
Constructing Complex Semantic Mappings

between XML Data and Ontologies

Yuan An1, Alex Borgida2, and John Mylopoulos1

1 University of Toronto, Canada
{yuana,jm}@cs.toronto.edu
2 Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. Much data is published on the Web in XML format satisfy-
ing schemas, and to make the Semantic Web a reality, such data needs
to be interpreted with respect to ontologies. Interpretation is achieved
through a semantic mapping between the XML schema and the ontology.
We present work on the heuristic construction of complex such semantic
mappings, when given an initial set of simple correspondences from XML
schema attributes to datatype properties in the ontology. To accomplish
this, we first offer a mapping formalism to capture the semantics of XML
schemas. Second, we present our heuristic mapping construction algo-
rithm. Finally, we show through an empirical study that considerable
effort can be saved when constructing complex mappings by using our
prototype tool.

1 Introduction

An important component of the Semantic Web vision is the annotation, using
formal ontologies, of material available on the Web. Semi-structured data, pub-
lished in XML and satisfying patterns expressed in DTD or XML Schema form
an important subclass of such material. In this case, the annotation can be ex-
pressed in a formal way, through a semantic mapping connecting parts of the
schema with expressions over the ontology. For example, [1, 11] essentially con-
nect paths in XML to chains of properties in an ontology. Such mappings have
already found interesting applications in areas such as data integration as well
as peer-to-peer data management systems [7].

Mappings from database schemas to ontologies could be as simple as value
correspondences between single elements or as complex as logic formulas. In
most applications, such as information integration, complex logic formulas are
needed. Until now, it has been assumed that humans specify these complex
mapping formulas — a highly complex, time-consuming and error-prone task.
In this paper, we propose a tool that assists users in the construction of complex
mapping formulas between XML schemas and OWL ontologies, expressed in a
subset of First Order Logic.

Inspired by the success of the Clio tool [14, 15], our tool takes three inputs:
an ontology, an XML schema (actually, its unfolding into tree structures that



we will call element trees), and simple correspondences between XML attributes
and ontology datatype properties, of the kind possibly generated by already
existing tools (e.g., [4, 12, 13]). The output is a ranked list of complex formulas
representing semantic mappings of the kind described earlier.

In short, the main contributions of this work are as follows: (i) we propose
a mapping formalism to capture the semantics of XML schemas based on tree-
pattern formulas [3]; (ii) we propose a heuristic algorithm for finding semantic
mappings, which are akin to a tree connection embedded in the ontology; (iii)
we enhance the algorithm by taking into account information about (a) XML
Schema features such as occurrence constraints, key and keyref definitions, (b)
cardinality constraints in the ontology, and (c) XML document design guidelines
under the hypothesis that an explicit or implicit ontology existed during the
process of XML document design; (iv) we adopt the accuracy metric of schema
matching [13] and evaluate the tool with a number of experiments.

The rest of the paper is organized as follows. Section 2 discusses related work,
while Section 3 presents formal notations used later on. Section 4 describes some
principles, as well as the mapping construction algorithm. Section 5 reports on
empirical studies and Section 6 discusses how to refine the results by reasoning
about ontologies. Finally, Section 7 summarizes the results of this work and
suggests future directions.

2 Related Work

Much research has focused on converting and storing XML data into relational
databases [16]. It is natural to ask whether we could utilize the mapping al-
gorithm we have developed in [2] – for discovering mappings from relational
schemas to ontologies – by first converting XML DTDs/schemas into relational
tables. Unfortunately, this approach does not work. Among others, the algo-
rithms that generate a relational schema from an XML DTD use backlinks and
system generated ids in order to record the nested structure, and these confuse
the algorithms in [2], which rely heavily on key and foreign key information.

The schema mapping tool Clio [14, 15] discovers formal queries describing
how target schemas can be populated with data from source schemas, given sets
of simple value correspondences. The present work can be viewed as extending
Clio to the case when the target schema is a ontology treated as a relational
schema consisting of unary and binary tables. However, as argued in [2], the chase
algorithm of Clio would not produce the desired mappings due to several reasons:
(i) the chase only follows nested referential constraints along one direction, while
the intended meaning of an XML element tree may follow a binary relationship
along either direction (see also Section 4.1); (ii) Clio does not explore occurrence
constraints in the XML schema. These constraints carry important semantic
information in searching for “reasonable” connections in the ontology.

The Xyleme [5] project is a comprehensive XML data integration system
which includes an automatic mapping generation component. A mapping rule
in terms of a pair of paths in two XML data sources is generated based on term



matching and structural, context-based constraints. Specifically, terms of paths
are first matched syntactically and semantically. Then the structural information
is exploited. Our work differs from it significantly in that we propose to discover
the mappings between tree structures in XML data and that in ontologies. The
discovery is guided by a forward engineering process.

The problem of reverse engineering is to extract a conceptual schema (UML
diagram, for example) from an XML DTD/schema [8]. The major difference be-
tween reverse engineering and our work is that we are given an existing ontology,
and want to interpret the XML data in terms of it, whereas reverse engineering
aims to construct a new one.

Finally, Schema Matching [4, 12, 13] identifies semantic relations between
schema elements based on their names, data types, constraints, and structures.
The primary goal is to find the one-one simple correspondences which are part
of the input for our mapping discovery algorithm.

3 Formal Preliminaries

An OWL ontology consists of classes (unary predicates over individuals), object
properties (binary predicates relating individuals), and datatype properties (bi-
nary predicates relating individuals with values). Classes are organized in terms
of a subClassOf/ISA hierarchy. Object properties and their inverses are subject
to cardinality restrictions; the ones used here are lower bound of 1 (marking total
relationships), and upper bound of 1 (called functional relationships). We shall
represent a given ontology using a directed graph, which has class nodes labeled
with class names C, and edges labeled with object properties p. (Sometimes,
when we speak class C, we may mean its corresponding node in the ontology
graph.) Furthermore, for each datatype property f of class C, we create a sep-
arate attribute node Nf,C labeled f and an edge labeled f too from C to Nf,C

in the graph. We propose to have edge p from C to B, written in the text as
C -- p -- B , to represent that p has domain class C and range class B. (If

the relationship is functional, we write C -- p -->- B .) We may also connect
C to B by edge labeled p if we find a restriction stating that each instance of
C is related to some (all) instances of B by p. For the sake of space limitation,
graphical examples of ontologies (see [2]) are omitted.

For our purpose, we require that each XML document be described by an
XML schema consisting of a set of element and attribute type definitions. Specif-
ically, we assume the following countably infinite disjoint sets: Ele of element
names, Att of attribute names, and Dom of simple type names including the
built-in XML schema datatypes. Attribute names are preceded by a ”@” to dis-
tinguish them from element names. Given finite sets E ⊂Ele and A ⊂Att, an
XML schema over (E,A) specifies the type of each element ` in E, the attributes
that ` has, and the datatype of each attribute in A. Specifically, an element type τ
is defined by the grammar τ ::= ε|Sequence[`1 : τ1, ...`n : τn]|Choice[`1 : τ1, .., `n :
τn], where `1, .., `n ∈ E, ε is for the empty type, and Sequence and Choice are
complex types. Each element associates an occurrence constraint with two val-



ues: minOccurs indicating the minimum occurrence and maxOccurs indicating
the maximum occurrence. (We mark with * multiply occurring elements.) The
set of attributes of an element ` ∈ E is defined by the function ρ : E → 2A;
and the function κ : A →Dom specifies the datatypes of attributes in A. For
brevity, in this paper we do not consider simple type elements (corresponding
to DTD’s PCDATA), assuming instead that they have been represented using
attributes. We also assume the Unique Name Assumption (UNA) for attributes,
i.e., for any two elements `i, `j ∈ E, ρ(`i) ∩ ρ(`j) = ∅.

For example, an XML schema describing articles and authors has the follow-
ing specification:
E ={article, author, contactauthor, name},
A ={@title, @id, @authorid, @fn, @ln},
τ(article) = Sequence[(author)∗ :τ(author), contactauthor:ε],
τ(author) = Sequence[name:ε],
ρ(article) = (@title), ρ(author) = (@id), ρ(contactauthor) = (@authorid),
ρ(name) = (@fn,@ln), κ(@title) = String, κ(@authorid) = Integer, κ(@id)=
Integer, κ(@fn)= String, κ(@ln)= String, and the element article is the root.
Note that for the article element, title and contactauthor only occur once, while
author may occur many times. For the author element, name occurs once.

The XML Schema Language is an expressive language that can also express
key and keyref constraints.

An XML schema can be viewed as a directed node-labeled graph called
schema graph consisting of the following edges: parent-child edges e = ` → `i for
elements `, `i ∈ E such that if τ(`)= Sequence[...`i : τi...] or Choice[...`i : τi...];
and attribute edges e = ` → α for element ` ∈ E and attribute α ∈ A such that
α ∈ ρ(`). For a parent-child edge e = ` → `i, if the maxOccurs constraint of `i

is 1, we show the edge to be functional, drawn as ` ⇒ `i. Since attributes are
single-valued, we always draw an attribute edge as ` ⇒ α. The schema graph
corresponding to the XML schema above is shown in Figure 1.

Elements and attributes as nodes
article

author @title

contactauthor

@authorid

@id
name

@fn @ln

Fig. 1. The Schema Graph.

in a schema graph are located by path
expressions. To avoid regular expres-
sions, we will use a simple path ex-
pression Q = ε|`.Q. In order to do
this in a general fashion, we introduce
the notion of element tree.

An element tree represents an XML
structure whose semantics we are seek-
ing. A semantic mapping from the en-
tire XML schema to an ontology con-

sists of a set of mapping formulas each of which is from an element tree to a
conjunctive formulas in the ontology. An element tree can be constructed for each
element by doing a depth first search (DFS). During the DFS, shared attributes
are renamed to maintain the UNA, and cycles are unfolded. For the schema graph
shown in Figure 2 (a), the element trees for the elements controls, employee,



and manager are shown in Figure 2 (b), (c), (d). For simplicity, we specify each
element tree as rooted in the element from which the tree is constructed.
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Fig. 2. Schema Graph and Element Trees.

Now we turn to the mapping language describing XML schemas in terms of
ontologies. On the XML side, we start with attribute formulas, which are specified
by the syntax α ::= `|`(@a1 = x1, ..,@an = xn), where ` ∈ E, @a1, ..,@an ∈ A,
and x1, . . . , xn are distinct variables. Tree formulas over (E,A) are defined by
ϕ ::= α|α[ϕ1, .., ϕn], where α are attribute formulas over (E,A). For example,
employee(@eid1 = x1)[manager(@mid = x2)[employee(@eid2 = x3)]]
is the tree formula representing the element tree in Figure 2 (c).

On the ontology side, we use conjunctive formulas, which treat concepts and
properties as unary and binary predicates respectively.

A mapping formula between an element tree and an ontology then has the
form Φ(X) → Ψ(X,Y ), where Φ(X) is a tree formula in the XML schema and
Ψ(X,Y ) is a conjunctive formula in the ontology. For example, given an ontology
containing the class Employee, with a datatype property hasId, and a functional
property hasManager (whose inverse is manages, which is not functional), the
following mapping formula ascribes a semantics of the element tree in Figure 2
(c):
employee(@eid1 = x1)[

manager (@mid = x2)[
employee (@eid2=x3) ]] →

Employee(Y1),hasId(Y1, x1), Employee(Y2),hasId(Y2, x2),
hasManager(Y1, Y2), Employee(Y3),hasId(Y3, x3),manages(Y2, Y3).
Since we maintain the UNA assumption, we can drop the variable names xis,
and just use attribute names in the formula. The variables Yjs are implicitly
existentially quantified and refer to individuals in the ontology.

Given an element tree T and an ontology O, a correspondence P.@c!C.f
will relate the attribute ”@c” of the element E reached by the simple path P
to the datatype property f of the class C in the ontology. A simple path P is
always relative to the root of the tree. For example, we can specify the following



correspondences for the element tree in Figure 2 (c):
employee.@eid1!Employee.hasId,
employee.manager.@mid!Employee.hasId.
employee.manager.employee.@eid2!Employee.hasId
Since our algorithm deals with ontology graphs, formally a correspondence L will
be a mathematical relation L(P,@c, C, f,Nf,C), where the first two arguments
determine unique values for the last three.

4 Mapping Construction Algorithm

Before presenting the algorithm, we first explain some principles underlying it.

4.1 Principles

As in the relational case [2], we start from a methodology presented in the
literature [6, 9] for designing XML DTDs/schemas from an ontology/conceptual
model (CM). As with relational schemas, there is a notion of XML normal form
(XNF) for evaluating the absence of redundancies and update anomalies in XML
schemas [6]. The methodology in [6] claims to develop XNF-compliant XML
schemas from CMs. It turns out that these “good” XML schemas are trees
embedded in the graph representations of the CMs. Using the term “element
tree” instead of “schema tree” in [6], we briefly describe the algorithm of [6]
(called EM-algorithm).
Example 1. For a “binary and canonical hypergraph” H (viz. [6]), representing
a CM, EM-algorithm derives an element tree T such that T is in XNF and every
path of T reflects a sequence of some connected edges in H. For example, starting
from the Department node of the ontology in Figure 3 the following element
tree (omitting attributes) T is obtained: Department[(FacultyMember[(Hobby)*,
(GradStudent[Program, (Hobby)*])*])*], where we use [ ] to indicate hierarchy
and ( )* to indicate the multiple occurrences of a child element (or non-functional
edges) in element trees.

In essence, EM-algorithm recur-
Faculty
Member

Department

ProgramGrad Student

Hobby

Fig. 3. Sample CM/ontology graph.

sively constructs the element tree T
as follows: it starts from a concept
node N in CM, creates tree T rooted
in a node R corresponding to N , and
constructs the direct subtrees below R
by following nodes and edges connected
to N in CM. Finally, a largest hier-

archical structure embedded within CM is identified and an edge of T reflects a
semantic connection in the CM. �

A binary and canonical CM can naturally be viewed as an OWL ontology:
concepts are classes, binary relationships are object properties, and attributes
are datatype properties. So, given an XNF-compliant element tree T , we may
assume that there is a semantic tree S embedded in an ontology graph such that



S is isomorphic to T . If the correspondences between elements and classes were
given, we should be able to identify S in terms of the ontology.

Example 2. Suppose elements in the element tree T of Example 1 correspond to
the classes (nodes) in Figure 3 by their names. Then we can recover the semantics
of T recursively starting from the bottom, e.g., for the subtree GradStudent[
Program, (Hobby)* ], because the edge GradStudent ⇒ Program is functional
and GradStudent → Hobby is non-functional, and GradStudent is the root,
we look for functional edges from GradStudent to Program and 1 : N or M :
N edges from GradStudent to Hobby in the ontology graph. Likewise, we can
recover the edges from FacultyMember to GradStudent and Hobby. Finally,
the 1 : N edge between Department and FacultyMember is recovered. �

In an element tree T , attributes are the leaves of T and correspond to the
datatype properties of classes in an ontology. There has been much research
on schema matching tools [4, 12, 13] which focus on generating these kinds of
correspondences automatically. Given the correspondences from XML attributes
to datatype properties of an ontology, we expect to identify the root and the
remaining nodes of the semantics tree S and connect them meaningfully.

Example 3. Suppose the following correspondences:
X :GradStudent.@ln!O:GradStudent.lastname,
X :GradStudent.@fn ! O:GradStudent.firstname,
X :GradStudent.Program.@pname!O:Program.name,
are for the element tree GradStudent(@ln, @fn)[Program(@pname)], where
we use prefixes X and O to distinguish terms in the element tree and the ontology.
Then we could identify the class O:GradStudent as the root of the semantic tree
and recover it as the edge O:GradStudent -->- O:Program. �

The first principle of our mapping construction algorithm is to identify the
root of a semantic tree and to construct the tree by connecting the root to the
rest of nodes in the ontology graph using edges having compatible cardinality
constraints with edges in the element tree.

However, identifying the root of the semantic tree is the major obstacle. The
following example illustrates the problem for an XML schema which is not XNF
compliant. Such a schema can be easily encountered in reality.

Example 4. for the element tree
GradStudent[Name(@ln, @fn), Program(@pname)]
with the correspondences
X :GradStudent.Name.@ln!O:GradStudent.lastname,
X :GradStudent.Name.@fn !O:GradStudent.firstname,
X :GradStudent.Program.@pname!O:Program.name,
the element X :Name corresponds to O:GradStudent by its attributes and the
element X :Program corresponds to O:Program. Further, both X :Name and
X :Program occur once and are at the same level. Then the question is which one
is the root of the semantic tree? O:GradStudent or O:Program? Since the order
of nodes on the same level of the element tree does not matter, both are potential
roots. Therefore, the mapping algorithm should recover the functional edges from



O:GradStudent to O:Program as well as from O:Program to O:GradStudent,
if any. �

This leads to the second principle of our algorithm: for each class C in the
ontology graph such that C corresponds to a child element E of the root element
R in the element tree T and R ⇒ E is functional, C is a potential root of the
semantic tree S. Treating an attribute as a subtree, the mapping construction
algorithm will recursively recover the semantic tree S in a bottom-up fashion.

Unfortunately, not every functional edge from a parent element to a child
element represents a functional relationship. Specifically, some element tags
are actually the collection tags containing a set of instances of the child el-
ements. For example, for the element tree: GradStudent[Name(@ln, @fn),
Hobbies[(Hobby(@title))*]] with the correspondences
X :GradStudent.Name.@ln!O:GradStudent.lastname,
X :GradStudent.Name.@fn !O:GradStudent.firstname,
X :GradStudent.Hobbies.Hobby.@title!O:Hobby.title,
the element tag X :Hobbies represents a collection of hobbies of a graduate stu-
dent. Although the edge X :GradStudent ⇒ X :Hobbies is functional, X :Hobbies
→ X :Hobby is non-functional. Therefore, when O:Hobby is identified as the root
of the semantic tree for the subtree Hobbies[(Hobby(@title))*], O:Hobby should
not be considered as a potential root of the semantic tree for the entire element
tree. Eliminating classes corresponding to collection tags from the set of the
potential roots is our third principle.

In most cases, we try to discover the semantic mapping between an XML
schema and an ontology such that they were developed independently. In such
cases, we may not be able to find an isomorphic semantic tree S embedded in the
ontology graph, or we may find an isomorphic tree that is not the intended one,
for a given element tree. For example, for the element tree City( @cityName)[

Country (@countryName)] and a ontology with a path City -- locatedIn

-->- State -- locatedIn -->- Country (recall -->- indicates a functional

property), the intended semantics is the path rather than a single edge. The
fourth principle for discovering mappings is to find shortest paths in the ontology
graph instead of single edges, where the semantics of the paths is consistent with
the semantics of the edges in the element tree in terms of cardinality constraints.

Even though we could eliminate some collection tags from the set of potential
roots to reduce the number of possible semantic trees, there are still too many
possibilities if the ontology graph is large. In order to further restrict the set of
potential roots, we can make use of key and keyref definitions in XML schemas.

Example 5. For the element tree
Article[Title(@title), Publisher(@name),
ContactAuthor(@contact), (Author(@id))∗]
if the attribute @title is defined as the key for Article, then we should only choose
the class corresponding to @title as the root of the semantic tree, eliminating the
classes corresponding to @name and @contact (picked by the second principle).
Further, if @contact is defined as a keyref referencing some key, we also can
eliminate the class corresponding to @contact. �



So our fifth principle is to use key and keyref definitions to restrict the set
of potential roots.
Reified Relationships. To represent n-ary relationships in OWL ontologies,
one needs to use classes, called reified relationship (classes). For example, an on-
tology may have class O:Presentation connected with functional roles to classes
O:Author, O:Paper, and O:Session, indicating participants. It is desirable to
recover reified relationships and their role connections from an XML schema.
Suppose the element tree Presentation[Presenter(@author), Paper(@title), Ses-
sion(@eventId)] represents the above ternary relationship. Then, in the ontology,
the root of the semantic tree is the reified relationship class O:Presentation,
rather than any one of the three classes which are role fillers. The sixth principle
then is to look for reified relationships for element trees with only functional
edges from a parent to its children that correspond to separate classes3.
ISA. In [6], ISA relationships are eliminated by collapsing superclasses into their
subclasses, or vice versa. If a superclass is collapsed into subclasses, correspon-
dences can be used to distinguish the nodes in the ontology. If subclasses are
collapsed into their superclass, then we treat the ISA edges as special functional
edges with cardinality constraints 0 : 1 and 1 : 1. The last principle is then to
follow ISA edges whenever we need to construct a functional path4.

4.2 Algorithm

First, to get a better sense of what we are aiming for, we present the encodeTree(S,
L) procedure, which translates an ontology subtree S into a conjunctive formula,
taking into account the correspondences L.

Function encodeTree(S,L)
Input subtree S of ontology graph, correspondences L from attributes of element
tree to datatype properties of class nodes in S.
Output variable name generated for root of S, and conjunctive formula for the
tree.
Steps:

1. Suppose N is the root of S, let Ψ = {}.
2. If N is an attribute node with label f , find @d such that L( ,@d, , f,N) =

true, return (@d, true).
3. If N is a class node with label C, then introduce new variable Y ; add conjoint

C(Y ) to Ψ ; for each edge pi from N to Ni:

(a) let Si be the subtree rooted at Ni;
(b) let (vi, φi(Zi))=encodeTree(Si, L);
(c) add conjunct pi(Y, vi) ∧ φi(Zi) to Ψ ;

4. return (Y, Ψ).

3 If a parent functionally connects to only two children, then it may represent an M:N
binary relationship. So recover it as well.

4 Thus, ISA is taken care of in the forthcoming algorithm by proper treatment of
functional path.



The following procedure constructTree(T,L) generates the subtree of the on-
tology graph for the element tree after appropriately replicating nodes5 in the
ontology graph.

Function constructTree(T,L)
Input an element tree T , an ontology graph, and correspondence L from at-
tributes in T to datatype properties of class nodes in the ontology graph.
Output set of (subtree S, root R, collectionTag) triples, where collectionTag
is a boolean value indicating whether the root corresponds to a collection tag.
Steps:

1. Suppose N is the root of tree T .
2. If N is an attribute, then find L( , N, , , R) = true; return ({R},R, false).

/*the base case for leaves.*/
3. If N is an element having n edges {e1, .., en} pointing to n nodes {N1, .., Nn},

let Ti be the subtree rooted at Ni,
then compute (Si,Ri, collectionTagi)= constructTree(Ti, L) for i = 1, .., n;
(a) If n = 1 and e1 is non-functional, return (S1,R1, true);/*N probably is a

collection tag representing a set of instances each of which is an instance
of the N1 element.*/

(b) Else if n = 1 and e1 is functional return (S1,R1,collectionTag1).
(c) Else if R1=R2=...=Rn, then return (combine(S1, .., Sn), R1, false)6.
(d) Else let F={Rj1 , .., Rjm

| s.t. ejk
is functional and collectionTagjk

=
false for k = 1, ..,m, jk∈{1, ..., n}} and NF={Ri1 , .., Rih

| s.t. eik
is

non-functional, or eik
is functional and collectionTagik

= true for k =
1, .., h, ik∈{1, ..., n}}, let ans = {}, /*separate nodes according to their
connection types to N .*/
i. Try to limit the number of nodes in F by considering the following

cases: 1) keep the nodes corresponding to key elements located on
the highest level; 2) keep those nodes which do not correspond to
keyref elements.

ii. If NF = ∅, find a reified relationship concept R with m roles rj1 , .., rjm

pointing to nodes in F , let S= combine({rjk
}, {Sjk

}) for k = 1, ..,m;
let ans= ans∪(S, R, false). If R does not exist and m = 2, find
a non-functional shortest path p connecting the two nodes Rj1 , Rj2

in F ; let S= combine(p, Sj1 , Sj2); let ans= ans∪(S, Rj1 , false).
/*N probably represents an n-ary relationship or many-many binary
relationship (footnote 3 of the sixth principle.)*/

iii. Else for each Rjk
∈ F k = 1, ..,m, find a shortest functional path pjk

from Rjk
to each Rjt

∈ F/Rjk
for t = 1, .., k−1, k+1, ..,m; and find a

shortest non-functional path qir
from Rjk

to each Rir
∈ NF for r =

1, .., h; if pjk
and qir

exist, let S= combine({pjk
}, {qir

},{S1, .., Sn});
let ans=ans∪(S,Rjk

,false). /*pick an root and connect it to other
nodes according to their connection types.*/

5 Replications are needed when multiple attributes correspond to the same datatype
property. See [2] for details.

6 Function combine merges edges of trees into a larger tree.



iv. If ans 6= ∅, return ans; else find a minimum Steiner tree7 S connect-
ing R1, .., Rn, return (S,R1, false). /*the default action is to find a
shortest Steiner tree.*/

It is likely that the algorithm will return too many results. Therefore, at the
final stage we set a threshold Nthresh for limiting the number of final results
presented. In the following experimental section, this threshold was set to 10.

5 Mapping Construction Experiences

We have implemented the mapping algorithm and conducted a set of experiments
to evaluate its effectiveness and usefulness.
Measures for mapping quality and accuracy. We first attempt to use the
notions of precision and recall for the evaluation. Let R be the number of correct
mapping formulas of an XML schema, let I be the number of correctly identified
mapping formulas by the algorithm, and let P be the total number of mapping
formulas returned. The two quantities are computed as: precision = I/P and
recall = I/R. Please note that for a single input element tree T , which has a
single correct mapping formula, the algorithm either produces the formula or
not. So the recall for T is either 0 or 1, but the precision may vary according to
the number of output formulas. For measuring the overall quality of the mapping
results, we computed the average precision and recall for all tested element trees
of an XML schema.

However, precision and recall alone cannot tell us how useful the algorithm is
to users. The purpose of our tool is to assist users in the process of constructing
complex mappings, so that productivity is enhanced. Consider the case when
only one semantic mapping is returned. Even if the tool did not find the exactly
right one, it could still be useful if the formula is accurate enough so that some
labor is saved. To try to measure this, we adopt the accuracy metric for schema
matching [13]. Consider the mapping formula Φ(X)→Ψ(X,Y ) with the formula
Φ(X) encoding an element tree. The formula Ψ(X,Y ) encodes a semantic tree
S = (V,E) by using a set of unary predicates for nodes in V , a set of binary
predicates for edges in E, and a set of variables, Y , assigned to each node (there
are predicates and variables for datatype properties as well). For a given element
tree T , writing the complex mapping formula consists of identifying the semantic
tree and encoding it into a conjunctive formula (which could be treated as a set
of atomic predicates). Let Ψ1 = {a1(Z1), a2(Z2), .., am(Zm)} encode a tree S1,
let Ψ2 = {b1(Y 1), b2(Y 2), .., bn(Y n)} encode a tree S2. Let D = Ψ2\Ψ1 = {bi(Y i)|
s.t. for a given partial one-one function f : Y → Z representing the mapping from
nodes of S2 to nodes of S1, bi(f(Y i)) ∈ Ψ1}. One can easily identify the mapping
f : Y → Z by comparing the two trees S2 and S1 (recall an ontology graph
contains class nodes as well as attribute nodes representing datatype properties)
so we consider that it comes for free. Let c = |D|. Suppose Ψ1 be the correct

7 A Steiner tree on R1, .., Rn is a spanning tree that may contain nodes other than
R1, .., Rn.



formula and Ψ2 be the formula returned by the tool for an element tree. To reach
the correct formula Ψ1 from the formula Ψ2, one needs to delete n− c predicates
from Ψ2 and add m − c predicates to Ψ2. On the other hand, if the user creates
the formula from scratch, m additions are needed. Let us assume that additions
and deletions need the same amount of effort. However, browsing the ontology
for correcting formula Ψ2 to formula Ψ1 is different from creating the formula Ψ1

from scratch. So let α be a cost factor for browsing the ontology for correcting
a formula, and let β be a factor for creating a formula. We define the accuracy

or labor savings of the tool as labor savings = 1 − α[(n−c)+(m−c)]
βm

. Intuitively,
α < β, but for a worst-case bound let us assume α = β in this study. Notice
that in a perfect situation, m = n = c and labor savings = 1.

Schemas and ontologies. To evaluate the tool, we collected 9 XML schemas
varying in size and nested structure. The 9 schemas come from 4 application do-
mains, and 4 publicly available domain ontologies were obtained from the Web
and literature. Table 1 shows the characteristics of the schemas and the ontolo-
gies; the column heads are self-explanatory. The company schema and ontology
are obtained from [9] in order to test the principles of the mapping construc-
tion. The conference schema is obtained from [10]. UT DB is the schema used
for describing the information of the database group in University of Toronto.
SigmodRecord is the schema for SIGMOD record. The rest of the schemas are
obtained from the Clio test suite (http://www.cs.toronto.edu/db/Clio). The KA
ontology, CIA factbook, and the Bibliographic-Data are all available on the Web.
We have published the schemas and ontologies on our website along with some
sample mapping results at the following URL:
http://www.cs.toronto.edu/ ˜yuana/research /maponto/testData.html.

XML Schema Max Depth (DFS) in # Nodes in # Attributes in Ontology # Nodes # Links

Schema Graph Schema Graph Schema Graph

Company 6 30 17 Company 18 27

Conference 5 21 12 KA 105 4396

UT DB 6 40 20 KA 105 4396

Mondial 6 214 93 CIA factbook 52 77

DBLP 1 3 132 63 Bibliographic 75 749

DBLP 2 5 29 11 Bibliographic 75 749

SigmodRecord 3 16 7 Bibliographic 75 749

Amalgam 1 3 117 101 Bibliographic 75 749

Amalgam 2 3 81 53 Bibliographic 75 749

Table 1. Characteristics of Test XML Schemas and Ontologies

Experimental results. Our experiments are conducted on a Dell desktop with
a 1.8GHZ Intel Pentium 4 CPU and 1G memory. The first observation is the
efficiency. In terms of the execution times, we observed that the algorithm gen-



erated results on average in 1.4 seconds which is not significantly large, for our
test data.

Figure 4 shows the average precision and recall measures of the 9 mapping
pairs. For each pair of schema and ontology, the average precision and recall are
computed as follows. For the element trees extracted from the schema graph, a
set of correct mapping formulas is manually created. We then apply the algo-
rithm on the element trees and ontologies to generate a set of formulas. Next
we examine each of the generated formulas to count how many are correct and
compute the average precision and recall. The overall average precision is 35%
and overall average recall is 75%. Notice that we have limited the number of
formulas returned by the tool to 10.
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Fig. 4. Average Recall and Precision for 9 Mapping Cases

Finally, we evaluate the usefulness of the tool. Figure 5 shows the average
values of labor savings for the 9 mapping cases. For each mapping case, the
average labor savings is computed as follows. Examine each incorrect formula
returned by the algorithm and compute its labor saving value relative to the
manually created one. Take the average value of the labor savings of all incor-
rect formulas. Note that even when the correct formula was identified by the
algorithm, we still computed the labor savings for all incorrect ones to see how
useful the tool is in case only one formula was returned. The overall average
labor savings is over 80%, which is quite promising. Especially in view of the
pessimistic assumption that α = β in the labor savings formula, we take this as
evidence that the tool can greatly assist users in constructing complex mappings
between XML schemas and ontologies with a proper schema matching tool as a
front-end component.
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Fig. 5. Average Labor Savings for 9 Mapping Cases

6 Refining Mappings by Ontology Reasoning

Rich ontologies provide a new opportunity for eliminating “unreasonable” map-
pings. For example, if the ontology specifies that once a Person owns a CellPhone,
they do not rent another one, then a candidate semantic formula Person(X),
rents(X,Y ), Cell(Y ), owns(X,Z), Cell(Z) can be eliminated 8, since no ob-
jects X can satisfy it. When ontologies, including constraints such as the one
about renting/owning, are expressed in OWL, one can actually use OWL rea-
soning to detect inconsistent semantics by converting semantic trees into OWL
concepts, and then testing them for incoherence with respect to the ontology.
For example, the above formula can be translated, using an algorithm resembling
encodeTree(S,L), into the OWL concept whose abstract syntax is intersectionOf(
Person, restriction(rents someValuesFrom(Cell)), restriction(owns someValues-
From(Cell))). The ontologies we have found so far are unfortunately not suffi-
ciently rich to demonstrate the usefulness of this idea.

7 Conclusions

In this paper, we have motivated and defined the problem of constructing com-
plex semantic mappings from XML data to ontologies, given a set of simple
correspondences from XML attributes to OWL datatype properties. The prob-
lem is well-motivated by the needs to annotate XML data in terms of ontologies,
to translate XML data into ontologies, and to integrate heterogeneous XML
data on the semantic web. We have proposed a tool for semi-automatically con-
structing complex mappings for users, and we evaluated the tool on a variety of

8 Probably some other relationship than rents(X, Y ) needs to be used.



real XML schemas and ontologies. Our experimental results suggest that quite
significant savings in human work could be achieved by the use of our tool.

Integrating our tool with schema matching tools which automatically gener-
ate schema and ontology element correspondences is an open problem to address
in the future. We also plan to develop filters for mappings by making use of in-
stance data to assist users in choosing the correct mapping among a list of
possible candidates.
Acknowledgments: We are grateful to anonymous reviewers for offering valu-
able comments, corrections, and suggestions for improvement.
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