
Data Semantics: Data Integration and the Semantic Web

Yuan An
Department of Computer Science

University of Toronto
yuana@cs.toronto.edu

Document prepared for the Depth Oral

In BA 7256, At 2:00-4:00pm, Thursday, January 22nd, 2004

Abstract

Information systems today need to resolve the heterogeneity among data residing in mul-
tiple autonomous data sources. In particular, the use of the World Wide Web as a universal
medium for exchanging information has radically transformed our vision about data access and
manipulation. Following the perspective of the semantic web, we believe that the explicit pre-
sentation of data semantics will facilitate data interoperation in a variety of data manipulation
tasks.

Investigating and capturing the meaning of data is a core problem in all of applications
in computer science. Especially, in database area the problem has been studied by many re-
searchers. As a result, we have seen much progress on topics such as schema integration,
schema matching, schema mapping, and generic model management in multidatabases, fed-
erated databases, and data integration over past two decades. The solutions that have been
developed so far are a mixture of semi-automatic, heuristic-driven, and multi-layered solutions.

Representing and reasoning about human knowledge in terms of symbolic structures is an-
other long-standing problem. Consequently, many logical formalisms have been proposed bear-
ing distinct expressivity and reasoning capabilities. A recent application of this work called
semantic web aims at providing a machine-understandable Web by organizing data in terms of
their semantics. It employs the approach of annotating data with formal ontologies. This ap-
proach demonstrates one aspect of the paradigm of ontology-based information representation
and integration.

We believe that investigating data semantics as to establish and maintain the correspondence
between data/model and its intended subject matter could have long-term benefits as well as
instant gains. Our future line of research is founded on a principle of semantic correspondence
continuum. The continuum is grounded on domain ontologies.

1 Introduction

1.1 Data Semantics as an Enduring Problem

Information systems today manipulate data originating at multiple autonomous and heterogeneous
data sources. Consequently, state-of-the-art data management systems are facing the paradigm shift
from a monolithic and controllable environment to a distributed and open-ended one. In particular,

1

resolving semantic heterogeneity, and gathering and sharing data among autonomous and hetero-
geneous data sources are key to the new paradigm. Some current applications include data ware-
housing that supports decision by providing historical, summarized, and consolidated data from
multiple operational databases; data integration systems that answer queries posed against a global
schema by using disparate local data sources; e-business applications that enable service providers
and consumers to locate partners and fulfill transactions automatically; web portals that integrate
information from different sources; and the vision of the semantic web that aims at the creation
of machine-understandable Web data so that humans and computers can interact freely to satisfy
the ever-growing need for swift information consumption. Although various approaches to resolv-
ing semantic heterogeneity have been developed, the profound and elusive questions yet remain
[She97]: What is data semantics? Where does data semantics come from? and How to represent
data semantics?

1.2 An Overview of Data Integration and the Semantic Web

The prevalence of autonomy, heterogeneity, connectivity, openness, and reuseness in the modern
information systems environment calls for interoperability. Two lines of research give insights into
the investigation of data semantics to promote interoperability: data integration and the semantic
web – the recent descendant of knowledge representation.

Data integration is the problem of combining data residing in different sources, and providing
the user with a unified view, global schema, of these data. The sources contain the real data, while
the global schema provides a reconciled, integrated, and virtual view of the underlying sources.
Modeling the relation between the sources and the global schema is therefore a crucial aspect. It
calls for mappings.

A mapping is an assertion about query expressions of source schemas and the global schema.
Two basic approaches have been proposed to this purpose. The first approach, called global-as-
view (GAV), requires that the global schema is expressed in terms of the sources. The second
approach, called local-as-view (LAV), requires the global schema to be specified independently
from the sources, and the relationships between the global schema and the sources are established
by defining every source as a view over the global schema. The processing of queries posed in terms
of the global schema in data integration requires a query reformulation. Techniques like answering
query using views and rewriting query using views are tightly bound to the LAV approach.

A great deal of effort has been put into the study of increasing the degree of automation of
mapping generation. Familiar topics are schema integration, schema matching, schema mapping,
and generic model management, to name a few. All of them are valuable approaches in dealing with
semantic heterogeneity. We will discuss several typical approaches in corresponding sections later
on.

On the other hand, the semantic web aims at directly providing machine-understandable data
on the Web. It has two salient ingredients: (

�
) web ontologies; (

���
) data annotation. Although it

has long way to go for the realization of the semantic web involving the development of ontology,
language, inference engine, and other components, the principle of the semantic web reminds us
that data semantics is to establish and maintain the correspondence from data to the subject matter
it intended.

Along the line of knowledge representation, many specific logical formalisms have been pro-
posed for overcoming the undecidability of the full first order logic. Even though having high

2

order computational complexity, Description Logics enjoys the decidability of concept satisfiability
and subsumption, and has been adopted into many knowledge representation cases. Specifically,
Description Logics is widely used in representing ontology. Philosophically, an ontology is a sys-
tematic account of existence. In computer science, an ontology is an explicit specification of con-
ceptualization for a subject matter. It can be seen that the paradigm of ontology-based information
integration has gained increasing attention, theoretically and practically.

The commonality of data integration and the semantic web is to overcome semantic heterogene-
ity among interconnected data sources. Although there are data integration systems using ontology
as information broker, approaches of data integration tend to focus on internal structures and heuris-
tic manners, partly because of keeping the efficiency of processing large amount of data. In contrast,
the semantic web approach turns to explicit representation of data semantics in data sources, but it
is still in an infant stage. In sum, creating machine-understandable data remains the holy grail of
data integration as well as of the semantic web.

1.3 Continuing to Chase the Holy Grail

The fundamental problem we are faced with is that data are always expressible and interpretable
in multiple different ways. One reason is the model heterogeneity. Models are the outcomes of a
modelling process which describes a complex phenomenon by relating it with another familiar set of
structures. Database schema is a type of model, and people have developed various, heterogeneous
types of data modelling languages for representing the same real world states. The other reason is
the lack of maintenance of the correspondence between data/model and its intended subject matter.
We need ways to disambiguate data for automatic interoperation.

In human communication, participants employ their common background knowledge to make
natural language meaningful in their minds. Likewise, in machine communication, both parties
engaged in a communication should have common knowledge as well. Knowledge could be man-
ifested as symbolic structures such as formal ontologies and correspondence formulas. In short,
meaning of data should be presented explicitly and accurately and should be machine-understandable.
In what follows, we examine efforts in the field of data integration and the semantic web, and we
propose one step in the direction of explicitly representing semantics towards automatic data inter-
operation for a variety of applications.

1.4 Document Structure

The rest of the document is organized as follows: Section 2 presents a common database design
scenario to elaborate the prevalence of the problem of data semantics. Section 3 discusses data inte-
gration theoretically and practically. Section 4 studies schema manipulation endeavors in database
field. Section 5 investigates the principles of the semantic web. Section 6 shows the development of
knowledge representation techniques and ontology. Section 7 proposes the future research direction.
Finally, Section 8 gives a few concluding remarks.

2 Semantics in a Common Database Design and Integration Scenario

Database research and practices have provided a rich body of scenarios and examples for the in-
vestigation of data semantics and interoperability. In this section, we describe a common database

3

design and integration scenario. In which we argue that correspondence implies semantics.
Consider two universities, UofT and UofW, designing their student information systems, re-

spectively. Relational databases will be used to store operational data and XML files will be used
to publish data on the Web. Usually, the procedure is as follows: (

�
) database designers establish

conceptual schemas (e.g., Entity-Relationship schemas) by modelling the states of affairs of the
real world; (

���
) by some standard procedures, they translate the conceptual schemas into relational

schemas which are used to store the operational data; (
��� �

) designers publish XML data on the
Web, in which the data are based on the relational database backend. Such a general procedure for
information system design is shown in Figure 1.

U
N
I
V
 E
R
S
I
T
Y

XML file
 Relational table

ER schema

University

designer

Figure 1: A university information systems design procedure

The database designers of UofT produce an Entity-Relationship schema for modelling their
subject matter. Let

�����
denote the ER schema. A portion of

�����
is shown in Figure 2. The ER

schema
�����

consists of elements such as entities, relationships, and attributes. Each element means
that it is the representation of the real world counterpart. For example, the student entity represents
the student objects in the university of UofT. From the extensional point of view, the content of
student database coincides the values or tuples of values for representing the students in UofT,
nothing else. However, there is a conceptual sense carried by the student entity. That is, the concept
of university student who is a person studying in an academic organization. We will distinguish
the conceptual sense of a modeling element from its extensional definition. We call it intensional
definition, and we will make use of it in the representation of data semantics.

For real data storage and management, the conceptual schema needs to be translated into a
logical schema such as a relational schema. Let � ���

denote the relational schema derived from
�	���

.
Several relations are shown in Figure 3. Apparently, there is a representational relationship from the
relational schema � ���

to the ER schema
�
���

.
Finally, � ��� denotes the XML schema shown in Figure 4 which is used for describing the in-

formation published on the Web. The information is based on the data stored under the relational
schema � ���

. Again, we can say that the XML schema � ��� represents the relational schema � ���
in

a different structure.
In the same way,

�
���
shown in Figure 5 denotes the ER schema of UW, and � ���

shown in
Figure 6 denotes its relational schema and � ��� denotes its XML schema in Figure 7. Consequently,
we can characterize the corresponding relationships between schemas both intensionally and exten-

4

Student

name
 address

Registration

degree

year

Person

Professor
registered
 supBy

level

dept

ssn

Department
workOn

stuNo

Figure 2:
�
���

: the Entity-Relationship diagram of the information systems of UT

Student(stuNo, Name, Address, level, SupBy)
Registration(stuNo, Year, Degree, Dept)

Figure 3: � ���
: the relational schema of the information systems of UT

sionally. We set up the characterization as part of the goal of this paper.

UTstudentDB:
Students: set of
Student

@level
StuNo
Name
Address

registrations: set of
Registration

Degree
Department
Year

Professors: set of
SupBy

@name

Figure 4: � ��� : the XML schema of the Web-based information systems of UT

Questions revolving around these schemas in terms of data interoperation/integration can be
raised as follows:

Question1: Finding the semantical mapping, � ����� � ���
, from schema � ���

to � ���
to merge

data from UofW onto UofT, or vice versa.

Question2: Finding the semantical mapping, � ����� � ��� , from schema � ��� to � ��� to merge,
translate, and integrate data on the website of UW onto the data on the website of UofT, or
vice versa.

Question3: Finding the semantical mapping from the relational schema of one university to the
XML schema of another university, or vice versa.

Questions like these have been studied intensively and have drawn several lines of research in the
management of semantic heterogeneity. The purpose and the meaning of the semantical mapping

5

Student

name
 address

degree

year

UndergradStudent
GradStudent

sno

advisor

Department
studyIn

dptName

Figure 5:
�����

: the Entity-Relationship diagram of the information systems of UW

GradStudent(sno, name, address, year, degree, advisor)
UndergradStudent(sno, name, address, year, degree)
StudyIn(sno, dptName)

Figure 6: � ���
: the relational schema of the information systems of UW

UWstudentDB:
UndergradStudents: set of

UndergradStudent
Sno
Name
Address
Year
Department
Degree

GradStudents: set of
GradStudent

Sno
Name
Address
Year
Department
Degree

advisors: set of
Advisor

name
Department

Figure 7: � ��� : the XML schema of the Web-based information systems of UW

6

aside, there is a clear distinction between the lineal vertical correspondence of schemas, which is
derived from the modelling process in the designer’s mind, and the horizontal semantical mapping,
which is generated by tools or user between arbitrary schemas with overlap as shown in Figure 8.

E

ut

UT

R
ut

X

ut

E
uw

R

uw

X
uw

UW

Modelling

mapping

mapping

Figure 8: Lineal correspondence vs. semantic mapping.

Unfortunately, the vertical correspondences/relations between pair models/schemas are dis-
carded as soon as schemas needed have been derived. Consequently, in database research, a great
deal of attention has been directed into the development of various techniques of normalization
concerning some criteria such as information lossless and redundancy reduction. Data semantics is
merely presented through sets of integrity constraints, saying nothing about its correspondences to
real world objects. Information integration among multiple data sets is solved as long as the mean-
ing of data is entrusted to a small group of users and/or application programs. However, the terrain
of information integration has been expanded as wide as World Wide Web. We believe that keeping
the lineal correspondences between schemas for an arbitrary intelligent agent to process could be
an efficient and effective way of information gathering and sharing in a global scope. Thus it calls
for the formalism of the real world objects and a formal correspondence representation.

To complete the scenario, we assume the existence of a formalized domain ontology which
serves the role of the states of affairs of the real world. Let

�
denote the ontology. Such a ontology

prescribes common concepts, properties of a concept, and relationships among the concepts for a
class of academic organizations including universities. In a Description Logic [CLN98], the portion
of the ontology

�
is shown in Figure 9. The ontology described in a DL can be easily translated

into the description of the OWL which is the on-going standardization of web ontology language.
By virtue of the ontology, we are equipped with the necessary formalism for the explicit speci-

fication of data semantics in terms of correspondence. The rest of the work is to investigate efforts
from both data integration and the semantic web, and to propose the future research direction.

3 Data Integration Theory and Application

3.1 Data Integration Theory

3.1.1 Formalization of Data Integration Problem

A data integration system � is formalized [Len02] in terms of a triple �������	��
 � , where

 � is a global schema expressed in a language ��� over an alphabet ��� .

7

PERSON � LIVINGTHING ��� hasSSN.STRING � =1hasSSN ��� hasAddress.ADDRESS
��� hasName.PERSON-NAME ��� =1hasName.
PERSON-NAME ��� hasFirstName.STRING ��� hasLastName.STRING.
UNIVERSITY � ORGANIZATION ��� hasAddress.ADDRESS ��� hasName.ORG-NAME.
ORG-NAME � STRING.
UNIVERSITY-STUDENT � PERSON ��� hasStuno.STRING ��� =1hasStuno �
� registerAt.REGISTRATION ���	� 1registerAt.
REGISTRATION �
� ofUniv.UNIVERSITY ��� inYear.YEAR ��� withDegree.DEGREE �
� ofDept.DEPARTMENT
DEPARTMENT � ORGANIZATION ��� hasName.ORG-NAME ��� affiliatedWith.UNIVERSITY.
GRAD-DEGREE � DEGREE ��� hasName.{PhD,MSc,MEng,MA}.
UNDERGRAD-DEGREE � DEGREE ��� hasName.{BSc,BEng,BA}.
GRAD-REGISTRATION � REGISTRATION ��� withDegree.GRAD-DEGREE.
UNDERGRAD-REGISTRATION � REGISTRATION ��� withDegree.UNDERGRAD-DEGREE.
GRAD � UNIVERSITY-STUDENT ��� registerAt.(� withDegree.GRAD-DEGREE) �
� hasAdvisor.PROFESSOR ���	� 1hasAdvisor.
UNDERGRAD � UNIVERSITY-STUDENT ��� registerAt.(� withDegree.UNDERGRAD-DEGREE).

Figure 9:
�

: an ontology of academic organizations

 � is a source schema expressed in a language �
� over an alphabet ��� .

 is the mapping between � and � , constituted by a set of assertions of the forms ������� �
or � ������� (� � and ��� are queries over � and � , respectively).

The data integration system �
� � � ���	��
 � aims at answering a query � posed against the global
schema � by data stored in the source � . The semantics of the data integration system is specified
by certain answers described as follows:

Given a source database, � , for � over a fixed domain � , i.e., � conforms to the
source schema � and satisfies all constraints in � . A global database � for � is said to
be a legal database of � with respect to � , if:

 � is legal with respect to the global schema � , i.e., � conforms to � and satisfies

all constraints of � ;

 � satisfies the mapping
 with respect to � specified as follows:

– If source � is sound, then ������ ���� ;

– If source � is complete, then ����� ���� ;

– If source � is exact, then ���� �!���� .

(Given a query � posed against the global schema � . We denote with ���"� the set of
tuples in a database ��� that satisfy � .) The answer ��#%$ � to the query � in the data
integration system � with respect to � , is the set of tuples & of objects in � such that
&('���� for every global database � that is legal for � with respect to � . The set � #%$ � is
called the set of certain answers to � in � with respect to � .

Two basic approaches for specifying the mapping in a data integration system have been proposed
in literature, called local-as-view (LAV), and global-as-view (GAV), respectively. A LAV mapping
is a set of assertions, one for each element) of � of the form

)*�+� �

8

From the modelling perspective, the LAV approach is based on the idea that the content of each
source) should be characterized in terms of a view � � over the global schema.

On the other hand, the mapping
 of the GAV approach associates each element � in � with a
query � � over � . Therefore, a GAV mapping is a set of assertions, one for each element � of � , of
the form

� � ���

From the modelling perspective, the GAV approach is based on the idea that the content of each
element � of the global schema should be characterized in terms of a view � � over the source.

Note that the LAV approach favors the extensibility of the system. In other words, adding a
new source simply means enriching the mapping with a new assertion, without other changes. In
contrast, in principle, the GAV approach favors the system in carrying out query processing, because
it tells the system how to use the sources to retrieve data.

In addition to LAV and GAV, the global-local-as-view (GLAV) approach is also introduced in
literature. In GLAV, the relationships between the global schema and the sources are established by
making use of both LAV and GAV assertions. More precisely, in a GLAV mapping, every assertion
has the form � � ��� � , where � � is a query expression over the source schema � , and � � is a query
expression over the global schema � .

3.1.2 View-based Query Answering

Query processing in a data integration system involves different manners in terms of LAV or GAV
modelling approaches. In LAV, the problem of processing a query is traditionally called view-
based query processing which is classified into view-based query rewriting and view-based query
answering. The query answering is exactly the problem of computing the certain answers to �
with respect to a source database. Computing certain answers has been extensively investigated in
literature. [AD98] carries out a comprehensive analysis of the complexity of the problem under the
different assumptions where the views and the queries are expressed in terms of various languages:
conjunctive queries without and with inequalities, positive queries, Datalog, and first-order queries.
The complexity is measured with respect to the size of the view extensions (data complexity). Table
1 shows the data complexity of the problem under the open world assumption. Table 2 shows
the data complexity of the problem under the closed world assumption. Note that, for the query
languages considered, the closed world assumption, i.e., the exact view, complicates the problem.

query
views ��� ������ � � 	�
�&�
�
���� ���
��� PTIME co-NP PTIME PTIME undecidable
��� �� PTIME co-NP PTIME PTIME undecidable� � co-NP co-NP co-NP co-NP undecidable

	�
�&�
�
���� co-NP undec. co-NP undec. undecidable
��� undec. undec. undec. undec. undecidable

Table 1: Data complexity of query answering under open world assumption.

9

query
views ��� ��� �� � � 	�
�&

�� � ���
��� co-NP co-NP co-NP co-NP undecidable
��� �� co-NP co-NP co-NP co-NP undecidable� � co-NP co-NP co-NP co-NP undecidable

	�
�&

�� � undec. undec. undec. undec. undecidable
��� undec. undec. undec. undec. undecidable

Table 2: Data complexity of query answering under closed world assumption.

3.1.3 View-based Query Rewriting

Query rewriting aims at reformulating, in a way that is independent from the current source databases,
the original query in terms of a query to the sources. Apparently, it may happen that no rewriting
in the fixed target query language � � exists that is equivalent to the original query. In this case,
people are interested in computing a so-called maximally containment rewriting. The comprehen-
sive survey [Hal01] discusses the large body of work on incorporating materialized views into query
optimizers, and specific algorithms for query rewritings.

The definition of two types of query rewriting: equivalent rewritings and maximally-contained
rewritings are given below.

Definition (Equivalent rewritings). Let � be a query and � ����� ���	�	� �
��� be a set of view defini-
tions. The query ��
 is an equivalent rewriting of � using � if:

 the subgoals of ��
 are either relations in � , or comparison predicates, and

 ��
 is equivalent to � .

�

Definition (Maximally-contained rewritings). Let � be a query, �!����� ���	�	� �
��� be a set of view
definitions, and � be a query language. The query �
 is a maximally-contained rewriting of
� using � w.r.t � if:

 ��
 is a query in � that refers to the views in � or comparison predicates,

 ��
 is contained in � , and

 there is no rewriting ��� ' � , such that �
 � ��� � � and ��� is not equivalent to �
 .

�

When developing algorithms that produce rewritten queries, one can ask two questions [Hal00]:
(
�
) whether the algorithms is sound and complete: given a query � and a set of views � , is there

an algorithm that will find a rewriting of � using � when one exists; (
���

) what is the complexity of
that problem. For the class of queries and views expressed as conjunctive queries, [LMSS95] shows
that when the query does not contain comparison predicates and has � subgoals, then there exists an
equivalent conjunctive rewriting of � using � only if there is a rewriting with at most n subgoals.

10

An immediate corollary is that the problem of finding an equivalent rewriting of a query using a set
of views is in NP, because it suffices to guess a rewriting and check its correctness. [Hal00] also
points out that the problem of finding a contained rewriting is NP-complete.

The bound on the size of the rewriting (and therefore on the search space of rewritings) has led
to a succession of algorithms that attempt to efficiently search the space. [Hal01] gives three of
these algorithms: the Bucket Algorithm, the Inverse-rules Algorithm, and the MiniCon Algorithm.

As we can see, the maximally-contained query rewriting needs to check the query containment.
Here, we refer to the literature containing most of the results on query containment. [CM77] es-
tablishes NP-completeness for conjunctive queries. [Klu88, vdM92] proves ��� � - completeness of
containment of conjunctive queries with inequalities. [SY80] studies the case of queries with the
union and difference operators. [CV92, vdM92] presents results of the decidability and undecid-
ability of various classes of Datalog queries with inequalities.

3.1.4 Query Processing in GAV Approach

Query processing through the GAV approach can be based on a simple unfolding strategy if the
integrity constraints in the global schema is absent and the views are exact. However, when the
global schema allows integrity constraints, and the views are sound, then query processing in GAV
systems becomes more complex. [CCGL02] shows that the simple unfolding algorithm does not
retrieve all certain answers in the presence of integrity constraints of the global schema. The correct
abstract representation of the set of legal global databases is termed as canonical database in which
new tuples complying with the integrity constraints are inserted into the “retrieved global database”
which is populated by the source according to the mapping.

In order to compute the all certain answers without computing the infinite canonical database,
[CCGL02] presents a sound and complete algorithm through the partial evaluation of logic pro-
gramming in the case that the language for expressing both the user query and the queries in the
mapping is the one of union of conjunctive queries. To process a query � , [CCGL02] expands � by
taking into account the foreign key constraints on the global relations appearing in the atoms. Such
an expansion is performed by viewing each foreign key constrains ����� �	� � � � �
�� � where � and

are sets of � attributes and
 is a key for � � , as a logic programming rule

�
��
��� ������� �
����� ���	�	� �����
�����������
 �
 �� ���!��� � ���	�	� ��� ���
where each ��" is a Skolem function, �� is a vector of � variables, and the foreign key are the first

� ones. Each �
" is a predicate, corresponding to the global relation ��" , defined by the above rules for
foreign key constraints, together with the rule

�
"
 � � ���	�	� ���#�$���%�&"
 � � ���	�	� ���#�$�
Such a logic programming ' � can be used to generate the expanded query (&)+* �
 �+� by perform-

ing a partial evaluation which computes all certain answers.

3.2 Data Integration Application

There has been a flurry of research in data integration application systems in past years. Several
research projects provide the ability of conflict reconciliation based on knowledge. In such a sys-
tem, ontologies are used to provide concise and declarative specification of semantic information.

11

The Carnot project [CHS91] uses the global ontology Cyc to describe the contents of individual
information sources in the form of articulation axioms. Queries using terms of Cyc are answered
by translating them into local queries in terms of information sources. The InfoSleuth project
[BBB � 97] extends the Carnot by using multiple domain ontologies and information brokering for
information integration. Agent-based infrastructure is InfoSleuth’s special feature for data gather-
ing and sharing.

The SIMS project [AKS96] provides intelligent access to heterogeneous distributed information
sources through a domain model (ontology) which is described in the LOOM Description Logic
system. Each element of individual sources has links to some elements in the domain model. A set
of operators are defined for query reformulation. The OBSERVER project [MKSI96] uses multiple
domain ontologies for describing information sources. Brokering across the domain ontologies is
enabled by inter-ontology relationships such as synonyms, hyponyms, and hypernyms among terms.

We briefly discuss two salient integration systems: The TSIMMIS project [CGMH � 94] and
the Information Manifold project [LSK96], and make a comparison between them. TSIMMIS
exports data sources as objects in mediators using Object-Exchange Model (OEM) and Mediator
Specification Language (MSL). Queries are effectively processed by the mediators. The following
example shows the approach in TSIMMIS.

Example 1. Consider an integrated information system about employees of a company. There are
three sources, ���
 � � � ��� � producing employee-phone-manager information, � �
 � � � � 	 � produc-
ing employee-office-department information, ���
 � � � � producing employee-phone information for
toy department. Using MSL rules, a mediator � (�� that uses these three sources and exports two
types of objects:

 Employee-phone-office objects with label (* � ;

 Employee-department-manager objects with label (�
� ; as follows,

1. <f(E) epo {<name E> <phone P>}>@med :- <emp {<name E> <phone P>}>@source1

2. <f(E) epo {<name E> <phone P>}>@med :-<emp {<name E> <phone P>}>@source3

3. <f(E) epo {<name E> <office O>}>@med :-<emp {<name E> <office O>}>@source2

4. <edm {<name E> <dept D> <mgr M>}>@med :-<emp {<name E> <mgr M>}>@source1 AND <emp {<name
E> <dept D>}>@source2

The following Datalog rules capture much of the content of the MSL rules above:

epo(E,P,O) :- v1(E,P,M) , v2(E,O,D).
epo(E,P,O) :- v3(E,P), v2(E,O,D).
edm(E,D,M) :- v1(E,P,M), v2(E,O,D).

It is easily to see that query over a mediator can be processed by an unfolding strategy.

�

Information Manifold uses the CLASSIC Description Logic to describe a global schema, i.e.,
world-view. Sources are defined as views of the global schema. Queries posed against the global

12

schema are answered by the Bucket algorithm as shown in following example.

Example 2. Suppose the integration system has the same three sources as in Example 1. In this sys-
tem, the global schema has 5 predicates: emp(E) as employee, phone(E,P) as phone P of employee
E, office(E,O) as office O of employee E, mgr(E,M) as manager M of employee E, and dept(E,D) as
department D of employee E. The definition of the three views are:

v1(E,P,M) :- emp(E), phone(E,P), mgr(E,M).
v2(E,O,D) :- emp(E), office(E,O), dept(E,D).

v3(E,P) :- emp(E), phone(E,P), dept(E,toy).

The query: q(P,O) :- phone(sally, P), office(sally, O) can be answered by producing a bucket
containing possible view atoms for each atom in the query body, and then generating a union of
contained queries over sources as shown below:

answer(P,O) :- v1(sally,P,M), v2(sally,O,D).
answer(P,O) :- v3(sally,P), v2(sally,O,D).

�

Both systems use logic-based technology. The fundamental difference is that TSIMMIS uses
GAV modelling approach, while Information Manifold uses LAV modelling approach. Another
salient architectural difference is that TSIMMIS allows more than one layers of mediators, while
Information Manifold only deals with one layer of relationship between the global schema and
sources.

4 Schema Manipulation: from Schematical Structure to Semantics

The key to data integration system is to specify the mapping between sources and the global
schema. It involves the exploration of the semantics of data residing in sources as well as of the
global schema. Schema manipulation including schema integration and merging, schema match-
ing, schema mapping, and generic model management represents the efforts in resolving semantic
heterogeneity among various types of database schemas. Solutions developed so far range from
exploiting schematical structures to explicitly representing semantics in a formal framework.

4.1 Schema Integration and Merging

Problems of schema integration and schema merging emerged from earlier database design context
such as view integration from a set of external views. Later, data gathering and sharing in federated
database systems call for a global integrated schema in the same spirit. [BLN86] made a com-
prehensive survey about schema integration in later 80’s. Its analysis about the causes of schema
diversity and the proposed criteria for a global integrated schema shed light on later efforts in data
integration.

In [BLN86], the causes of schema diversity are classified into: (
�
) different perspectives (Fig-

ure 10(a)); (
���

) equivalent constructs (Figure 10(b)); (
� ���

) incompatible design specification (Figure
10(c)). For two representations � � and � � in different schemas, several types of semantic relation-
ships which can exist between them are classified into: (

�
) identical relationship, meaning � � and

13

� � are exactly the same; (
� �

) equivalent relationship, meaning � � and � � are exactly the same up
to equivalent constructs; (

�����
) compatible relationship, meaning � � and � � are neither identical nor

equivalent but not contradictory; (
� �) incompatible relationship, meaning � � and � � are contradic-

tory because of the incoherence of the specification. For the equivalent relationship between � �
and � � , it can be classified further into: (

�
) behavioral equivalence, meaning � � is equivalent to

� � for every instance up to every query; (
� �

) mapping equivalence, meaning there is a one-to-one
correspondence between the instances of ��� and � � ; (

��� �
) transformation equivalence, meaning ���

can be obtained from � � by applying a set of atomic transformations. A global integrated schema
may be tested against the following qualitative criteria:

 Completeness and Correctness. The integrated schema must contain all concepts present in
component schema correctly.

 Minimality. The same concept must be represented only once.

 Understandability. The integrated schema should be easy to understand for the designer and
user.

Person

Man
 Woman

Person
 Sex

(a) different perspective
 (b) equivalent contructs

(c) incompatible design

specification

Employee

E-D

Department

Employee

E-P

Project

P-D

Department

Project

E-P

Employee

1

n

Project

E-P

Employee

n

m

Figure 10: Various causes of schema diversity.

Methods surveyed in [BLN86] are a mixture of techniques involving exploring and resolving
conflicts from naming to structures. In contrast, [SP94] uses the Real World State as the semantics of
the elements and pieces of structures of schemas for integration. After user specifies his knowledge
about a set of schemas by correspondence assertions, a tool can integrate the set of schemas into a
global schema following integration rules which resolve conflicts. The approach has the flavor of
making use of the meaning of data to drive the integration process instead of “guessing” through
the names of elements or internal structures in schemas. Here is an example to demonstrate how the
principle in [SP94] works.

Example 3. In Figure 10(a), the different perspective causes the different structures of two schemas.
In order to integrate them, user can specify the following assertions between elements of two
schemas indicating that two elements have same Real World Semantics if they are asserted to be
equivalent.

Employee � Employee, Department � Department,

14

Employee-(E-D) � Employee-(E-P)-Project-(P-D).

Then, following a set of integration rules, one can integrate the two schemas into one which is the
same schema exactly as the one shown on the right side in Figure 10(a).

�

There is a class of schema heterogeneity called schematic discrepancy. [KLK91] shows the
problem as that one database’s data (values) correspond to meta-data (schema elements) in others.
The following example shows how this situation happens.

Example 4. Consider three stock databases. All contain the closing price for each day of each stock
in the stock market. The schemas for the three databases are as follows:

database Company A: relation Stock-Price(date, stkCode, clsPrice).
database Company B: relation Closing-Price(date, stk1, stk2, ..., stkn).

database Company C: relation Stock1(date, clsPrice), Stock2(date, clsPrice),..., Stockn(date, clsPrice).

The schemas above show that the stkCode values in Company A database are the names of the
attributes and relations in the other databases, e.g., Company B and Company C up to a name
mapping.

�

In order to deal with the schematic discrepancy, [KLK91] defines the universe of databases to
be a tuple of relational databases as follows:

u= (� � � : (� � � :{(
 � � � : ��� � � ,...)...},
� � � :{(
 � � � : ��� � � ,...)...}...),

� � � : (� � � :{(
 � � � : � � � � ,...)...},
� ��� :{(
 ��� � : � ��� � ,...)...}...)

...
)

Each relational database � � " in the above tuple is a tuple of relations. Each relation ��"�� in each
database is a set of tuples, and each tuple in a relation is a tuple of objects. These objects in a tuple
are atomic. Given a query language over objects, e.g., atomic values, sets, and tuples, which allows
variables appear as names of attributes or relations, one can express a query like “Did any stock ever
closed above 200?” in the context of Company B and Company C as follows:

?.CompanyB.Closing-Price(.X>200).
?.CompanyC.X(.clsPrice>200).

where X is a variable. The query language contains high order features, and a global unified view
can be defined in terms of sources using the high order query language.

15

4.2 Schema Matching

Compared to schema integration, schema matching does not produce a unified schema from a set of
component schemas, but identifies semantical relationships between schemas. In schema matching,
a matcher takes two schemas as input and produces a mapping between elements of the two schemas
that correspond “semantically” to each other. A taxonomy which covers a variety of matching tech-
niques is proposed in [RB01]. In particular, matchers are classified into schema- and instance-level,
element- and structure-level, language- and constraint-level, and individual and combination meth-
ods. It is worth noting that all methods surveyed are semi-automatic which need the intervention of
users.

Specifically, Cupid [MBR01] discovers mappings between schema elements based on their
names, data types, constraints, and schema structures. Using schema tree and schema graph as
the unifying internal representation of a spectrum of schemas, Cupid identifies similarity between
elements in two steps: linguistic-based matching follows structure-based matching. What Cupid
assumes about “semantical correspondence” is that the names of the elements convey linguistic
similarity and the structures of the representation help to propagate similarity along graph edges.
Matching is computed, essentially, by “guessing”.

There are others schema matching efforts in the same spirit as Cupid does: exploring the struc-
tures of schemas without paying attention to the real world semantics of the schemas. [MGMR02]
presents a graph matching algorithm called Similarity Flooding and explores its usability for schema
matching. The approach converts schemas into directed labeled graphs and uses fixpoint computa-
tion to determine the matches between corresponding nodes of the graphs. For ontologies with rich
semantics, [NM01] proposes the Anchor-PROMPT algorithm which takes as input a set of anchors
– pairs of related terms in the two ontologies, producing pairs of other related terms. Anchor-
PROMPT assumes the structure conveys similarity. The COMA [DR02] does not invent any new
matching algorithm. Instead it develops a framework to combine multiple matchers in a flexible way.
Multiple matching techniques can be plugged in COMA system to produce a composite matching
results for input schemas. Hence the “semantic” interpretation of schema elements depends on
underlying matchers.

4.3 Schema Mapping

Although schema matching intends to discover semantical relationships between elements of schema,
most of the current techniques merely generate a set of syntactic correspondences each of which is
between a single element of one schema and a single element of another schema. It is fallen far short
of generating executable mappings in terms of query languages. Moving one step further, schema
mapping [MHH00] discovers the formal queries over input schemas in accordance with the value
correspondences specified by users or matchers. A query or set of queries maps a source database
into a different, but fixed, target database. [MHH00] proposes the schema mapping problem arguing
that both appropriate outside information about schemas such as value correspondences and inside
information such as integrity constraints are indispensable for query discovery. For the setting in
which both source and target schema are of relational schema, [MHH00] presents a query discovery
algorithm which sifts through a set of alternative join paths in the source schema to find meaningful
mappings which cover a set of pre-specified value correspondences.

Considering nested relational structures such as XML databases, [PVM � 02] extends the query
discovery work to cover the cases of nested integrity constraints in target schema. Traditional chase

16

technique which produces all logical relations among elements within individual schemas is the core
component of the query discovery process. The mapping algorithm in [PVM � 02] looks at all pairs
of source and target logical relations to find low level executable mappings (i.e. formal queries)
which interpret the high level general mappings (i.e. value correspondences). The following exam-
ple is a schema mapping scenario appearing in [PVM � 02].

Example 5. Given a source schema and a target schema and their integrity constraints in Figure
11. The value correspondence v1, v2, v3 indicate the user’s intention about the correspondences
between elements in the source and target schemas. Low level executable mappings which interpret
the value correspondences are generated by the tool, Clio. The following expression shows one of
them:

� (g � expenseDB.grants)(c � expenseDB.companies)(p � expenseDB.projects)
[g.grant.cid=c.company.cid � g.grant.proj=p.project.name �
� (c’ � statDB)(o � c’.cityStat.orgs)(f � o.org.fundings)(f’ � c’.cityStat.financials)
f.fund.pi=g.grant.pi � o.org.name=c.company.cname � f ’.financial.aid=f.fund.aid]

�

expenseDB: Rcd

companies: Set of Rcd

company: Rcd

cid

cname

city

grants: Set of Rcd

grant: Rcd

grantee

pi

amount

sponsor

proj

projects: Set of Rcd

project: Rcd

name

year

statDB: Set of Rcd

cityStat: Rcd

city

orgs: Set of Rcd

cid

name

fundings: Set of Rcd

fund: Rcd

pi

aid

financials: Set of Rcd

financial: Rcd

aid

amount

proj

year

org: Rcd

r1

r2

r3

v1

v2

v3

Figure 11: A schema mapping scenario

4.4 Generic Model Management

Realizing that manipulating formal description, or models, is a key requirement to many information
systems, [Ber03] proposes a new meta data management paradigm called generic model manage-
ment which treats models and mappings as abstractions that can be manipulated by model-as-a-time
and mapping-as-a-time operators. A model is defined to be a set of objects, each of which has prop-
erties, has-a relationships, and associations. A model is assumed to be identified by its root object
and includes exactly the set of objects reachable from the root by paths of has-a relationships. Given
two models � � and � � , a morphism over � � and � � is a binary relation over the objects of the
two models. That is, it is a set of pairs < ��� � � � > where � � and � � are in � � and � � respectively. A
mapping between models � � and � � is a model, �
�* � � , and two morphisms, one between �
�* � �
and � � and another between �
�* � � and � � . An example of model and mapping is shown in Figure
12(a).

17

Emp

Emp#

Name

Map
 ee

1

2

3
 4

Employee

EmployeeID

FirstName

LastName
A morphism between

Emp and Map

ee

S1
 Sw

S2
 S3

map1

1. map2

3. map4

2. map3

Given S1, S2, map1, Sw

1. map2=Match(S1, S2)

2. map3=

Compose(map1, map2)

3. <S3, map4>=

Diff(S2, map3)

(a) An example of model

and mapping

(b) Using model

management operators

Figure 12: Model, mapping and generic operators.

By defining a set of generic model management operators including Match, Compose, Diff,
ModelGen, and Merge, one can use them in a specific application as shown in the following exam-
ple [Ber03].

Example 6. Suppose we are given a mapping map1 from a data source S1 to a data warehouse Sw,
and want to map a second source S2 to Sw, where S2 is similar to S1. See Figure 12(b). First we
call Match(S1, S2) to obtain a mapping map2 between S1 and S2, which shows where S2 is the
same as S1. Second, we call Compose(map1, map2) to obtain a mapping map3 between S2 and Sw,
which maps to Sw those objects of S2 that correspond to objects of S1. To map the other objects of
S2 to Sw, we call Diff(S2, map3) to find the sub-model S3 of S2 that is not mapped by map3 to Sw.
We can then call other operators to generate a warehouse schema for S3 and merge it into Sw.

�

Although an implementation of these abstractions and operators, called a model management
system, could offer an order-of-magnitude improvement in programmer productivity for meta data
applications, it is by no means an easy task to generate mappings between models automatically
without explicit semantic representation.

4.5 Managing Meta-data and Context

Turning to the meta-level information of schemas, [KS96a, KS96b] explore approaches based on the
capture and representation of meta-data, contexts, and ontologies to manage the semantic hetero-
geneity in Global Information Systems. Given two objects � � and � � residing in different models,
the semantic proximity between them is defined by the 4-tuple:

)�(� � � �
 ��� � � � � � � � � � &�() & � � �) & �
�� & � � � �
 	 � � 	 � � �
�� � � � � � � �

Where 	#" is the domain of � " and � " is the state of � " . An explicit though partial context rep-
resentation, which is a collection of coordinates using terms from domain-specific ontologies, is
introduced as follows:

� � � &�() & � �
 � � �
� � �
 � � �
� � � ���	�	� �
 ��� �
����� � .

18

Where ��" is a contextual coordinate denoting an aspect of context from a domain ontology; � "
is the value of a coordinate, and is represented as a variable or a set with or without its associated
context. We shall informally explain the meaning of the context expression by using the following
example [KS96b].

Example 7. Suppose we want to represent the information relating publications to employees in a
database. Let PUBLICATION and EMPLOYEE be objects in a database. The definition context of
HAS-PUBLICATION can be defined as:

�������
(HAS-PUBLICATION)=<(article,PUBLICATION) (author,EMPLOYEE � <(affiliation, {research})>)>.

Where � denotes association of a context with an object EMPLOYEE. Note that, the same thing can
be expressed in a Description Logic as follows:

�������
(HAS-PUBLICATION)=(AND HAS-PUBLICATION (ALL article PUBLICATION)

(ALL author (AND EMPLOYEE (ALL affiliation (ONE-OF research))))).

The terms article, author, affiliation, and research are from a domain ontology.
Likewise, if we want all the articles whose titles contain the substring “abortion” in them. This can
be expressed in the following query context:

��	
=<(article, X � <(title, {y
 substring(y)=”abortion”})>)>.

�

The context expressions enable reasoning about them. Also, they enable an information source
to export global objects with context description to a data integration system. A schema corre-
spondence is defined as follows to express the associations between an information source and its
exported global objects:

) � � � ���
 ����� ��� � � �
����� ��"�� ��" ' �������
 ����� � � �
�& & �
 � � ��� � .

Where ��� is the exported global object of an object � in the database. The attributes of the object
��� are the contextual coordinates of the definition context �
�����
 ��� . The mapping M stores the
association between the contextual coordinate � " and the attribute

� " of object O whenever there
exists one.

The semantic similarity between objects in different schemas is classified into a taxonomy in-
cluding semantic resemblance, semantic relevance, semantic relationship, semantic equivalence,
and semantic incompatibility based on the context, the domains of the objects, and the states of the
objects. The association of objects with context enables the capture of the semantic content of the
information present in various databases so that the reconciliation of conflicts can be achieved at an
intensional level.

The effort of overcoming semantic heterogeneity by considering context representation gives
insights to the explicit representation of semantics in terms of correspondence. However, the ap-
proach lacks the analysis about the computational complexity of reasoning. Also, its representation
is merely a variation of Description Logics, but it lacks simplicity and elegance as opposed to the
Description Logics.

19

5 The Semantic Web towards Machine-Understandability

Data on the Web raise more challenges to interoperation, exchange, and integration than data in
traditional structural databases. Today we are limited in our ability to effectively use information
on the Web despite the ubiquity of tightly interconnected data and processes. Current Web was
designed primarily for human interpretation and use. Nevertheless, interoperable applications exist
in B2B and e-commerce areas by primarily exploiting hand-coded APIs to extract and locate infor-
mation from HTML syntax. Data on the current Web are not understandable by computers. The
semantic web [BLHL01] is an extension of the current Web in which information is given well-
defined meaning, better enabling computers and people to work in cooperation. It based on the idea
of having data on the Web defined and linked such that it can be used for more effective discovery,
automation, integration, and reuse across various applications [MSZ01].

Currently, people are developing new markup languages inspired by technology from AI, such
as the proposals of DAML+OIL and its latest version OWL [DS03] web ontology language. These
languages have a well-defined semantics and enable the markup and manipulation of web contents.
A fundamental component of the semantic web will be the markup of web data exploiting web
ontologies to facilitate sharing, reuse, composition, and mapping for various applications.

The OWL web ontology language is intended to define and instantiate web ontologies. An
OWL web ontology may contain descriptions of classes, properties, and their instances. Given such
a web ontology, the OWL formal semantics specifies how to derive its consequences, i.e., facts not
explicitly presented in the ontology but entailed by its semantics. An ontology differs from an XML
schema or DTD in that it is a knowledge representation, not a message format. Most XML-like
web standards consist of a combination of message formats and protocol specifications. The for-
mats have been given an operational semantics. In contrast, an OWL ontology allows for reasoning
outside a operational environment. The following example demonstrates a use of OWL and the
machine-understandable content.

Example 8. A typical OWL ontology begins with a namespace declaration which is the precise
indication of what specific vocabularies are being used. The declaration is similar to the following:

<rdf:RDF
xmlns=”http://www.cs.toronto.edu/Academic-Organization#”
xmlns:owl=”http://www.w3c.org/2002/07/owl#”
xmlns:rdf=”http://www.w3c.org/1999/02/22-rdf-syntax-ns#”
xmlns:rdfs=”http://www.w3c.org/2000/01/rdf-schema#”
xmlns:xsd=”http://www.w3c.org/2000/10/XMLSchema#”

>

Classes and properties are described using the primitive constructs of OWL language. Each of the
constructs has a formal semantics supplied by the underlying logical formalism. A tiny portion of
an academic organization ontology is shown as below:

<owl:Class rdf:ID=”Student”>
<rdfs:subClassOf rdf:Resource=”&Person”/>
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:Resource=”&enrollIn”/>
<owl:minCardinality rdf:datatype=”&xsd;nonNegativeInteger”>1</owl:minCardinality>

</owl:Restriction>
</rdfs:subClassOf>

20

</owl:class>

Using the web ontology, one can publish annotated web data readily for machines to consume, as
follows.

<rdf:RDF
xmlns:Ac-Onto=”http://www.cs.toronto.edu/Academic-Organization#”
xmlns=”http://www.cs.toronto.edu/~yuana/yuana.owl#”

>
<Ac-Onto:Student rdf:about=”#yuana”>

<Ac-Onto:FirstName>Yuan</Ac-Onto:FirstName>
<Ac-Onto:LastName>An</Ac-Onto:LastName>
<Ac-Onto:majorIn>Computer Science</Ac-Onto:majorIn>

</Ac-Onto:Student>

�

The two-level mapping from instance data to commonly agreed concepts of ontologies elim-
inates the semantic heterogeneity of independent data sources. Integration [HBLM02] is readily
performed as long as standardization is widely accepted. Other large volumes of data, however, do
not fit in this picture because the existing “legacy systems,” such as relational databases and a vari-
ety of semi-structured and unstructured data. Therefore a framework for bridging the gap between
legacy systems and the semantic web is called for to make the whole vision realizable.

6 From Knowledge Representation to Formal Ontology

The markup of web data using AI-inspired language reminds us that achieving the ambitious goal
of building machine-understandable information will rely on knowledge manipulation techniques.
Turning to knowledge representation, we will look at languages related to information systems as
well as principles of building ontologies.

6.1 Representing Knowledge about Information Systems

An effort for representing knowledge about information systems results in the Telos [MBJK90]
language and its implementation, ConceptBase [JGJS95], a deductive object base for meta data
management based on a dialect of Telos, O-Telos. Telos represents knowledge about a variety
of worlds related to an information system, such as the subject world (application domain), the
usage world (user models, environments), the system world (software requirements, design), and
the development world (teams, methodologies).

The most distinct feature of Telos is the capability of metamodelling. Everything in a Telos
information base is a proposition, and there are two types of propositions: individuals and attributes.
Propositions are organized along three dimensions, referred to as the aggregation, classification, and
generalization dimensions. The classification dimension calls for each proposition to be an instance
of one or more generic propositions or classes. Therefore, metaclasses can be always defined to
serve as the more abstract classes than one-level below. There are � -classes with instances along all
layers. Figure 13 appearing in [JGJS95] shows the structure of the classification dimension as well
as the generalization dimension, with sample proposition at various levels.

21

EntityClass

unique
necessary

Employee
 Integer

String

Department
Manager

Mary

PR

R&D

50000

“Mary Smith”

C

l

a

s

s

O

b

j

e

c

t

R

u

l

e

I

C

attribute

rule

constraints

salary

name
dept

boss

advises

currendept

earns

hername

MetaClass

SimpleClass

Token

Omega-class

Legend:

salary

attribute
 instanceOf
 subclassOf

Figure 13: Graphical view of Telos knowledge base of an example.

In addition to propositions, Telos allows specifying integrity constraints and deductive rules to
associate with propositions. The following example shows how to define propositions and their
associated constraints and rules in Telos language.

Example 9. The following text defines some propositions as well as constraints and rules in Telos
language.

TELL SimpleClass Employee IN EntityClass WITH
attribute

dept: Department;
boss: Manager;

necessary
salary: Integer

unique
name: String

integrityConstraint
salaryIC: $ forall m/Manager x, y/Integer

(this boss m) and (this salary x) and (m salary y) ==>
(x <= y) $

deductiveRule
bossrule: $ forall t/Manager

(exists d/Department (this dept d) and (d head t)
or exists m/Manager (this boss m) and (m boss t)) ==>
(this boss t) $

END

�

22

With the development of knowledge representation language, a family of Description Logics
emerged and found their way into various tasks of representing knowledge.

6.2 Description Logics Theory and Application

[BN03] introduces a family of Description Logics called � � -language. Generally speaking, De-
scription Logics is the formalism that represent the knowledge of an application domain (the “world”)
by first defining the relevant concepts of the domain (its terminology), and then using these concepts
to specify properties of objects and individuals occurring in the domain (the world description). Ele-
mentary descriptions are atomic concepts and atomic roles. Complex descriptions can be built from
them inductively with concept constructors. Different Description Languages are distinguished by
the constructors they provide. Concept descriptions in � � � � � � � � � � � � � � � ��� are formed according to
the syntax rules in the Table 3.

Syntax Rules Description of Rules Semantics

A (atomic concept) �����	�
��
(universal concept)

� � � ���

(bottom concept)

 � ���
� A (atomic negation) � � ��� � � � ��� � �

C � D (intersection) � � ������� � � �������
� R.C (value restriction) � ����� � ��� �� "! �#����
 �%$"�&� ! $ $'� �(�)�(*+$ �

� �-,
� R.
�

(limited existential quantification) � �.�/� � � � �� "! �#� �
 �0$"�&� ! $ $'� ��� � ,
C 1 D (union) [2] � � 1���� � � � ��3 � �
� R.C (full existential quantification) [4] � �.�/� � �5� �� "! �#����
 �0$"�&� ! $ $'� �(�)� �#$ �

� �6,
� n R (number restriction) [7] � � � ����� �8 "! �����

 $
 � ! $ $'� �(�)�6,
 � � ,9

n R (number restriction) [7] � 9 � ��� � �8 "! ��� �

 $
 � ! $ $'� �(� � ,
 9 � ,
� C (negation of arbitrary concept) [:] � � � � � � � �-� � �
��; (inverse role) [#] �<�
;)� � �8 �<$ $! �
0� ! $ $'� �=� � ,

Table 3: Syntax and semantics of � � � � �>� � .

In order to define a formal semantics of the above Description Language, we consider an inter-
pretation � that consists of a non-empty set ? # (the domain of the interpretation) and an interpreta-
tion function, which assigns to every atomic concept A a set

� # � ? # and to every atomic role R a
binary relation � # � ? #A@A? # . The interpretation function is extended to concept descriptions by
the inductive definitions as shown in the last column of Table 3.

Description Logics has been incorporated into various aspects of data management systems.
[CLN99] describes an effort to unify various class-based data representation formalisms using the
Description Logics – � � � � � . The relationships between class-based data representation for-
malisms and � � � � � are established by first formalizing the representation, second defining a
translation function from the formalism obtained in the first step to � � � � � , and then proving that
the translation function preserves information. One fundamental reason for regarding � � � � � as a
unifying framework for class-based representation formalisms is that reasoning in � � � � � is hard,
but decidable. Three class-based formalisms, Frame-Based systems, Entity-Relationship model,
and object-oriented model are studied in [CLN99]

23

[BLR03, Bor95] investigate the applications of DLs in data management and databases. They
show that DLs are useful not only for specifying database schemas, but also for asserting incom-
plete information, for obtaining intensional answers, for stating rules and constraints, and other
applications in data management.

DLs is also the underlying formalism of the semantic web. The idea behind applying DLs to the
semantic web is related to the need of representing and reasoning on ontologies. One of the basic
problems in the development of techniques for the semantic web is the interoperation of ontologies.
[CL93] proposes a logical approach to the problem of both expressing interschema knowledge and
reasoning about it with a flavor of DLs in a early stage. However, [CGL01] argues that direct use
of DLs is inadequate for capturing the mapping between different ontologies, and more flexible
mechanisms are necessary. One of the mechanisms is based on the notion of query which specifies
the relationships between concepts and views in different ontologies. Most recently, [BS03] extends
the DLs to Distributed DLs to handle complex mappings between domains of different data sources,
through the use of “bridge rules”. One of the interesting results obtained is the translation scheme of
DDL reasoning to ordinary DL reasoning, which is applicable to a large class of description logics.

As a knowledge representation language, a specific DL is capable to represent the semantics of
an application domain. For data integration from heterogeneous sources, a specific DL is useful to
achieve the integration at the conceptual level [CG � 98]. The DLs can be used to define the domain
ontology of each application, and then schemas can gain real world semantics by corresponding
to the domain ontology. The section to follow will discuss a principled methodology for building
ontologies.

6.3 Properties of Formal Ontology

In Philosophy, ontology is the study of what is. It studies various kinds and structures of objects,
properties, events, processes, and relations in every area of reality [SW01]. It has sought the defini-
tive and exhaustive classification of entities in all aspects of being. The term “ontology” has been
borrowed by computer scientists with the development of artificial intelligent and other sub-fields
such as software engineering and database management.

From the very start, ontology has been recognized as collections of terms with associated axioms
designed to constrain unintended interpretations and to enable the derivation of new information
from ground facts. We have seen much progress in the study of automated reasoning mechanisms
over ontologies and knowledge bases; however, there is a high degree of arbitrariness for modelling
subject matters in terms of symbolic structures. For example, it has been seen that, after database
management technology had begun to stabilize, the far more important and subtle problem of con-
ceptual modelling still remained. The various ad hoc and inconsistent modelling techniques have
led to the many practical problems of database integration we face today. This situation raises at
least two questions challenging us: (

�
) how can we conduct a consistent conceptual analysis to build,

once for all, a common, robust, and reusable ontology? (
� �

) how can we make legacy systems with
different conceptual models but overlapping semantics work together by referring to the common
world to which they all relate? While the second question is the main theme of the whole research,
we will discuss methodology related to the first question in this section.

[Gru93] is often credited for first defining ontology as a specification of a conceptualization. Al-
though it leaves too many possible interpretations, a collection of taxonomies with a set of axioms
remain the primary one. In order to conduct a consistent conceptual analysis to build a good tax-

24

onomy, one needs a general, domain-independent methodology that provides guidance not only on
what kinds of ontological decisions need to be made, but on how these decisions can be evaluated.

OntoClean [GW02, WG01, GWP00] is this kind of methodology to validate taxonomies by
exposing inappropriate and inconsistent modelling choices. The methodology is based on four fun-
damental ontological notions: identity, unity, rigidity, and dependency. The behavior of a property
is represented with respect to these notions by means of a set of meta-properties which impose some
constraints on the way subsumption is used to model a domain.

Formally, let � denote a primitive meta-properties, let � ��� ����� � ����� � denote the property
� carrying the meta-property � , not carrying � , and anti the meta-property � , respectively.
In a modal logic, where

� � means � is necessary true, �	� means � is possible true, a rigid (
 ���
property is a property that is essential to all its instances, i.e. a property � such that:

�
��)%&
�
) � & � �� &
 �
) � &
 ��� . Similarly, a non-rigid (� ��� property is a property that is not essential to some of its
instance, and an anti-rigid (� ��� property is a property that is not essential to all its instances. They
can be described as the formulas �
��)��
) � &������ � &
�� �
) � &
 ��� and

�
��)%&
�
) � &�� � � � &
�� �
) � &
 ��� ,
respectively.

An identity condition (IC) is a sameness formula � that satisfies

�
 �
) � & �����
) � &���� �
�� � &
 �����
�� � &
 ���)�� � � �
) � � � & � &
 �), or�
 �
) � & �����
) � &���� �
�� � &
 �����
�� � &
 �����
) � � � & � &
 � � & � � �).

Any property carries an IC (
! � iff it is subsumed by a property supplying that IC. A property �
supplies an IC (
 �) iff (I) it is rigid; (II) there is an IC for it; and (III) the same IC is not carried by
all the properties subsuming � . Any property carrying an IC is called a sortal.

As for the notion of unity, an object) is a whole under � iff � is relation such that all the
members of a certain division of) are linked by � , and nothing else is linked by � � A property
� carries a unity condition (
#") iff there exists a single relation � such that each instance of � is
necessarily a whole under � . A property has anti-unity (�$") if every instance of the property is
not necessarily a whole.

Let
�
�� ��) � denote the part relation, and �
) � � � denote the constitution relation, a property �

is externally dependent (
) on a property % if, for all its instances) , necessarily some instance
of % must exist, which is not a part nor a constituent of) :

�) �
 �
) � � �&� %
�� ��� � �
�� ��) ��� � �
�� ��) � .

If follows from these definitions that if � and % are properties, then the following constraints
hold:

')(+*
must subsume , (&*')-/.
must subsume , -/.' -10
must subsume , -10')(20
must subsume , (30')-54
must subsume , -54

Properties with incompatible ICs/UCs are disjoint

The various combinations of meta-properties result in a formal ontology of properties shown
in Figure 14(a). The basic property kinds are shown in Table 4. One of the principal roles of the

25

Property

Non-sortal

-I

Sortal

+I

Role

~R+D

Non-rigid

-R

Rigid

+R

Anti-rigid

~R

Category +R

Attribution -R-D

Formal Role

Material Role

Phased Sortal -D

Mixin -D

Type +O

Quasi-type -O

(a) A formal ontology of properties

Categories

Top Types

Types &

Quasi-Types

Attributions
 Formal Roles

Mixins
 Material

Roles

Phased

Sortals

Non-sortals

Sortals

Backbone Taxonomy

(b) Ideal taxonomy structure

Figure 14: Ontology-based modelling principles.

O I R D

+ + + +- Type

- + + +- Quasi-Type

- + - - Mixin

- + ~ + Material Roles

- + ~ - Phased Sortal

- - + +- Category

- - ~ + Formal Roles

- - - - Attribution

Table 4: Basic property kinds.

26

formal ontology of properties is to impart structure on an ontology. In general, the ideal structure of
a clean taxonomy based on the property kinds is shown in Figure 14(b), where backbone properties
constitute the backbone taxonomy.

An implementation of the methodology results in a question/answer knowledge-based sys-
tem which can help modelers to make modeling assumptions clear and to produce well-founded
taxonomies by verifying the consistency of a taxonomy based on the constraints among meta-
properties. The following short example appearing in literature demonstrates an application of the
methodology.

Example 10. There are two well-known ontologies, WordNet and Pangloss. Both define the entities,
Physical object and Amount of matter. But they have different subsumption relationships:

 WordNet: Physical object isA Amount of matter.

 Pangloss: Amount of matter isA Physical object.

Intuitively, we can assign meta-properties to Physical object and Amount of matter as follows:

 Physical object: +O+U+R-D

 Amount of matter: +O~U+R-D

By this analysis, we may conclude that both Physical object and Amount of matter are type, and
both should be at the top-level.

�

6.4 Standard Upper Ontology

A great deal of effort has been put into designing standard upper ontologies to explicitly represent
entire human knowledge as complete as possible. We refer to Cyc [Cor03], and SUO [IEE03] as
examples. A distinct feature of Cyc is that microtheories are used to resolve conflicts. A microthe-
ory or a context is a set of assertions that have a shared set of assumptions on which the truth of
assertions depends. The assertions within a microtheory must be mutually consistent, while asser-
tions in different microtheories may be inconsistent. The application of microtheory demonstrates
that the context of elements in different models plays a pivotal role for the identification of semantic
similarity. The WordNet [MFT � 03] is a lexical database for English language. It becomes useful in
the development of ontologies for picking up right terms.

7 Research Direction and Challenges

From data integration to the semantic web, we have acquired a great deal of knowledge as well
as various techniques about dealing with heterogeneity. Each solution that has been seen so far
overcomes semantic heterogeneity from a specific perspective. Incorporating features of knowledge
representation and database query processing, we believe that a systematic study and representation
of data semantics in terms of correspondence will benefit data integration as well as the construc-
tion of the semantic web. What to follow is the preliminary description about the direction and
challenges to approach the problem of data semantics in terms of correspondence.

27

7.1 Establishing and Maintaining Semantic Correspondence

Database practices today show that the meanings of data amount to a set of composite correspon-
dences. Consider the simple database design example in Section 2. An Entity-Relationship schema
for a university database is a model of some parts of the university world. A relational schema of the
same database constitutes a model of the Entity-Relationship schema. A website that makes student
information available is a model of the relational schema. In other words, data semantics amounts to
a continuum of correspondences, anchored in the application. Correspondence continuum as shown
in Figure 15 is investigated in [Smi87]. It shows that a set of genuine semantic relations including
specification, encoding, internalisation, externalisation, implementation, and representation consti-
tute a correspondence continuum starting from linguistic structures, midway across models with
richer semantics, at some point, reaching the states of affairs in the world that the original struc-
tures were genuinely about. We will adopt the correspondence continuum framework, focusing on
various database schemas. We treat the real world states as a formal domain ontology.

House

Tree

Intentional

structure

Real world

Figure 15: Correspondence continuum.

One immediate benefit from the maintenance of semantic correspondences is to advance the
schema mapping discovery to a conceptual level. Apparently, establishing and maintaining seman-
tic correspondence bring about many challenges in the development of language and reasoning
mechanisms.

7.2 Representing and Reasoning about Correspondences

There is a variety of mapping specification languages ranging from simple value correspondences
to formal logical expressions. For automation, a formal mapping specification language is needed
as well as the reasoning ability about mappings. [CL93] proposes a logic approach to the prob-
lem of both expressing inter-schema knowledge and reasoning about it. In particular, schemas are
described in a class representational language and inter-schema knowledge is described in logic as-
sertions between class expressions from different schemas. Reasoning tasks such as inter-schema
consistency and integrated query answering can be performed making use of the knowledge net-
work built from the class representation of the schemas and the assertions. Specifically, reasoning
is reduced to a logical implication problem.

28

[C � 01] describes a data integration system using a conceptual view and a set of reconcilia-
tion correspondences to load data from operational databases into a data warehouse. Both source
schemas and data warehouse schema are declaratively specified as views over the conceptual view.
The declarative view definitions and reconciliation correspondences serve as mappings providing
the vehicle for the generation of a mediator.

[MB � 02] offers a framework for defining representation of mappings with associated seman-
tics. The analysis of several classes of applications which heavily reply on mappings shows that a
clear semantics which provides a basis for reasoning about mappings, the ability to accommodate
incompleteness, and the ability to allow heterogeneity of models are the desiderata for representa-
tion of mappings. Given two models described in some logical languages, the mappings between
them are defined as a set of formulas each of which associates an expression of the first model with
an expression of the second model by a meaningful operator. In model-theoretic sense, the seman-
tics of a mapping formula is defined by the logical satisfaction of the union of the interpretations of
the models (i.e. schemas).

Mapping composition is a key reasoning requirement for maintaining correspondence. [MH03]
treats the mapping composition problem in terms of the global-local-as-view (GLAV) specification.
it shows that even composing two very simple mappings, the full composition may be an infinite set.
Hence complicated algorithm is called for in order to accomplish the mapping composition task. We
believe, however, that mapping composition can be fulfilled within a simple framework yet without
losing its ability to address a variety of data manipulation problems. Mapping discovery based
on the framework of maintaining correspondence continuum amounts to the mapping composition
problem in terms of GLAV specification.

Most recently, the peer-to-peer data management system (PDMS) has gained an increasing at-
tention in database community. A PDMS heavily relies on semantic mappings between peers’
schemas, and makes use of massive techniques of query reformulation developed in data integra-
tion settings, see [HIMT03] and [HIST03]. One of the enduring problems left out by the PDMS is
automatic specification of semantic mapping between peers. The explicit presentation of data se-
mantics could be a possible approach to such a problem. In the semantic web research community,
people mostly focus on semantic coordination between ontologies which are mainly represented in
taxonomies. [B � 03] extends the current OWL semantics into contexualizing ontology semantics,
arguing autonomy is intrinsic in the semantic web environment, so mappings are indispensable for
interoperation. [BSZ03] shifts the semantic coordination problem from computing linguistic and
structural similarities to deducing relations between sets of logical formulas representing the mean-
ings of concepts belonging to different ontologies. [FS03] proposes an ontology mapping method
based on information flow theory. All of the above applications and approaches involving map-
pings between different modeling structures compel us to proceed the research line on properties of
mapping which becomes the significant interest in capturing data semantics.

8 Concluding Remarks

By studying existing approaches to dealing with autonomy, heterogeneity, and openness, we believe
that an explicit representation of data semantics in terms of correspondence and formal ontology
could have its own merits. Although we have discussed a methodology for good ontology design,
the development and construction of various domain ontologies is still a big open problem, and we
conceive that it is beyond the scope of this research. We will consider, however, the dynamic aspects

29

of domain ontologies in the sense that new concepts and relationships will be added whenever
needed because of the insurmountable incompleteness of those ontologies.

In summary, we can see the following as specific deliverables of the thesis by overcoming some
of the challenges:

 A framework based on principles of correspondence continuum and semantic encapsulation
for addressing the problem of data heterogeneity arising from the multiplicity of data sources.

 A formal correspondence language which enables database designers explicitly express the
semantic relations between models hidden inside their minds.

 A formal approach to the problem of circumstantial parameter effect which causes multiple
interpretations of a common concept.

 An analysis of algorithmic issues for reasoning about correspondences - in particular, an
algorithm of correspondence composition, an algorithm of finding semantic mapping between
two schemas with overlap, as well as related properties.

Each of this contributions will constitute the desiderata of my Ph.D. thesis in the field of computer
science, specifically, dealing with the problem of data semantics.

References

[AD98] Serge Abiteboul and Oliver M. Duschka. Complexity of answering queries using
materialized views. In PODS’98, Seattle, WA, 1998.

[AKS96] Y. Arens, C. A. Knoblock, and W. Shen. Query reformulation for dynamic informa-
tion integration. Journal of Intelligent Information Systems, 6(2-3):99–130, 1996.

[B � 03] Paolo Bouquet et al. C-OWL: Contextualizing Ontologies. In ISWC’03, 2003.

[BBB � 97] R. J. Bayardo, W. Bohrer, R. Brice, A. Cichocki, G. Fowler, A. Helai, V. Kashyap,
T. Ksiezyk, G. Martin, M. Nodine, M. Rusinkiewicz, R. Shea, C. Unnikrishnan,
A. Unruh, and D. Woelk. InfoSleuth: Agent-based semantic integration of infor-
mation in open and dynamic environments. In SIGMOD’97, pages 195–206, 1997.

[Ber03] P. Bernstein. Applying Model Management to Classical Meta Data Problems. In
CIDR, 2003.

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The Semantic Web. Scientific
American, May 2001.

[BLN86] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative analysis of Methodologies
for database schema integration. ACM Computing Surveys, 18(4):323–264, 1986.

[BLR03] Alex Borgida, Maurizio Lenzerini, and Riccardo Rosati. Description Logics for Data
Bases. In The Description Logic Handbook, Cambridge University Press, pages 462–
485, 2003.

30

[BN03] Franz Baader and Werner Nutt. Basic Description Logic. In The Description Logic
Handbook, Cambridge University Press, pages 43–96, 2003.

[Bor95] Alexander Borgida. Description Logics in Data Management . J. of Knowledge and
Data Engineering, 7(5):671–682, 1995.

[BS03] Alex Borgida and Luciano Serafini. Distributed Description Logics: Assimilating
Information from Peer Sources. J. on Data Semantics, 1:153–184, 2003.

[BSZ03] Paolo Bouquet, Luciano Serafini, and Stefano Zanobini. Semantic coordination: a
new approach and an application. In ISWC’03, 2003.

[C � 01] Diego Calvanese et al. Data integration in data warehouse. Cooperative Information
Systems, 10(3):237–271, 2001.

[CCGL02] A. Cali, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under
integrity constraints. In Proc. of CAiSE’02, Toronto, Canada, 2002.

[CG � 98] D. Calvanese, G. D. Giacomo, et al. Information integration: conceptual modeling
and reasoning support. In 6th Int. Conf. on Cooperative Information Systems, pages
280–291, 1998.

[CGL01] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. Ontology of inte-
gration and integration of ontologies. In Description Logics, 2001.

[CGMH � 94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland, Y. Papakonstantinou, J. Ull-
man, and J. Widom. The TIMMIS project: integration of heterogeneous information
sources. In Proceedings of 10th IPSJ conference, 1994.

[CHS91] Christine Collet, Michael N. Huhns, and Wei-Min Shen. Resource integration using
a large knowledge base in Carnot. IEEE Computer, 24:55–62, Dec 1991.

[CL93] Tiziana Catarci and Maurizio Lenzerini. Representing and using interschema knowl-
edge in cooperative information systems. In Proceedings of the International Con-
ference on Intelligent and Cooperative Information Systems, IEEE Computer Society
Press, 1993.

[CLN98] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Description logics for
conceptual data modeling. In Logics for Databases and Information Systems, pages
229–263, 1998.

[CLN99] Diego Calvanese, Maurizio Lenzerini, and Daniele Nardi. Unifying class-based
representation formalisms. Journal of Artificial Intelligence Research, 11:199–240,
1999.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proc. of the 9th ACM Symp. on Theory of Computing, pages
77–90, 1977.

[Cor03] OpenCyc Corp. OpenCyc. , http://www.opencyc.org, 2003.

31

[CV92] S. Chaudhuri and M. Y. Vardi. On the equivalence of recursive and nonrecursive
Datalog programs. In Proc. of PODS’92, pages 55–66, 1992.

[DR02] H. H. Do and E. Rahm. COMA - a system for flexible combination of schema match-
ing approaches. In 28th VLDB, 2002.

[DS03] Mike Dean and Guus Schreiber. OWL web ontology language reference. W3C Work-
ing Draft 31, http://www.w3c.org/TR/owl-ref, March 2003.

[FS03] Yannis Falfoglou and Marco Schorlemmer. IF-Map: An Ontology-Mapping Method
Based on Information-Flow Theory. J. on Data Semantics, 1:98–127, 2003.

[Gru93] Thomas R. Gruber. Toward priciple for the design of ontologies used for knowledge
sharing. Technical Report KSL 93-04, Stanford University, 1993.

[GW02] Nicola Guarino and Christopher Welty. Evaluating ontological decisions with Onto-
Clean. Communication of the ACM, 45(2):61–65, February 2002.

[GWP00] Nicola Guarino, Christopher A. Welty, and Christopher Partridge. Towards ontology-
based harmonization of web content standards. In ER Workshops, pages 1–6, 2000.

[Hal00] Alon Y. Halevy. Theory of Answering Queries Using Views. In SIGMOD Record
2000, 2000.

[Hal01] Alon Y. Halevy. Answering queries using Views: a survey. VLDB, 10(4):270–294,
2001.

[HBLM02] James Hendler, Tim Berners-Lee, and Eric Miller. Integrating applications on the Se-
mantic Web. Journal of the Institute of Electrical Engineers of Japan, 122(10):676–
680, Oct. 2002.

[HIMT03] Alon Halevy, Z. G. Ives, P. Mork, and I. Tatarinov. Piazza: data managment infrac-
structure for semantic web application. In WWW’03, 2003.

[HIST03] Alon Y. Halevy, Z. G. Ives, D. Suciu, and Igor Tatarinov. Schema Mediation in Peer
Data Management Systems. In ICDE’03, 2003.

[IEE03] IEEE. Standard Upper Ontology. , http://suo.ieee.org, 2003.

[JGJS95] Matthias Jarke, Rainer Gallersdorfer, Manfred A. Jeusfeld, and Martin Staudt. Con-
ceptBase: a deductive object base for meta data management. J. of Intellegent Infor-
mation Systems, 4(2):167–192, March 1995.

[KLK91] Ravi Krishnamurthy, Witold Litwin, and William Kent. Languages features for in-
teroperability of databases with schematic discrepancies. In ACM SIGMOD, pages
40–49, 1991.

[Klu88] A. C. Klug. On conjunctive queries containing inequalities. J. of the ACM, 35(1):146–
160, 1988.

32

[KS96a] V. Kashyap and A. Sheth. Semantic heterogeneity: role of metadata, context and
ontologies. In M. Papazoglou and G. Schlageter (ed.), Cooperative Information Sys-
tems: Current Trends and Directions, 1996.

[KS96b] Vipul Kashyap and Amit Sheth. Semantic and schematic similarities between
database objects:a context-based approach. VLDB, 5:276–304, 1996.

[Len02] M. Lenzerini. Data integration: a theoretical perspective. In PODS, pages 233–246,
2002.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. An-
swering queries using views. In PODS’95, San Jose, CA, 1995.

[LSK96] A. Y. Levy, D. Srivastava, and T. Kirk. Data model and query evaluation in global
information systems. Journal of Intelligent Information Systems, 5(2):121–143, Dec.
1996.

[MB � 02] J. Madhavan, P. A. Bernstein, et al. Representing and reasoning about mappings
between domain models. In AAAI, 2002.

[MBJK90] John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos:
representing knowledge about information systems. ACM Transaction on Informa-
tion Systems, 8(4):325–362, October 1990.

[MBR01] J. Madhavan, P. A. Bernstein, and E. Rahm. Generic schema matching with Cupid.
In 27th VLDB, 2001.

[MFT � 03] George A. Miller, Christianne Fellbaum, Randee Tengi, Susanne Wolff, Pamela
Wakefield, and Helen Langone. WordNet: a lexical database for Engilish language.
Princeton University, http://www.cogsci.princeton.edu/ wn, 2003.

[MGMR02] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding: a versatile graph
matching algorithm and its application to schema matching. In 18th ICDE, 2002.

[MH03] Jayant Madhavan and Alon Y. Halevy. Composing mappings among data sources. In
29th VLDB, Berlin, Germany, 2003.

[MHH00] Renee J. Miller, Laura M. Haas, and M. A. Hernandez. Schema mapping as query
discovery. In 26th VLDB conference, 2000.

[MKSI96] E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER: an approach for
query processing in global information systems based on interoperation across preex-
isting ontologies. In First IFCIS international conference on cooperative information
systems, 1996.

[MSZ01] Sheila McIlraith, Tran Cao Son, and H. Zeng. Semantic Web Services. IEEE Intelli-
gent Systems, 16(2):46–53, March/April 2001.

[NM01] Natalya F. Noy and Mark A. Musen. Anchor-PROMPT: Using Non-Local Context for
Semantic Matching. In Workshop on ontologies and information sharing at IJCAI-
2001, 2001.

33

[PVM � 02] L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and R. Fagin. Translating Web
Data. In VLDB, 2002.

[RB01] Erhard Rahm and Philip A. Bernstein. A survey of approaches to automatic schema
matching. VLDB, 10:334–350, 2001.

[She97] A. Sheth. Panel: Semantics in practical applications - what, when, and how? In
Database Applications Semantics, R. Meersman ed., Chapman and Hall published,
pages 601–610, 1997.

[Smi87] Brian Cantwell Smith. The Correspondence Continuum. Technical Report CSLI-87-
71, Stanford University, 1987.

[SP94] S. Spaccapietra and C. Parent. View Integraion: A Step Forward in Solving Structural
Conflicts. TKDE, 6(2):258–274, 1994.

[SW01] Barry Smith and Christopher Welty. Ontology: towards a new synthesis. In FOIS’01,
Ogunquit, Maine, USA, 2001.

[SY80] Y. Sagiv and M. Yannakakis. Equivalence among relational expressions with the
union and difference operators. J. of ACM, 27(4):633–655, 1980.

[vdM92] R. van der Meyden. The complexity of querying indefinite information. Ph.D. thesis,
Rutgers University, 1992.

[WG01] Christopher Welty and Nicola Guarino. Supporting Ontological Analysis of Taxo-
nomic Relationships. Data and Knowledge Engineering, 39(1):51–74, 2001.

34

