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Abstract

The goal of this paper is to investigate the enduring problem of data semantics recurred in
the context of data integration and the semantic web. The investigation is based on two princi-
ples, correspondence continuum and semantic encapsulation. The correspondence continuum
postulates that data semantics amounts to a continuum of correspondences. The continuum
starts from linguistic structures, midway across models with richer semantics, in some point,
reaching the real world. The semantic encapsulation postulates that each model is equipped with
semantics as being represented by the semantic correspondence to other modeling structures.
The correspondences constitute the correspondence continuum which ultimately is grounded
on a domain ontology. In contrast to the semantic web, the real world semantics supplied by
the domain ontology will be reached through the chaining of correspondences. In doing this,
we propose a formal correspondence language inspired by the study in database query lan-
guages. We also study the compositionality of correspondences anchored in a correspondence
continuum. Furthermore, we examine the reasoning tasks and the corresponding algorithms for
deriving semantic mapping between database schemas. Mapping generation which is the key
issue in current data integration practices is carried out through correspondence composition
and query reformulation.

1 Introduction

Investigating and capturing the meaning of data is a long-standing problem in all of data manipula-
tion applications. Especially, in data integration and the semantic web the problem has been studied
by many researchers. As a result, two loosely coupled paradigms have found their way into the
two research areas. In data integration, a set of autonomous, heterogeneous, and distributed local
data sources contain materialized contents for answering query globally. The key is to specify the
mappings between local sources and a global schema. Much progress has been seen in the study of
schema integration and merging, schema matching, and schema mapping. In examining the seman-
tics of each source and schema, linguistic similarity and structural similarity are the primary vehicle
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for detecting and guessing the semantic correspondences between elements of different schemas.
Furthermore, data dependency theory also has been used in discovery of formal queries over source
and target schemas.

In the course of data integration research, people have realized the role of ontology as the shared
specification of conceptualization for an application domain. Many have attempted to introduce
ontologies into the data integration paradigm. However, the overall paradigm has gained little im-
provement and enhancement, because most of the efforts merely substitute an ontology described
in an existing data model for the global schema. Nevertheless, ontologies play a key role in the
paradigm of the semantic web [BLHL01], which is an extension of the current Web. The goal of the
semantic web is to give information well-defined meaning, better enabling computers and people to
work in cooperation. As a recent descendant of knowledge representation, the paradigm of the se-
mantic web makes use of knowledge representation languages and their rigorous semantic analysis
results.

As much of the semantic web research treats the web as a knowledge base abounding with the
definitions of meanings and relationships, it has been seen that disconnectivity between the semantic
web world and most of today’s data suppliers and applications emerges (also noted by [PSS02]).
The another problem that the semantic web paradigm is facing with is that the assumption about the
direct link from data to the authoritative ontology for a particular domain does not fit into today’s
data management practices well. Instead database designers and data management practitioners
prefer to represent and manage data using a best fitted approach chosen from a diverse range, and
data integration techniques restore links between most convenient data sets for interoperability (also
noted by [HIMT03]).

The disconnectivity as well as the commonality between data integration practices and the se-
mantic web proposals draws our attention again back to the key issue – capturing the meaning of
data. Based on the insights into the paradigms examined above, we postulate that the problem of
data semantics amounts to establishing and maintaining semantic correspondence from data to their
intended subject matter. From modeling point of view, the subject matter could be the states of
affairs of the real world, or it could be another modeling structure; however, in some point, some
modeling structures should have the direct correspondence to the states of affairs of the real world.
In a model world, we envisage a picture containing various modeling structures which are woven
together by inter-correspondences. The picture gives rise to our two investigation principles: corre-
spondence continuum and semantic encapsulation.

The principle of correspondence continuum enables one to carry out the semantical analysis of
a model through its correspondences to other modeling structures. The continuum starts from in-
tensional structures, midway across models with richer semantics, at some point, reaching the states
of affairs of the real world that the original structure were genuinely about. The second principle,
semantic encapsulation, postulates that each model should be equipped with its semantics which is
encoded in the correspondence to its subject matter. Brian Smith in [Smi87] philosophically stud-
ies the correspondence continuum in the context of analyzing knowledge representation systems
in general. We adopt the principle into the analysis of data semantics in information systems and
leverage the techniques in a set of rich and well-understood database schema mediation languages.
We show that the principles are well fitted into the paradigm of information exchange in a widely
distributed environment such as the Web.

The specific contributions of the paper are the following:
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� We propose the principles of correspondence continuum and semantic encapsulation, and we
show a framework for capturing data semantics.

� We classify the representations of semantic correspondence into intensional and extensional
ones. Different representations play distinct roles in the process of data exchange and in-
tegration. Leveraging the techniques of a set of rich and well-understood database schema
mediation languages, we propose a correspondence language which is able to capture both
intensional meaning and extensional meaning of correspondence. The formalism is the GAV-
like in data integration notation, and the correspondence language is a conjunctive query
involving selection, projection, and join. We believe both the formalisms and the language
represent a wide variety of applications.

� We show that explicit representation of data semantics in terms of correspondences enables
automatic reasoning upon it. The composition of correspondences makes two modeling struc-
tures reach their common ancestor. Techniques of answering and rewriting queries using
views provide approaches for deriving semantic mapping between arbitrary two schemas
with overlap. The derivation of semantic mapping shows that the explicit presentation of
data semantics can also verify the correctness of other mapping discovery tools.

Before we proceed, we want to make a clear distinction between the study of data semantics in
terms of semantic encapsulation and the study of the peer data management systems [HIST03,
HIMT03]. In the peer data management systems (PDMS), each autonomous peer semantically maps
its schema to other convenient peers. The study of PDMS is to characterize the query answering
ability over the peer-to-peer infrastructure, leaving the problem of specifying the semantic mapping
between peers untouched. In contrast, the study of data semantics aims to investigate and capture
the meaning of data for each individual data source. It happens to show a resemblance between
the correspondence continuum and the peer-to-peer infrastructure; however, they are two different
problems. One connection between them is that the study of data semantics could be one basis
of PDMS in characterizing the semantic mappings between peers. Of course, approaches to data
semantics would be helpful for a wide variety of data management problems.

The rest of the paper is organized as follows. We start to investigate data semantics from a
common database design scenario in Section 2, and we show the importance of correspondences
between models. In Section 3 we propose principles of correspondence continuum and semantic
encapsulation. We also present the correspondence language for characterizing both intensional
and extensional meanings of a correspondence. In Section 4 we continue the investigation of cor-
respondences in terms of reasoning tasks, and we show how to derive semantic mapping between
arbitrary schemas. In Section 5 we present related work. Finally, In Section6 we propose future
work directions and give conclusions.

2 Data Semantics in a Common Database Design Scenario

Database research and practices have provided a rich body of scenarios and examples for the in-
vestigation of data semantics and interoperability. In this section, we describe a common database
design and integration scenario. In which we argue that correspondence implies semantics.

Consider two universities, UofT and UofW, designing their student information systems, re-
spectively. Relational databases will be used to store operational data and XML files will be used

3



to publish data on the Web. Usually, the procedure is as follows: (
�
) database designers establish

conceptual schemas (e.g., Entity-Relationship schemas) by modelling the states of affairs of the
real world; (

���
) by some standard procedures, they translate the conceptual schemas into relational

schemas which are used to store the operational data; (
�����

) designers publish XML data on the
Web, in which the data are based on the relational database backend. Such a general procedure for
information system design is shown in Figure 1.

UNIV ERSITY

XML file Relational table

ER schema

University

designer

Figure 1: A university information systems design procedure

The database designers of UofT produce an Entity-Relationship schema for modelling their
subject matter. Let ����� denote the ER schema. A portion of ����� is shown in Figure 2. The ER
schema �	��� consists of elements such as entities, relationships, and attributes. Each element means
that it is the representation of the real world counterpart. For example, the student entity represents
the student objects in the university of UofT. From the extensional point of view, the content of
student database coincides the values or tuples of values for representing the students in UofT,
nothing else. However, there is a conceptual sense carried by the student entity. That is, the concept
of university student who is a person studying in an academic organization. We will distinguish
the conceptual sense of a modeling element from its extensional definition. We call it intensional
definition, and we will make use of it in the representation of data semantics.

Student

name address

Registration

degree

year

Person

Professorregistered supBy

level

dept

ssn

DepartmentworkOn

stuNo

Figure 2: �
��� : the Entity-Relationship diagram of the information systems of UT

For real data storage and management, the conceptual schema needs to be translated into a
logical schema such as a relational schema. Let � ��� denote the relational schema derived from � ��� .
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Several relations are shown in Figure 3. Apparently, there is a representational relationship from the
relational schema � ��� to the ER schema �
��� .

Student(stuNo, Name, Address, level, SupBy)
Registration(stuNo, Year, Degree, Dept)

Figure 3: � ��� : the relational schema of the information systems of UT

Finally,
� ��� denotes the XML schema shown in Figure 4 which is used for describing the in-

formation published on the Web. The information is based on the data stored under the relational
schema � ��� . Again, we can say that the XML schema

� ��� represents the relational schema � ��� in
a different structure.

In the same way, �
��� shown in Figure 5 denotes the ER schema of UW, and � ��� shown in
Figure 6 denotes its relational schema and

� ��� denotes its XML schema in Figure 7. Consequently,
we can characterize the corresponding relationships between schemas both intensionally and exten-
sionally. We set up the characterization as part of the goal of this paper.

UTDB:
Students: set of
Student

@level
StuNo
Name
Address

registrations: set of
Registration

Degree
Department
Year

Professors: set of
SupBy

@name

Figure 4:
� ��� : the XML schema of the Web-based information systems of UT

Student

name address

degree

year

UndergradStudentGradStudent

sno

advisor

DepartmentstudyIn

dptName

Figure 5: �	��� : the Entity-Relationship diagram of the information systems of UW
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GradStudent(sno, name, address, year, degree, advisor)
UndergradStudent(sno, name, address, year, degree)
StudyIn(sno, dptName)

Figure 6: � ��� : the relational schema of the information systems of UW

UWDB:
UndergradStudents: set of

UndergradStudent
Sno
Name
Address
Year
Department
Degree

GradStudents: set of
GradStudent

Sno
Name
Address
Year
Department
Degree

advisors: set of
Advisor

name
Department

Figure 7:
� ��� : the XML schema of the Web-based information systems of UW

Questions revolving around these schemas in terms of data interoperation/integration can be
raised as follows:

Question1. Finding the semantical mapping, � � � � � ��� , from schema � ��� to � ��� to merge data
from UofW onto UofT, or vice versa.

Question2. Finding the semantical mapping,
� ��� � � ��� , from schema

� ��� to
� ��� to merge,

translate, and integrate data on the website of UofW onto the data on the website of UofT, or
vice versa.

Question3. Finding the semantical mapping from the relational schema of one university to the
XML schema of another university, or vice versa.

Questions like these have been studied intensively and have drawn several lines of research in the
management of semantic heterogeneity. The purpose and the meaning of the semantical mapping
aside, there is a clear distinction between the lineal vertical correspondence of schemas, which is
derived from the modelling process in the designer’s mind, and the horizontal semantical mapping,
which is generated by tools or user between arbitrary schemas with overlap as shown in Figure 8.

Unfortunately, the vertical correspondences/relations between pair models/schemas are dis-
carded as soon as schemas needed have been derived. Consequently, in database research, a great
deal of attention has been directed into the development of various techniques of normalization
concerning some criteria such as information lossless and redundancy reduction. Data semantics is
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Figure 8: Lineal correspondence vs. semantic mapping.

merely presented through sets of integrity constraints, saying nothing about its correspondences to
real world objects. Information integration among multiple data sets is solved as long as the mean-
ing of data is entrusted to a small group of users and/or application programs. However, the terrain
of information integration has been expanded as wide as World Wide Web. We believe that keeping
the lineal correspondences between schemas for an arbitrary intelligent agent to process could be
an efficient and effective way of information gathering and sharing in a global scope. Thus it calls
for the formalism of the real world objects and a formal correspondence representation.

To complete the scenario, we assume the existence of a formalized domain ontology which
serves the role of the states of affairs of the real world. Let

�
denote the ontology. Such a ontology

prescribes common concepts, properties of a concept, and relationships among the concepts for a
class of academic organizations including universities. In a Description Logic [CLN98], the portion
of the ontology

�
is shown in Figure 9. The ontology described in a DL can be easily translated

into the description of the OWL which is the on-going standardization of web ontology language.

PERSON � LIVINGTHING ��� hasSSN.STRING � =1hasSSN ��� hasAddress.ADDRESS
��� hasName.PERSON-NAME ��� =1hasName.
PERSON-NAME ��� hasFirstName.STRING ��� hasLastName.STRING.
UNIVERSITY � ORGANIZATION ��� hasAddress.ADDRESS ��� hasName.ORG-NAME.
ORG-NAME � STRING.
UNIVERSITY-STUDENT � PERSON ��� hasStuno.STRING ��� =1hasStuno �
� registerAt.REGISTRATION ���
	 1registerAt ��� hasAdvisor.PROFESSOR.
REGISTRATION ��� ofUniv.UNIVERSITY ��� inYear.YEAR ��� withDegree.DEGREE �
� ofDept.DEPARTMENT
DEPARTMENT � ORGANIZATION ��� hasName.ORG-NAME ��� affiliatedWith.UNIVERSITY.
GRAD-DEGREE � DEGREE ��� hasName.{PhD,MSc,MEng,MA}.
UNDERGRAD-DEGREE � DEGREE ��� hasName.{BSc,BEng,BA}.
GRAD-REGISTRATION � REGISTRATION ��� withDegree.GRAD-DEGREE.
UNDERGRAD-REGISTRATION � REGISTRATION ��� withDegree.UNDERGRAD-DEGREE.
GRAD � UNIVERSITY-STUDENT ��� registerAt.(� withDegree.GRAD-DEGREE).
UNDERGRAD � UNIVERSITY-STUDENT ��� registerAt.(� withDegree.UNDERGRAD-DEGREE).

Figure 9:
�

: an ontology of academic organizations

By virtue of the ontology, we are equipped with the necessary formalism for the explicit spec-
ification of data semantics in terms of correspondence. The rest of the work is to investigate the
correspondence continuum and semantic encapsulation. Furthermore, we examine reasoning tasks
revolving correspondences and any practical application of data semantics presentation.
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3 The Correspondence Continuum and the Semantic Encapsulation

Schemas are useful for storing and querying data. As the product of the mental process of a designer,
a schema represents the designer’s intention for the structure of data as well as the meaning of data.
As shown in the common scenario in Section 2, a schema is not out of vacuum but derived from the
reflection on its intended subject matter. Data semantics is captured by principles of correspondence
continuum and semantic encapsulation presented as follows.

3.1 Correspondence Continuum

The traditional model-theoretic analysis treats semantics as suggested in Figure 10 . A source
syntactic domain as the set of elements for which semantics is to be given is identified. A semantic
domain or Domain of Discourse, roughly to be the elements of the syntactic domain are about, is also
identified. The semantic relation between domains, usually called the interpretation, is described
extensionally, in the sense that particular elements of the syntactic domain are mapped, piece-wise,
onto the corresponding particular elements of the semantic domain.

Syntactic Domain Semantic DomainInterpretation

Figure 10: The model-theoretically semantic analysis

As in relational database, a relation name with � attributes is viewed as an � -ary predicate
whose meaning is interpreted as a number of � -tuples in a particular domain. Tables are used to
stored tuples; therefore, a relational database is a particular finite interpretation of the set of first-
order formulas representing the relational database schema [Rei84].

Example 1. Consider the relation � ��� :Student(StuNo, Name, Address, Level, SupBy) in Figure 3.
If we have the following values in a particular university domain: { “B001”, “B002”, “B003”,
“Richard”, “Anthony”, “James”, “10 King’s College”, “20 Dundas”, “30 St. George”, “Grad”,
“Underg”, “Prof. Miller”, null}, then the following table defines a particular finite interpreta-
tion of the predicate Student(StuNo, Name, Address, Level, Supby):

StuNo Name Address Level SupBy

“B001” “Richard” “10 King’s College” “Grad” “Prof. Miller”

“B002” “Anthony” “20 Dundas” “Underg” null

“B003” “James” “30 St. George” “Underg” null

�

Generally speaking, the semantic domain can be any structure in terms of giving semantics to
the syntactic domain. In the case where the elements of the semantic domain are themselves syn-
tactic, bearing their own interpretation relation to another semantic domain, then the semantically
denotational relation is taken to be non-transitive. For example, when the name attribute of the
student relation in Example 1 is interpreted to the string “Richard”, the string “Richard” has its own
interpretation which is the name of the student who is Richard. However, we have not denoted the
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name attribute as the name of the particular student, Richard. Rather it is denoted as a syntactic
string, “Richard.” [We may think the other way around.]

For integrating two databases, the first thing to do is identifying the similar relationships be-
tween database objects. For automatic similarity identification, the meaning of an object can be
interpreted semantically by the correspondence to the schema element describing it, and the schema
element in turn is semantically corresponding to its subject matter. As a result, the two-level model-
theoretically denotational approach is inadequate to the complexities of a wide variety of semantic
correspondences in reality. Specifically, there is a rich body of other relations each of which has its
own right for the semantical analysis of the elements in a syntactic domain. Some of the relations
called genuine relations in [Smi87] include:

1. The specification relation, e.g., the relation between a program and the process it engenders;

2. The internalisation and externalisation relations, e.g., the relations between linguistic ex-
pressions used by a system to communicate with its users, and the internal structure inside
the system;

3. The implementation relation, e.g., the relation between the representation at one level, and a
representation at other lower-level in terms of which it is implemented;

4. The primary representation relation, e.g., the relation between a model and the states of affairs
in the world with which the system is concerned.

Particularly, the modelling relation can be composed as opposed to the denotational relation. For
example, a photocopy of the picture of the parliament building is a model1 of the picture, which in
turn is a model of the real building. But it is harmless to say that the photocopy is also a model of
the real building. In the common scenario example, we can say that the schema which is derived at
one step is a model of the schema on the previous step as well as the model of the subject matter of
the schema on the previous step and so on, as shown in Example 2.

Example 2. Consider the database design process of UofT: the Entity-Relationship schema � ��� in
Figure 2 is a model of the subject matter of the UofT university; The relational schema � ��� in
Figure 3 is a model of the Entity-Relational schema � ��� ; and the XML schema

� ��� in Figure 4
is a model of the relational schema � ��� . However, the modelling relations can be composed,
i.e., the XML schema

� ��� is also a model of the Entity-Relational schema � ��� as well as a
model of the university as shown in Figure 9 .

�

In database design activities, modeling is the common correspondence between schemas. Hav-
ing a chain of modeling correspondences from a schema element to the real world counterpart, we
may connect a database object to the real world object by the composition of modeling correspon-
dences. For example, by composition we may identify that the name attribute of the student relation
in Example 1 models the collection of the names of the students in UofT. The string “Richard” is
one of instances of name attribute; therefore, “Richard” is a student’s name who is in UofT. Now

1It should be clear that this model is different from the model of a logic in the model-theoretic sense.
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we need to present the correspondence continuum for a wide variety of semantic analysis situations
which show various relations beyond modeling correspondence.

The moral is this: all the genuine relations mentioned before as well as other relations cover the
whole spectrum of semantic relations. A given intentional structure – language, process, schema,
model – is set in correspondence with one or more other structures, each of which is in turn set
in correspondence with still others, at some point reaching the states of affairs in the world that
the original structures were genuinely about. It is the structure that is called the “correspondence
continuum” in [Smi87] as shown in Figure 11: a semantic soup in which to locate transitive and
non-transitive linguistic relations, relations of modelling and encoding, implementation and speci-
fication, and the rest.

House

Tree

Intentional
structure

Real world

Figure 11: The correspondence continuum (semantic soup)

Apparently, there must be some ways to store the states of affairs about the real world in infor-
mation systems. Thanks to the study of formal ontology. Now an ontology as the specification of
conceptualization for a particular domain can be reached among domain experts as well as general
users, and the ontology can be represented in formal languages and presented on the Web. Assum-
ing the existence of domain ontologies, we will focus on the particular correspondence continuum
consisting of specific semantic relations between database schemas as shown in Example 2. Next
section will discuss a formal representation of the correspondence.

3.2 Formal Specification of Semantic Encapsulation in Database Schemas

The principle of semantic encapsulation states that each schema comes with its semantics presented
in terms of the correspondence to other schema(s). The general structure of correspondence is
depicted in Figure 12. The set of elements in a database schema 1 have semantic correspondence to
the set of elements of another database schema 2 by taking certain circumstantial parameters into
consideration. For machinery, formalisms are needed. First, we introduce the basic formalisms
of domain ontology and various database schemas in Section 3.2.1. Next, we propose a formal
correspondence language for the encapsulation of semantics in Section 3.2.2.
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Schema 1 Schema 2

Circumstantial parameters

correspondence

Figure 12: The general structure of correspondence

3.2.1 Basic Formalisms

We primarily focus on three types of structures: domain ontology, Enriched Entity-Relationship
schema, and logical schemas including relational schema and XML schema. For each type of
structure we introduce a formalism as follows.

� Domain Ontology. As shown in Figure 9, a domain ontology is described in a Description
Logic which is fragments of First Order Logic and powerful enough to express a wide va-
riety of domain knowledge. Concepts and roles are unary predicates and binary predicates,
respectively. In addition, there exist decidable algorithms for reasoning the concept satisfi-
ability and subsumption in a domain ontology. We notice that the proposed Web Ontology
Language (OWL) has a formal semantics based on a Description Logic. It is appropriate to
assume that a number of domain ontologies will be available described by OWL language
with the proliferation of the Semantic Web.

� Enriched Entity Relationship Schema. The Entity-Relationship model is the standard con-
ceptual modeling technique for database design. The following formalism allows ISA-relationship
between entities and cardinality constraints on roles.

Let � be an alphabet partitioned into a set � of entity symbols, a set � of attribute symbols, a
set � of role symbols, a set � of relationship symbols, and a set � of domain symbols; each
domain symbol D has an associated predefined basic domain ����� .

An Entity-Relationship schema is a 5-tuple 	�
����������������������� �!�#"$���%�'& , where �(� is a
finite subset of � and � � 
 � �*) � �+) � �+) � �+) � � such that � �-, � , � �., � , � �., � ,
� �., � , and � �., � .

– �0/ � �-1 � � represents the ISA-relationship between entities.

– �����32 � � �46587 2�9;:=< 7 , � � ��9 , � ��> is a function mapping an entity to a set
of attributes.

– ��� �?2 � � �465A@(B 2#C B �EDFDFDF� @HG 2�C G :=< @HI , � � �JC I , � � � � 
LK%�EDFDF�NM > is a function
mapping an relation symbol to a tuple of entities with role labels.

– "$���%�O2 � �P1 � �P1 � � � QSR 1 � QTR ) 4VU > & ( QWR is the set of natural numbers)
is a cardinality function with the minimum cardinality as its first component and the
maximum cardinality as its second component.
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In a fragment of first order logic, symbols in � , � , and � are unary predicates, and symbols in �
and � are binary predicates. The � relation is interpreted as: ���H��C B ��� & � C�� ��� & & if ��C B �JC�� & , � .
Without labels in � , a relationship symbol in � can be viewed as an � -ary predicate if there are �

entities participating the relationship.

� Logical Schemas. At the logical level, relational databases and XML files are used to describe
the structures of data. Formally, a relation with � attributes is viewed as a � -ary predicate;
and the tree-like XML structure is formalized in nested relational model, as shown in the
following example.

Example 3. For the XML schema
� ��� as shown in Figure 4, the logical associations among schema

elements will be expressed in the form of logical relation as shown below:

(s.student.level, s.student.StuNo, s.student.Name, s.student.Address, r.Registration.Degree,

r.Registration.Department, r.Registration.Year | s � UTstudentDB.students, r � s.registrations)

represents registered students who have no supervisors, and

(s.student.level, s.student.StuNo, s.student.Name, s.student.Address, r.Registration.Degree,

r.Registration.Department, r.Registration.Year, p.SupBy.name | s � UTstudentDB.students,

r � s.registrations, p � s.Professors)

represents registered students who have supervisors.

�

In the next section, we will establish correspondences between the three types of formalisms
introduced above.

3.2.2 A Formal Correspondence Language

Notation Convention. Given a structure 	 
 ��� �
	 & where � is an alphabet and 	 is a set of
expressions over � in a language � � , 	 may be a type of ontology, conceptual schema, or logical
schema, we will refer to the elements of � as 	P2�C for an element C , � .

Semantic Correspondence. Consider the entity � ��� :Student in the Entity-Relationship schema � ���
in Figure 2, semantically, it models the students who are officially registered in the university UofT
and pursuing some kinds of degrees. Having an academic ontology

�
(Figure 9) abstracting con-

cepts and relationships among concepts for a class of academic organization, we can specify the
semantics of � ��� :Student in terms of a correspondence statement relating to an expression over

�
,

as follows:

��
�
:Student(x) � � :UNIVERSITY-STUDENT(x), � :REGISTRATION(y), ���UNIVERSITY(z),

� :registerAt(x,y), � :ofUniv(y, z), ��� hasName(z, “UofT”).

Intensional vs. Extensional Correspondence. Careful analysis reveals that elements of one struc-
ture may correspond to elements of another structure because they may have either similar sense
or same extension, or both. For example, both the Entity-Relationship schema � ��� and the rela-
tional schema � ��� model the same application domain. If there is a correspondence relating the
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element � ��� :Student(StuNo, Name, Address, Level, SupBy) to the elements � ��� :Student , �
��� :name,
�	��� :stuNo, �	��� :address, �	��� :level and �
��� :supBy in Figure 2, that means the correspondence relates
them at the extensional level as well as the intensional level. However, in some cases one structure
corresponds to another structure probably they have same sense, but they may have different exten-
sions. For example, there is another university, UofD, designing its information system by totally
borrowing the schemas of UofT. Let � ��� be its relational schema for storing the operational data.
Both relational schemas � ��� and � ��� have same structure and there is a one-to-one correspondence
between them. However, the two databases have different data because there is no extensional data
overlap between the two universities. In this case, we say that � ��� correspond to � ��� intensionally.
By this analysis, we propose our formal correspondence language containing two types of corre-
spondence statements: intensional correspondence and extensional correspondence.

Formal Correspondence Language. Given two schemas 	 and
�

, where 	 is expressed in a
language � � over an alphabet � � , and

�
is expressed in a language ��� over an alphabet ��� ,

then we use the following formal correspondence statement to associate an element of 	 with an
expression over elements of

�
, if, intuitively, they have same sense, i.e., intensional correspondence

:

	 2�C ���� &�� I
	 � � 2�� ����H��� & D (1)

And, we use the following formal correspondence statement to specify that an element of 	 has
extensional correspondence with an expression over elements of

�
:

	P2�C ���� &������ � � 2�� �������� & D (2)

Where the head C ���� & is an element which represents a certain type of logical association of a
set of atomic elements in 	 , such as a relation in a relational schema and a subtree of a tree-like
XML schema.

Example 4. The relations Student(StuNo, Name, Address, Level, SupBy) and Registration(StuNo,
Year, Degree, Dept) can be heads of some correspondence statements for the relational schema
� ��� ; the form of subtree (or logical relation in literature such as [PVM � 02]) :

(s.student.level, s.student.StuNo, s.student.Name, s.student.Address, r.Registration.Degree,

r.Registration.Department, r.Registration.Year | s � UTstudentDB.students, r � s.registrations)

can be the head of a correspondence statement for the XML schema
� ��� .

�

� 2�� �������� & in the correspondence statement (2) is a query expression in a query language ���
over schema

�
.

Example 5. For the Entity-Relationship model and the relational model, � ����H���� & is union of a set
of formulas each of which has the form

"�� ��� �������� &
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where each "$� ��� �������� & is a conjunction of atoms, and �� , �� are all the variables appearing in
the conjunct. Each atom is a predicate with arity designating an entity, a relation, an attribute
as a binary predicate, or declaring the domains of variables and the value correspondence
between domains. It may use predicates other than those of

�
.

�

Leveraging Data Integration Formalisms. There are three formalisms proposed in literature for
specifying a data integration system: local-as-view (LAV), global-as-view (GAV), and global-local-
as-view (GLAV) [Len02]. In LAV, the mapping formula, � � � ��� , relates a single element � �
of a source schema 	 to a query expression ��� over the global schema � ; in GAV, � � is a query
expression, and ��� is a single element; and in GLAV, both � � and ��� are query expressions. For our
correspondence statements (1) and (2) above, from the standpoint of a schema and the perspective
of capturing its semantics in terms of the correspondence continuum, the statements are equivalent
to the GAV formalism; therefore, the correspondence composition can be simply carried out by
unfolding operations which will be seen in later section. However, a reasoning task making use of
the semantic encapsulation to derive the semantic mapping between arbitrary schemas with overlap
will need to leverage query answering techniques developed in LAV formalism. This is the main
topic of the section to follow.

The Semantics of the Correspondence Statement. For both the intensional and the extensional
correspondence statements, their denotational semantics can be specified in the same manner. That
is, given a database � that satisfies

�
, a correspondence statement,

	P2�C ���� &�� � 2�� �������� & ���	� �E������ 
 4 � B � DFDFDE� � 	 > � � ��� , 4 � I
	 � � � ��� � > �
is interpreted as the set of n-tuples ��� B �J� �V� DFDFDE�J� 	 & with each � I an object of the database � ,

such that, when substituting each � I for � I , then formula


 � D � 2�"$� ���#����H���� &
evaluates to true.

The semantics is straightforward to the extensional correspondence, because both schema 	 and
schema

�
are intended to model the same subject matter; therefore, a single database � is used to

specify the semantics. However, 	 and
�

may model different subject matters in the intensional
correspondence. So how can a single database gives the semantics to an intensional correspondence
statement? The answer is that the intensional correspondence statement 	P26C ��� &�� I
	 � � 2�� ����� � &
means if 	 and

�
model the same subject matter, it will behave like the extensional correspondence.

Hence, we use two distinct symbols to differentiate the the two types of correspondences. Following
examples demonstrate the specifications of the semantics of schemas in terms of correspondence
statements for the common scenario example in Section 2.

Example 6. The following statements specify the extensional and intensional correspondences from
the student element in ����� to the expressions over elements of

�
:

� � �
:Student(x) ���� � � :UNIVERSITY-STUDENT(x), � :REGISTRATION(y), ���UNIVERSITY(z),

� :registerAt(x,y), � :ofUniv(y, z), � � hasName(z, “UofT”).� � �
:Student(x) ����� � � :UNIVERSITY-STUDENT(x).

14



�

Example 7. The following statements specify how the student relation in � ��� corresponds to � ��� ,
extensionally and intensionally:

� �
�
:Student(StuNo, Name, Address. Level, SupBy) � �� ��� � � � �� � �

:Student(x),
� � �

:name(x, Name),
� �
�

:address(x, Address),
� � �

:stuNo(x, StuNo),
��
�

:level(x, Level),
� � �

:supBy(x,
y),
�� �

:Professor(y),
� � �

:name(y, SupBy), String(StuNo), String(Name), String(Address), String(level), String(SupBy),
Represent([StuNo], x).

Where �����	��
������� means either one can be used, and the predicate String() represents the string
simple domain value. The predicate Represent([StuNo],x) specifies that the tuple [StuNo] will be used
as the identifier of the entity x in the Student relation of ����� .

�

Example 8. Similarly, we can specify the correspondence between the Entity-Relational schema
�	��� and the ontology

�
as well as the correspondence between � ��� and �	� � as the follow-

ing statements:
� ���

:GradStudent(x) ���� � � :GRAD(x), � :REGISTRATION(y), � �UNIVERSITY(z),

� :registerAt(x,y), � :ofUniv(y, z), � � hasName(z, “UofW”).� ���
:GradStudent(x) ����� � � :GRAD(x).

� ���
:UndergradStudent(x) � �� � � :UNDERGRAD(x), � :REGISTRATION(y), ���UNIVERSITY(z),

� :registerAt(x,y), � :ofUniv(y, z), � � hasName(z, “UofW”).� ���
:UndergradStudent(x) � ��� � � :UNDERGRAD(x).

� �	�
:UndergradStudent(sno, name, address, year, degree) � �  � � ����� �� ���

:UndergradStudent(x),
��	�

:sno(x, sno),
��	�

:name(x, name),
� ���

:address(x, address),
� ���

:year(x, year),� ���
:degree(x, degree), String(sno), String(name), String(address), Date(year), USFormat(year), String(degree),

Represent([sno],x).

�

Example 9. If there is a third university, UofD, which designs its student information systems
by borrowing the relational schema of the university UofT for storing the operational data,
then there will be an one-to-one intensional correspondence between the relational schema of
UofD, � � � � and the relational schema of UofT, � ��� , such as,

� ���
:Student(StuNo, Name, Address, Level, SupBy) � ��� �� �
�
:Student(StuNo, Name, Address, Level, SupBy).

However, we cannot specify their extensional correspondence.

�

Example 10. In order to specify the correspondence between the XML schema
� ��� and the rela-

tional schema � ��� in the framework of the correspondence language, we will use the notation
like (s.Student.Name[$Name] | s � UTDB.Students) to indicate that the Name variable appearing at the
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tree position following the path s.Student.Name, where s , UTDB.Students, see Figure 4. The
“Students” in UTDB.Students is a virtual set name indicating a set of students in the XML
data model , each of which is a student data type which is a type of sub-tree. Then, the fol-
lowing statement specifies the correspondence between

� ��� and � ��� :
� �
�

:(s.Student.level[$level], s.Student.StuNo[$StuNo], s.Student.Name[$Name], s.Student.Address[$Address],
r.Registration.Degree[$Degree], r.Registration.Department[$Department],
r.Registration.Year[$Year]|s � UTDB.Students, r � s.Registrations) � �  � / � � � �� �
�

:Student(StuNo, Name, Address, Level),
� � �

:Registration(StuNo, Year, Degree, Department).

�

4 Reasoning about Correspondences

In this section we will explore the opportunities provided by the correspondence continuum for
deducing implicit semantic mapping between two schemas with overlaps. As we know, semantic
mappings play a key role in data integration systems, and specifying semantic mappings is heuris-
tic and user-intensive in most of current applications. The reasoning task involves two steps of
operations: correspondence composition and mapping generation.

4.1 Correspondence Composition

For simplicity of exposition, we will use the three types of structures in the common scenario exam-
ple in Section 2 for the investigation of correspondence composition, namely, the relational schema
� ��� , the entity-relational schema � ��� , and the domain ontology

�
. As shown in Section 3.2.2,

several correspondence statements which specify the extensional and intensional correspondence
between � ��� and �	��� , and between �	��� and

�
have been given in Example 6 and Example 7. We

want to compose the correspondences � ��� � � ��� and � ��� � �
to obtain a direct correspondence

� ����� �
to satisfy our reasoning purpose, where � can be either the intensional correspondence

symbol � I
	 � along all the composition path or the extensional correspondence symbol � ��� � along
all the composition path. The notation � � � represents a set of correspondence statements.
Formally, we can define the correspondence composition as follows.

Definition 1. (Correspondence Composition). Given three structures � , � , and
�

, the correspon-
dence � � �

is the composition of the correspondences � � � and � � �
, if the cor-

respondence symbols are consistent along the correspondence path, i.e., only an intensional
correspondence composes with another intensional correspondence resulting in a intensional
correspondence, and similar for extensional correspondence; and given a database � that
satisfies

�
, the resulting database � �

computed by the direct correspondence coincides with
the resulting database � � �

computed by the two separate correspondences, according to the
semantics of correspondence.

�

Ignoring the distinction of intensional and extensional symbols temporarily and from the perspective
of GAV formalism, we observe that the correspondence composition amounts to a query unfolding
operation. Informally, we can describe the composition algorithm as follows.

Algorithm of Composition. compose(
� �V� B , � �V� � ): Let

� �V� B be a finite set of correspondence state-
ments representing the correspondence � � � , let

� ��� � be a finite set of correspondence
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statements representing the correspondence � � �
, for each statement � 2WC ��� & � �O2

� ����� � & > , � �V� B , for each � element � 2�� ����& appearing in � 2 � ����� � & , where ��� 4 ��� � > ,
replace � ����& with the body of the correspondence statement � 2�� ����& � � 2 � � ������� & >.,

� �V� � . After substitution, redundancy can be removed accordingly.
�

The following proposition follows from the semantics of correspondence statement.

Proposition 1. The algorithm compose(
� �V� B � � �V� � ) terminates and computes the finite set of cor-

respondence statements � � �
representing the composition of the correspondences � � �

and � � �
as defined in Definition 1.

�

A simple counting shows that the algorithm has polynomial time complexity in terms of the num-
ber of elements in the structures. The following example shows some composition results for the
common scenario example.

Example 11. (Composition of � ��� � I
	 ��	
��� ��
 � ��� and � ��� � I
	 ��	 � � ��
 � in Example 6 and Example
7). Aside from the statements in Example 6, we need other correspondence statements of
�	��� � I
	 ��	 � � ��
 � for composition. For brevity’s sake, we only give the correspondences about
the �	��� :name element.
� � �

:name(x,y) ���� � � �UNIVERSITY-STUDENT(x), � � REGISTRATION(z), � �UNIVERSITY(w),

� � registerAt(x,z), ��� ofUniv(z,w), � � hasName(w, “UofT”), � � hasName(x,u),

� � PERSON-NAME(u), � � hasFirstName(u,y1), ��� hasLastName(u,y2), concat(y1,y2,y).

� � �
:name(x,y) � ��� � ���UNIVERSITY-STUDENT(x), � � hasName(x,z), � � PERSON-NAME(z),

��� hasFirstName(z,y1), ��� hasLastName(z,y2), concat(y1,y2,y).

The following statements are the resulting correspondence statements after composing the
Student relation in � ��� with corresponding elements in � ��� .

If the tuple is about an undergraduate student, extensionally:

� �
� � Student(StuNo, Name, Address, Level, SupBy) ���� �
���UNDERGRAD(x), � � REGISTRATION(y), � �UNIVERSITY(z), � � registerAt(z,y), � � ofUniv(y,z),

��� hasName(z, “UofT”), � � hasStuno(x,StuNo), � � hasName(x,u), � � PERSON-NAME(u), � � hasFirstName(u,y1),

��� hasLastName(u,y2), concat(y1,y2,Name), ��� hasAddress(x, Address), Level=”Undergrad”, ��� hasAdvisor(x,v),

��� PROFESSOR(v), � � hasName(v,SupBy), String(StuNo), String(Name), String(Address), String(SupBy),

Represent([StuNo],x).

If the tuple is about a graduate student, extensionally:

� �
� � Student(StuNo, Name, Address, Level, SupBy) � �� �
���GRAD(x), � � REGISTRATION(y), � �UNIVERSITY(z), � � registerAt(z,y), � � ofUniv(y,z),

��� hasName(z, “UofT”), � � hasStuno(x,StuNo), � � hasName(x,u), � � PERSON-NAME(u), � � hasFirstName(u,y1),

��� hasLastName(u,y2), concat(y1,y2,Name), ��� hasAddress(x, Address), Level=”Grad”, � � hasAdvisor(x,v),

��� PROFESSOR(v), � � hasName(v,SupBy), String(StuNo), String(Name), String(Address), String(SupBy),

Represent([StuNo],x).

If the tuple is about an undergraduate student, intensionally:

17



� �
� � Student(StuNo, Name, Address, Level, SupBy) � ��� �
���UNDERGRAD(x), � � hasStuno(x,StuNo), ��� hasName(x,u), ��� PERSON-NAME(u), � � hasFirstName(u,y1),

��� hasLastName(u,y2), concat(y1,y2,Name), ��� hasAddress(x, Address), Level=”Undergrad”, ��� hasAdvisor(x,v),

��� PROFESSOR(v), � � hasName(v,SupBy), String(StuNo), String(Name), String(Address), String(SupBy),

Represent([StuNo],x).

If the tuple is about a graduate student, intensionally:

� �
� � Student(StuNo, Name, Address, Level, SupBy) � ��� �
���GRAD(x), � � hasStuno(x,StuNo), ��� hasName(x,u), ��� PERSON-NAME(u), � � hasFirstName(u,y1),

��� hasLastName(u,y2), concat(y1,y2,Name), ��� hasAddress(x, Address), Level=”Grad”, � � hasAdvisor(x,v),

��� PROFESSOR(v), � � hasName(v,SupBy), String(StuNo), String(Name), String(Address), String(SupBy),

Represent([StuNo],x).

�

Example 11 shows that we can view the extensional correspondences as specialized intensional
correspondences in some ways. The bodies of the correspondence statements precisely tell the
meaning of the head element. In next section, we will derive semantic mapping between arbitrary
structures with semantic overlap by exploring their semantic correspondences to a common struc-
ture.

4.2 Semantic Mapping Generation

Specification of semantic mappings between data sources or peers, or between sources and medi-
ated schemas is the key component of a wide variety of data sharing and integration systems. With
the terrain of the data sharing and integration systems being expanded to the WWW, there is a suc-
cession of research and commercial tools for automatic or semi-automatic specification of semantic
mappings. The most prominent one is the Clio [PVM � 02] tool which exploits integrity constraints
and internal structures of database schemas to discover mappings between a source schema and a
target schema. The resulting mappings are elicited by a set of user-defined value correspondences;
therefore, it is intrinsically semi-automatic. Such a tool is, however, inadequate to establish correct
mappings, even though a user completely understand the semantics of schemas in some cases as
shown in the example below.

Example 12. Suppose a source schema 	 have one relation �H����� � & and a target schema
�

also
have one relation ������� � & . The semantics of the schemas can be specified using the following
formulas:

� ���������
	�� � � ��������
	���� (12.1)� ���������
	�� � � ��������
����� � ���������	�� . (12.2)

That is, �H����� � & means there is an edge between � and � ; ������� � & means there is a path with
length of 2 from � to � . The correct mapping should be � � 	 2��H����� � & � 	 2��H����� � & & 
 ������� � & .
Clio fails in this case. However, if the semantic correspondences like (12.1), (12.2) have been
maintained, the correct mapping would be produced by an appropriate reasoning algorithm.

�
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When the semantics of schemas is explicitly represented in terms of correspondences, and cor-
respondence composition algorithm enables two schemas be mediated by a domain ontology, we
are able to leverage the rich body of existing , scalable, and practical techniques developed for
view-based queries answering in the database community. Especially, the sophisticated mapping
composition algorithm in terms of a class of

� � G queries in [MH03] provides right solution for our
semantic mapping generation problem in terms of correspondence continuum.

We begin with the results of mapping composition developed in [MH03]. In the global-local-
as-view (GLAV) formalism between data sources for a data sharing system, semantic mapping
between two data sources A and B is specified by a set of mapping formulas, each of the form
���?� � & / ��� � � & � where ��� and ��� are conjunctive queries over schema of A, ��� , and schema
of B, � � , respectively. The mapping is denoted as � �
	�� . Given three data sources A, B and C,
and two mappings ���
	�� and ����	� , the composition of ���
	�� and ����	� is a direct mapping
����	� such that the certain answers for any query � over C computed through ���
	� are the
same certain answers for the query � over C computed through the two separate mappings w.r.t. all
databases 9 for A. We can easily find the analogy between this mapping composition problem and
our semantic mapping generation problem for ontology-mediated schemas. [MH03] shows that for
relatively simple mappings involving two LAVs which treats B as the global schema, and treats A
and C as two local schema, the composed mappings may be an infinite set of GLAV formulas.

Fortunately, there exists an algorithm that encodes an infinite number of GLAV formulas in the
composition using finite graph structure. The key to the algorithm is to associate residues with for-
mulas in the composition and build the composition incrementally. For the class of

� � G queries
with a finite set of residues, the algorithm is guaranteed to terminate and to encode the entire com-
position. Finally, [MH03] shows that the decision problem of whether a finite set of formulas is a
composition is ��� � w.r.t. the set of conjunctive queries.

In light of the results of mapping composition, we are able to automatically generate inten-
sional and extensional semantic mappings between arbitrary two schemas with overlap. First, for
simplicity’s sake, we make two assumptions: (

�
) the arbitrary two schemas are about same applica-

tion domain and there exists one domain ontology as the consensus; (
���

) each schema corresponds
to only one other schema/model in the correspondence continuum. The assumption (

���
) allows

each schema ultimately be mediated by the domain ontology through correspondence composition.
Second, we compose the correspondence which links a schema to its corresponding one and the
correspondence which links the corresponding one to the next corresponding one and so on, until
reaching the domain ontology. Of course, only an intensional correspondence can be composed
with another intensional correspondence, and the same rule applies to extensional correspondences.
Third, when both schemas are corresponding to the domain ontology, the mapping composition
techniques developed in [MH03] can be applied after taking consideration about the specificity of
our correspondence language as follows.

� Dealing with the Domain Value Predicates. When specifying the correspondence between
schemas, we may introduce domain value predicates occasionally in the body of a corre-
spondence statement to indicate the permissible values for an atomic element. For example,
String(StuNo) indicates that the atomic element StuNo has value in the string domain. We
assume there is a finite set of domain symbols 9 
 4 9 B �J9 � �EDFDFDF�J9�� > , and there is a fi-
nite set of domain relation symbols � 
 4 � I�� > , each of the relation symbols specifying how
the elements in domain 9 I relates to the elements in domain 9 � . Furthermore, we use the

19



notation
�����

� � to indicate a new variable with domain 9 � which relates to the variable
�

with domain 9 I by domain relation � I�� . Having that, we can use the new variable notation
to replace the original variable and change the domain value predicates back and forth during
the query rewriting phase. The final mapping formulas will have the new variable notations
embedded.

Example 13. Suppose after a series of composition operations, we have the following two corre-
spondence statements:

� �
� �Grade(StuNo, Grade) � � � �
���UNIVERSITY-STUDENT(x), � � hasStuno(x,StuNo), � � hasGrade(x, Grade), Letter(Grade).

� �	� �Mark(stuno, mark) ����� �
���UNIVERSITY-STUDENT(x), � � hasStuno(x,stuno), ��� hasGrade(x, mark), Percentage(mark).

Using domain relation symbol and the new variable notation, we can rewrite the second for-
mula as follows:

� �	� �Mark(stuno, mark ���	��
�	��
�������	
�� ��
�����
� ) � � � �
���UNIVERSITY-STUDENT(x), � � hasStuno(x,stuno), ��� hasGrade(x, mark � � ��
�	��
�������	
�� ��
�����
� ),
Letter(mark ���	��
���
��������	
	� ��
� ��
� ).

By a simple query rewriting technique, we can obtain the mapping formula as follows:

� �
� �Grade(stuno, mark ���	��
��	��
�������	
�� ��
�����
�� ) � ��� � � �	� �Mark(stuno, mark ������
�	��
�������	
�� ��
����
� ).

�

� Dealing with the Entity Representation Predicates. In the correspondence statement, we
also introduce the representation predicate like Represent([StuNo],x) to indicate that the entity
x in one schema is represented by the tuple of atomic element [StuNo] in another schema. It is
possible that the same entity is represented by different tuples of atomic elements in different
schemas. In this case, we can either ignore the representation predicate or introduce a new
equivalent predicate Equiv([a tuple],[another tuple]) during the query rewriting process to
make the semantics explicit, as shown in the following example.

Example 14. Suppose the Course entity is represented by Course Number in � ��� , while it is rep-
resented by Course Name in � � � ,

� �
� � Course(CourseNo, CourseName, Description) � ��� �
� � COURSE(x), � � hasNo(x,CourseNo), � � hasName(x, CourseName), � � hasDescription(x, Description),
Represent([CourseNo],x).

� �	� � Course(CourseNo, CourseName, Description) ��� � �
� � COURSE(x), � � hasNo(x,CourseNo), � � hasName(x, CourseName), � � hasDescription(x, Description),
Represent([CourseName],x).

By introducing the equivalent predicate, Equiv([CourseName],[CourseNo]), to the second
formula, the mapping can be obtained by rewriting as follows:

� �
� � Course(CourseNo, CourseName, Description) � ��� �� �	� � Course(CourseNo, CourseName, Description), Equiv([CourseName], [CourseNo]).
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�

Apparently, the treatments of the specific domain value predicates and the entity representation
predicates above do not change the setting for applying the mapping composition techniques. Given
two schemas � B and � � and a domain ontology

�
, and two finite sets of correspondence statements

� B � I 	 ��	 � � ��
 � and � � � I
	 ��	 � � ��
 � , the following corollary follows from the results in [MH03].

Corollary 1. (Semantic Mapping) Computing the semantic mapping � B � I
	 ��	 � � ��
 � � is decid-
able and the resulting mapping contains a set of correspondence statements that captures the
semantics specified in terms of the correspondences to the domain ontology. That is, for
any query � over � B w.r.t. to any database 9 of � � , the certain answers computed through
� B � I
	 ��	
��� ��
 � � coincide with the certain answers computed through two separate corre-
spondences mediated by the domain ontology.

�

Example 15. (Continue our common scenario example.) Example 11 gives a composition,
� ��� � I
	 ��	
��� ��
 � , of � ��� � I
	 ��	 � � ��
 � ��� and � ��� � I 	 ��	 � � ��
 � . Example 8 presents several
correspondence statements in the correspondences � � � � I
	 ��	 � � ��
 �	��� and �	��� � I 	 ��	 � � ��
 � .
We compose � ��� � I
	 ��	
��� ��
 �	��� and �	��� � I
	 ��	
��� ��
 � to obtain � ��� � I
	 ��	
��� ��
 � . The
following formula is one of the set of semantic mapping formulas computed by the algorithm
mentioned above.

� �
� � Student(StuNo, Name, Address, “Grad”, SupBy),
� � � � Registration(StuNo, Year, Degree, Dept) � ��� �� �	� �GradStudent(StuNo, Name, Address, Year, Degree, SupBy),

� �	� � StudyIn(StuNo, Dept).

It shows the left-hand side query expression over � ��� intensionally maps to the right-hand
side query expression over � ��� . There is not extensional mapping between them .

�

4.3 Deriving Semantic Mapping between Ontology-Mediated XML Schemas

Today, most commercial and scientific applications have facilitates for automatically exporting their
data into XML form. Although the semantic web has proposed new data description language to
assign semantics to data, it still needs to exchange data between XML structures because they are
likely to exist for a long time. While the hierarchical structure of XML implicitly encodes logical
relationships among elements, it does not assign semantic meaning to any particular elements. In-
teroperability is usually achieved in the real world by writing ad hoc translators between XML files.
In this section, we will show that the correspondence continuum and the semantic encapsulation for
XML schemas enable the automatic generation of semantic mappings between XML schemas.

We describe the main ideas of the algorithm and illustrate it via example using schemas in the
two universities, UofT and UofW, scenario. We assume that each XML file comes with a schema,
expressed in XML schema, which defines the terminology and the structural constraints for the
XML file. In Example 10 we use tree-path following by variable name in square brackets to in-
dicate the position of the variable in the XML hierarchical structure, and the following statement
specifies the correspondence between the XML schema

� ��� and the relational schema � ��� in the
framework of the correspondence language:
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� � �
:(s.Student.Level[$level], s.Student.StuNo[$StuNo], s.Student.Name[$Name], s.Student.Address[$Address],

r.Registration.Degree[$Degree], r.Registration.Department[$Department],

r.Registration.Year[$Year] | s � UTDB.Students, r � s.Registrations) � �  � / � � � �� � �
:Student(StuNo, Name, Address, Level),

� � �
:Registration(StuNo, Year, Degree, Department).

The following example shows the procedure for deriving semantic mapping between
� ��� and

� � � .

Example 16. The principle of correspondence continuum and semantic encapsulation guarantees
the explicit presentation of the semantics of XML schemas in terms of correspondences.
Given the correspondences of

� ��� � I
	 ��	
��� ��
 � ��� , � ��� � I
	 ��	
��� ��
 �	��� , and �	��� � I
	 ��	
��� ��
 � as
well as the correspondences of

� � � � I
	 ��	
��� ��
 � ��� , � ��� � I
	 ��	 � � ��
 � ��� , and � ��� � I
	 ��	 � � ��
�
, the semantic mapping

� ��� � I
	 ��	
��� ��
 � ��� is derived in following steps:

step 1: Correspondence Composition. The first step is to compose the compatible corre-
spondences to obtain the direct correspondence from XML schemas to the domain ontology.
After composition, we obtain the following direct correspondences.

� �
�
:(s.Student.Level[”Grad”], s.Student.StuNo[$StuNo], s.Student.Name[$Name], s.Student.Address[$Address],

r.Registration.Degree[$Degree], r.Registration.Department[$Department],

r.Registration.Year[$Year] | s � UTDB.Students, r � s.Registrations)

� ��� �
���GRAD(x), � � REGISTRATION(y), ��� registerAt(x,y), � � hasStuno(x, StuNo), � � hasName(x, z), ��� PERSON-

NAME(z), � � hasFirstName(z, y1), � � hasLastName(z,y2), concat(y1,y2,Name), � � hasAddress(x, Address),

��� inYear(y, Year), ��� withDegree(y, Degree), � � ofDept(y, Department).

� �	�
:(s.UndergradStudent.sno[$sno], s.UndergradStudent.Name[$name], s.UndergradStudent.Address[$address],

s.UndergradStudent.Year[$year], s.UndergradStudent.Department[$department],

s.UndergradStudent.Degree[$degree], g.GradStudent.sno[$gSno], g.GradStudent.Name[$gName],

g.GradStudent.Address[$gAddress], g.GradStudent.Year[$gYear], g.GradStudent.Department[$gDepartment],

g.GradStudent.Degree[$gDegree] | s � UWDB.UndergradStudents, g � UWDB.GradStudents)

� ��� �
���UNDERGRAD(x), � � REGISTRATION(y), ��� registerAt(x,y), � � hasStuno(x, sno), � � hasName(x, z),

��� PERSON-NAME(z), � � hasFirstName(z, y1), � � hasLastName(z,y2), concat(y1,y2,name),

��� hasAddress(x, address), ��� inYear(y, year), � � withDegree(y, degree), ��� ofDept(y, department),

���GRAD(u), � � REGISTRATION(v), � � registerAt(u,v), � � hasStuno(u, gSno), � � hasName(u, w),

��� PERSON-NAME(w), ��� hasFirstName(w, v1), � � hasLastName(w,v2), concat(v1,v2,gName),

��� hasAddress(u, gAddress), � � inYear(v, gYear), � �withDegree(v, gDegree), ��� ofDept(v, gDepartment).

step 2: Query Rewriting. The second step is to obtain the maximally-contained rewrit-
ing of the right-hand side of the first correspondence formula in terms of the view which has
body as the right-hand side of the second correspondence formula. After unfolding the view
in the rewriting, we proceed to obtain the maximally-contained rewriting of the unfolding in
terms of the left-hand side of the second correspondence formula. By appropriate variable
renaming, the following formula is obtained through rewriting.
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� �
�
:(s.Student.Level[”Grad”], s.Student.StuNo[$gSno],s.Student.Name[$gName], s.Student.Address[$gAddress],

r.Registration.Degree[$gDegree], r.Registration.Department[$gDepartment],

r.Registration.Year[$gYear] | s � UTDB.Students, r � s.Registrations)

� ��� �
� �	�

:(s.UndergradStudent.sno[$sno], s.UndergradStudent.Name[$name], s.UndergradStudent.Address[$address],

s.UndergradStudent.Year[$year], s.UndergradStudent.Department[$department],

s.UndergradStudent.Degree[$degree], g.GradStudent.sno[$gSno], g.GradStudent.Name[$gName],

g.GradStudent.Address[$gAddress], g.GradStudent.Year[$gYear], g.GradStudent.Department[$gDepartment],

g.GradStudent.Degree[$gDegree] | s � UWDB.UndergradStudents, g � UWDB.GradStudents).

step 3: Tree Pruning. Finally, prune the right-hand side XML schema tree by detecting
those variables which are not been mapped in the above mapping formula. The correspond-
ing tree paths where the unmapped variables are located can be eliminated from the mapping.
Figure 13 shows the final mapping between

� ��� and
� ��� graphically.

�

UTDB

Student*

Level
“Grad”

StuNo Name Address Registration*

DegreeDepartment Year

UWDB

GradStudent*

Sno Name Address Year Department Degree

Figure 13: Semantic Mapping between
� ��� and

� ��� .

As shown in the above example, analogous to the flat relational schemas, XML schemas can
also take advantage of the semantic encapsulation in terms of the correspondences to connect them
together by semantic mappings for information exchanging. Our XML schema notation is inspired
by the nested relational model in [PVM � 02]. The addition of variables in the square brackets fol-
lowing tree paths makes the notation suitable for our correspondence language. In doing this, we
have reconciled XML schema, relational schema, Entity-relational schema, and domain ontology
described in Description Logics in a single correspondence continuum. The correspondence contin-
uum is such a fertile land of semantics that interoperability will be easily attained for a wide variety
of data sources.

5 Related Work

The goal of this paper is to propose a general framework for capturing data semantics appearing in
an open-ended environment in terms of correspondence. The study of semantics has been scattered
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in diverse communities, and it is impossible to compile an exhaustive list for exposing all efforts
and results. In this section, we will expand our scope of references to cover as many representative
works in database and knowledge representation communities as possible. The following exposition
starts from the efforts in data integration, manifested in database schema manipulation and real
application systems, goes through works in knowledge representation and the semantic web, and
concludes with recent mapping management efforts discussed in various fields.

Problem of schema integration and merging emerged from earlier database design context such
as view integration from a set of external views. Later, data gathering and sharing in federated
databases systems call for a global integrated schema in the same spirit. The key is to explore the
semantics of a set of schemas to discover similarity. [BLN86] makes a comprehensive survey and
analysis about various causes of schema diversity. [Kos91] studies schema merging in terms of a
formal mathematic schema model; [SP94] uses the real world states as the semantics of the schema
elements; and [KLK91] proposes the schematic discrepancy problem. These works pioneered the
study in heterogeneity reconciliation.

The efforts to discover semantic relations between elements in different schemas result in var-
ious schema matching techniques. [RB01] classifies matchers into schema- and instance-level,
element- and structure-level, language- and constraint-level, and individual- and combination meth-
ods. In particular, [MBR01], [MGMR02], and [NM01] approach the schema matching problem by
employing linguistic techniques as well as by exploring syntactic structures. [BSZ03] studies a spe-
cial type of schema, namely, the concept hierarchy, and shifts the problem from computing linguis-
tic and structural similarities to deducing relations between sets of logical formulas. The WordNet
[MFT � 03] serves the background theory for deduction. Moving one step further, schema mapping
[PVM � 02, MHH00] discovers the formal queries over input schemas in accordance with the value
correspondences specified by users or matchers. Data dependence theory and the traditional chase
technique are the core components of the query discovery process. [FKMP03] studies the general
data exchange problem and gives a theoretical justification for the results in [PVM � 02, MHH00].
Semantic mapping between heterogeneous data sources started to become a significant interest in
database community.

Specifying semantic relation between schemas plays a central role in data integration systems
[Len02] in which a set of sources links to a virtual global schema and the materialized data in source
provides answers to global queries. Especially, the local-as-view (LAV) formalism results in the
extensive study in view-based query answering and rewriting [Hal01, Hal00, LMSS95, Ull00]. The
complexity[AD98] varies according to the expressiveness of the view definition languages and the
query language. There was a flurry of study in data integration application systems in mid 90’s. The
salient ones include Carnot project [CHS91], InfoSleuth project [BBB � 97], SIMS project [AKS96],
Information Manifold project [LSK96], and OBSERVER project [MKSI96]. The commonality of
these systems is that many have realized that ontology as the agreed upon specification of a domain
with richer semantics can serve the mediating role for integration.

Different from the data integration structure, peer-to-peer data management system (PDMS)
addresses query answering problem over a set of more loosely coupled data sources. [BGK � 02]
describes local relational models as a formalism for mediating between different peers in a PDMS;
[HIMT03] and [HIST03] provide mapping languages between peers and give algorithms for an-
swering queries over peer-to-peer infrastructure by leveraging well-understood database query lan-
guages. Realizing mapping is the core component for a variety of model management problems,
the proposal of generic model management [BHP00, Ber03] treats both mapping and model as
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first-class citizens which can be manipulated by model-at-a-time and mapping-at-a-time operators.
However, both the PDMS and the the generic model management leave the mapping generation
problem untouched.

Representing human knowledge in terms of symbolic structures is a long-standing problem. De-
scription Logics [BN03] developed in knowledge representation community finds its way into data
management tasks. [BLR03] and [Bor95] show that DLs are useful not only for specifying schemas,
but also for obtaining descriptive or intensional answers. Recently, the distributed Description Log-
ics [BS03] extends the DLs formalism with the ability to handle complex mappings between do-
mains, through the use of bridge rules. In addition, DLs also has served successfully as ontology
languages. Ontology integration and the use of ontology in assisting semantic coordination have
their own significant interests and have been studied in [CGL01, C � 01, CLN98, CLN99, CCGL02].
Introducing the notion of context, [KS96b, KS96a] explore the approaches based on the capture and
representation of meta-data, contexts, and ontologies to manage semantic heterogeneity within the
framework of DLs.

Data on the Web raise more challenges to interoperability. The semantic web [BLHL01] is
an extension of the current web in which information is given well-defined semantics, better en-
abling computers and people to work in cooperation. New data model such as RDF [KC03] and
new markup language such as OWL [DS03] have been developed inspired by technology from
knowledge representation. Interoperability would be easily attained as long as the agreed upon web
ontologies have been used and shared among information providers [HBLM02]. However, it is
widely accepted that there will be many heterogeneous ontologies existing on the semantic web and
traditional data model such as XML will persist. Addressing this, [B � 03] studies contextualized
ontologies and the semantic connections between them, and [LS03] discusses the interoperability
on XML. Our work on correspondence continuum extends the one-tier mapping structure to chains
of semantic correspondences. Interoperability on various data models including XML is attained by
the explicit representation of data semantics.

With regards to mapping management, a variety of mapping formalisms ranging from simple
value correspondence to formal logical expressions have been proposed in literature. [CL93] pro-
poses a logic approach to the problem of both expressing inter-schema knowledge and reasoning
about it. Its salient feature is the distinction of intensional and extensional mapping representations
for capturing different cognitive meanings. Mappings in [C � 01] are augmented with domain value
relations in terms of conversion, matching, and merging. [MB � 02] discusses a very high-level
framework for defining representation of mappings with associated semantics, and [MH03] studies
the mapping composition problem and gives a composition algorithm for a specific class of query
language. Finally, [FS03] presents a theoretical ground and principled methodology for mapping
based on channel theory, a mathematical theory of semantic information flow. We expect that the
similar application of category theory will provide a solid theoretical foundation for our semantic
correspondence work in the future.

6 Conclusions and Future Work

The heterogeneity of data sources in terms of various structures such that XML formats, relational
schemas, object-oriented schemas, and entity-relational schemas and their autonomy as well as dis-
tributed locations are the major burdens for interoperability over the Internet infrastructure. The
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years investigation of data integration systems in database community relies on a globally consol-
idated schema and mappings between sources and the global schema to enable query answering
without paying attention to data source locations. The semantics of data sources as well as the
global schema are entrusted to a small set of users or applications. However, the Web does not pro-
vide the chance for any groups of people to have knowledge about all data sources participating in
information sharing. Consequently, the semantic web initiative proposes an approach for presenting
data semantics explicitly using ontology, and it certainly will lead significant changes in the study
of data integration over the Web. Although the vision of the semantic web is compelling, discon-
nectivity emerges. On the one side, traditional relational databases and recent XML files have been
used widely for many applications and mature techniques for database design, query language, and
optimization have been well developed in database community. Furthermore, the XML format has
been accepted as the standard structure to export data on the Web for information exchanging. It is
no doubt that data in these formats will persist indefinitely and continue to grow. On the other side,
the semantic web requires a massive use of ideas and techniques from knowledge representation.
It requires everything to be built up from scratch. New data models and languages such as RDF/S,
DAML+OIL, and OWL as well as standardized ontologies will play a major role, and semantic data
are presented explicitly to users and software agents. The lesson we learned from both sides is that
capturing data semantics and sticking on respective approaches is the key to interoperability.

In this paper, we have presented our two principles for capturing data semantics: the correspon-
dence continuum and the semantic encapsulation. Representing meaning in terms of correspondence
is not new, and the model-theoretic semantics of standard logic can be seen as a correspondence the-
ory of meaning. However, the practices in information systems modeling and databases design show
that the two-tier model-theoretic analysis is inadequate for analyzing data semantics. By adopting
the correspondence continuum and proposing the semantic encapsulation, we have made the follow-
ing specific contributions. First, we described the correspondence continuum as a semantic soup for
locating a spectrum of semantic relations among given intentional structures - language, process,
schema, and models. The continuum is grounded on domain ontology. Focusing on three com-
mon types of database structures - XML format, relational schema, and entity-relational model, we
proceeded to describe the tight correspondences between them in the designing phase. Second, we
proposed the principle of semantic encapsulation. Each schema comes with its semantics in terms
of the correspondence to other structures. By leveraging database query languages, we proposed
a formal correspondence language which is capable of capturing both intensional and extensional
correspondence between structures. Third, we described two reasoning tasks taking advantage of
correspondences. Leveraging a rich body of techniques for view-based query answering and data
integration formalisms, we showed that correspondences can be composed along the lineage line
upwards until reaching the domain ontology with the richest semantics. Further, we demonstrated
that algorithm for generating semantic mappings between arbitrary schemas exists indeed. Finally,
we gave a procedure for deriving semantic mappings between XML schemas. The novel XML no-
tation combining with the correspondence language achieves the goal of XML interoperability on
the Web.

There are many lines of future research and work ahead. First, we are currently pursuing the im-
plementation of our framework in terms of a Web-accessible tool which includes a domain ontology
repository, a conceptual schema repository, and a logical schema repository. The tool allows user to
browse the repositories and create new schemas or set correspondences between schemas. Generat-
ing semantic mappings between schemas will be provided as web services. Second, the reasoning
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tasks are based on our two assumptions: single line of correspondences and single domain ontology.
In reality, a schema structure can correspond to any other schema structures, and different versions
of domain ontologies exist indeed. We will proceed to develop techniques for such a complicated
situation by combining techniques from ontology articulation. Third, we notice that the generic
model management [Ber03] treats models and mappings as abstractions that can be manipulated
by model-as-a-time and mapping-as-a-time operators. Despite mapping is the significant interest
and all the operators rely on it, it is by no means an easy task to generate mappings between mod-
els automatically without explicit semantic presentation. We are interested in placing our semantic
encapsulation principle into the generic model management framework. Fourth, as we mentioned
before, to make the semantic web succeed, traditional databases and XML files have to be covered.
Our correspondence approach provides a promising way to reconcile the two worlds. Therefore,
new web correspondence language needs to be developed in addition to web ontology language.
Finally, we are interested in pursuing theoretical and philosophical issues regarding correspondence
and mapping more deeply. We have seen that the standard logic is inadequate in dealing with in-
tensional correspondence. Although we have distinguished the logical symbols for intensional and
extensional correspondences in our correspondence language, we expect to bring in more results of
the theory of semantics.
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