries

Others/Unclassifieds 155307 119198 13306 321341
Theory/Foundations of CS | 80255 34895 4828 135005
Mathematics 76043 5195 5795 99407
Artificial Intelligence 29460 29868 7405 90685
Parallel Processing 25930 28248 8717 75351
Computer Graphics 32649 20417 1555 61637
Technical Reports 303 467 53480 55235
Compiler 22003 10511 4805 48990
Softw.Eng./Formal Methods 17686 21363 2616 47607
Distributed Systems 18458 5199 2056 33163
Databases 11017 12387 2209 30607
Neural Networks 10605 6847 1470 23083
Human-Comp. Interaction | 5628 12150 17 20316
Operating Systems 9017 6611 564 18672
Typesetting 4769 1365 170 9368
Logic Programming 1993 4946 583 8648
Object-Oriented 1382 3048 939 7133
Wavelets 1338 381 353 2867
Total 503843 323096 110868 1089115

Table 7: Statistics for the computer science bibliography collection
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When we supply the query term “Neural Networks'Researchindet replies the result as:’'More
than 10,000 results found,only retrieve 200R€gsearchindegives the information of whether this
paper is in its database. Making a statistics on retrieved 1500 papers{Baserver is over-
loaded, thdResearchindeanly given 1500 results), we observed that 246 papers are in its databa
complete nodes, and 1254 papers are not in its database—end nodeferEheve could estimate
that only 16.4% papers are complete nodes in citation graph related to theNapiral Networks”,
83.6% papers are end nodes in citation graph related to the topic “Neuvabiks”.

(2) Using query topic:Information Retrieval:

When we supply the query term “Information Retrieval” Researchindexit found more than
10,000 papers, but only retrieved 1000 papers due to the overloadiagver. 175 papers are in its
database, 825 papers are not in database. Therefore, 17.5% pepeomplete nodes and 82.5%
papers are end nodes in citation graph related the topic “Information Ratriev

From the statistics’ point of view, we estimated that the citation graptesearchindelkas 17%
complete nodes, other 83% nodes are end nodes. From this conclusioayev® be careful when
we explore the citation graph, since the end nodes don't make completéatotrs to citation
graph.

The robot would querRResearchindeio obtain the citation graph using forward Breadth-First
Search, following the outgoing links of a set of start nodes obtained wspig searching. Since
we have estimated that there are 17% nodes are complete nodes, we satheif@utgoing links
to crawl the citation graph, but there will be a bunch of nodes only hatgommg links—in other
words, they may be new publications haven't been cited by others yé&lipee11).

NEW part >D >D
END part
O gy
>—@

COMPLETE part
17%

Figure 11: The macroscopic shape of citation grapRé&searchindex83% nodes only have in-
coming links from others—they are end nodes—call them END part. 17%snuat only have in-
coming links, but also have outgoing links—they are complete nodes—call@@wWPLETE part.

A fraction of COMPLETE part only have outgoing links—those new papekgen’t been cited by
others—call them NEW patrt.

The BFS algorithm would probably lose them since they are no incoming lioks éthers. To
deal with this problem, there are two ways: first, we try to obtain as many stdesras possible to
perform forward BFS algorithm. Second, not only keep the outgoingeadjdist of each node, but
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also keep the incoming adjacent list of each node. we perform the BRShyoforwards, but also
backwards to create the citation graph as completely as possible.

A.2 Considerations on queryingResearchindex

Although there are many crawlers for crawling web pages, queResparchindeto create the ci-
tation graph has some special issues. We need some special considdaativawling the database
of Researchindex

A.2.1 Make sure that the citation graph is accurate

When we crawl the database Researchindefor building the citation graph, we start from a set
of nodes obtained by topic querying such that supplying the topic termra\&letworks” toRe-
searchindexo get more than thousands of links to the databagteskarchindexThose thousands
of links form a FIFO queue of crawler, one link represents a node in aitgtiaph.

NOTE:

1. How to compare two articles are exact same one during the BFS cramioggs?

2. Need to update the incoming and outgoing adjacent list of encounteded daring the BFS
crawling process.

3. How to deal with the timeout event when BFS is processing a child of a afbelehaving
updated the adjacency list of some incoming neighbors and outgoing neighfitbis node?
How to roll back? otherwise the citation graph is not accurate.

The Researchindeprovides two types of replied webpapes when retrieve citations for dfispec
paper: Context page and DOC page. The context page provides ¢theatfon such that: 1. How
many times this paper have been cited by others—incoming links. 2. A fractipapsrs which
citing this paper. 3. The most important part:its bibentry. Since that two phpeesthe exact same
bibentry is unlikely to happen, we use the bibentries of papers to companetthdecide whether
they are the same one. The DOC page provides the references of this {hepefore, we need
to extract this important information and follow them to get its children and uptiatmutgoing
adjacency list.

When forward BFS starts, crawler opens context pages to get thettyifenthe purpose to
compare papers. If this retrieved article hasn’t been processed, itgpdoc page to extract its
children. For each child, crawler needs to open each context pages ahild to get its bibentry
and compare to other retrieved papers and update its adjacent lists. Wheunttewent happens
during processing, we have to roll back or restore its links in the endeaigfor processing later.

A.3 High level design of robot for querying Researchindex

The crawler which is constructed for queryiRgsearchindeto build the citation graph has to be
able to deal with those questions mentioned in section A.2.1. The object diaggiaFigurel2.

From the object diagram, it can be found that there are several maieglass
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Poper '| ] Addresses ] O . AddressQueue
Id title,inNeighbors, | > = ContextUrl, <«
outNeighbors,address, DocUrl
isDone
1 1
1..%
CitationGraph Crawler
Nodes 1 1 <> AddressQueue, <>z
1 CitationGraph 1

%
d

ParseTokenList

d
HTMLTokenList

d
HTMLTokenizer

d
HTMLParser

HTMLTag HTMLText

Figure 12: Object diagram of crawler for queryiRgsearchindek)sing UML (Unified Modeling
Language) notations.
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class Paper:the node of citation graph holds its properties such as titeradjsts.
class Addresses:holds the context url and document Bégearchindex

class Neighbors:adjacent list avoiding duplicate items.

class CitationGraph:citation graph stored in Hashtable for efficientlyoraratcess.
class ParseTokenList:utility class to parse the answdReséarchindex

class Http:be able to deal with the timeout of socket connection witRelsearchindegerver.

N o A W doE

Other help classes: AddressQueue, HTMLToken, HTMLTokenH3$tylLTag, HTMLText,
HTMLTokenizer, HTMLParser etc.

The flow chart of crawler as Figurel13
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Figure 13: The flow chart of crawler for queryifgesearchindex
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A.4 Algorithm of robot for querying Researchindex

1. Initialize the addressQueue of papers from di sk;
2. Initialize the citationGaph from di sk;

3. Wile addressQueue is not enpty do

4, if nunber of retrieved papers greater than a threshold
5. Br eak;

6. Pop the head of addressQueue;

7. If context URL is not enpty do

8. Open cont ext page;

9. Deal with tineout;

10. Get title;

11. If it was retrieved

12. If it was processed

13. Go to 6;

14. Open docunent page;

15. Construct a new node;

16. Process chil dren page;

17. Updat e nei ghbors’ adj acent |ists;

18. Deal with tineout;

19. Add children’s addresses to addressQueue;
20. Add this node to graph;

21. End whil e;

22. Wite unfini shed addresses to di sk;

23. Wite graph to disk;



