Discovering the Semantics of Relational Tables
through Mappings *

Yuan An', Alex Borgida, and John Mylopoulds

! Department of Computer Science, University of Toronto, Canada
{yuana, j m@s. t or ont 0. edu
2 Department of Computer Science, Rutgers University, USA
bor gi da@s. rut gers. edu

Abstract. Many problems in Information and Data Management require a se-
mantic account of a database schema. At its best, such an accosigtsai
formulas expressing the relationship (“mapping”) between the schatha for-

mal conceptual model or ontology (CM) of the domain. In this paperegedbe

the underlying principles, algorithms, and a prototype tool that finds seeh
mantic mappings from relational tables to ontologies, when given as $ippte
correspondencefsom columns of the tables to datatype properties of classes in
an ontology. Although the algorithm presented is necessarily heuristicffere o
formal results showing that the answers returned by the tool aregtdifor re-
lational schemas designed according to standard Entity-Relationshipceesn

To evaluate its usefulness and effectiveness, we have applied the &oolitober

of public domain schemas and ontologies. Our experience shows thdicsigt
effort is saved when using it to build semantic mappings from relationkdgdb
ontologies.

Keywords: Semantics, ontologies, mappings, semantic interoperability.

1 Introduction and Motivation

A number of important database problems have been showwéain@roved solutions
by using a conceptual model or an ontology (CM) to providecise semantictor a
database schema. Théseclude federated databases, data warehousing [2], aod inf
mation integration through mediated schemas [13, 8]. Singeh information on the
web is generated from databases (the “deep web”), the reabiiibr a Semantic Web,
which requires a connection between web content and onéslpgrovides additional
motivation for the problem of associating semantics wittatdase-resident data (e.g.,
[10]). In almost all of these cases, semantics of the datapsuced by some kind of
semantic mappingetween the database schema and the CM. Although sometimes t
mapping is just @impleassociation from terms to terms, in other cases what isredjui
is acomplexformula, often expressed in logic or a query language [14].

For example, in both the Information Manifold data integmatsystem presented in
[13] and the DWQ data warehousing system [2], formulas ofohefl’ (X) :- (X, Y)

* This is an expanded and refined version of a research paper mese©DBASE’05 [1]
3 For a survey, see [23].

are used to connect a relational data source to a CM expréssexns of a Descrip-
tion Logic, whereT'(X) is a single predicate representing a table in the relatioata
source, aneb(X,Y) is a conjunctive formula over the predicates representingon-
cepts and relationships in the CM. In the literature, sudbraélism is called local-as-
view (LAV), in contrast to global-as-view (GAV), where at@mwntology concepts and
properties are specified by queries over the database [14].

In all previous work it has been assumed thathansspecify the mapping formulas
— a difficult, time-consuming and error-prone task, esplgcince the specifier must
be familiar with both the semantics of the database schemh#h@ncontents of the on-
tology. As the size and complexity of ontologies increaskecomes desirable to have
some kind of computer tool to assist people in the task. Nwtethe problem of seman-
tic mapping discovery is superficially similar to that of aladse schema mapping, how-
ever the goal of the later is finding queries/rules for ingg¢igig/translating/exchanging
the underlying data. Mapping schemas to ontologies, ontther dland, is aimed at un-
derstanding the semantics of a schema expressed in termgivdrasemantic model.
This requires paying special attentions to various semaamstructs in both schema
and ontology languages.

We have proposed in [1] a tool that assists users in disaayenapping formulas
between relational database schemas and ontologies, esehped the algorithms and
the formal results. In this paper, we provide, in additiowtat appears in [1], more de-
tailed examples for explaining the algorithms, and we alesnt proofs to the formal
results. Moreover, we show how to handle GAV formulas thatdten useful for many
practical data integration systems. The heuristics thdeti® the discovery process
are based on a careful study of standard design processgetae constructs of the
relational model with those of conceptual modeling langasad¢n order to improve the
effectiveness of our tool, we assume some user input iniaddd the database schema
and the ontology. Specifically, inspired by the Clio projgtt], we expect the tool
user to providesimple correspondencéstween atomic elements used in the database
schema (e.g., column names of tables) and those in the ggt@tog., attribute/’data
type property” names of concepts). Given the set of cormdgaces, the tool is ex-
pected to reason about the database schema and the ontogio generate a list
of candidate formulas for each table in the relational dadebldeally, one of the for-
mulas is the correct one — capturing user intention undaglgiven correspondences.
The claim is that, compared to composing logical formulgsasenting semantic map-
pings, it is much easier for users to (i) draw simple corresigmces/arrows from col-
umn names of tables in the database to datatype propert@asses in the ontology
and then (ii) evaluate proposed formulas returned by thke ¢ following example
illustrates the input/output behavior of the tool proposed

Example 1.1An ontology contains concepts (classes), attributes ofepts (datatype
properties of classes), relationships between concepso¢ations), and cardinality
constraints on occurrences of the participating concepésrelationship. Graphically,
we use the UML notations to represent the above informatiagure 1 is an enter-

4 In fact, there exist already tools used in schema matching which helprpestich tasks using
linguistic, structural, and statistical information (e.g., [4, 21]).

prise ontology containing some basic concepts and rektipa. (Recall that cardinal-
ity constraints in UML are written at the opposite end of teeaxiation: a Department
has at least 4 Employees working for it, and an Employee wiorksie Department.)
Suppose we wish to discover the semantics of a relationkd fatmployee(ssn,name,

0.* 1 works_on 0.1
s Employee 4 11 Department Worksite
2 -hasSsn «\ works_for -hasDeptNumFer ilasNumber
e -hasName I\ -hasName / 1.1 0.*fhasName
~N

a -hasAddress ?\ 01l / controls / |-

—-hasAge —-. / 7

0.1 1\ anages 7/

-
/ -
V'

»
Employee(ssn, name, dept, proj)

Fig. 1: Relational table, Ontology, and Correspondences.

dept, proj) with key ssn in terms of the enterprise ontology. Suppose that by loo&ing
column names of the table and the ontology graph, the usessdhe simple correspon-
dences shown as dashed arrows in Figure 1. This indicatesxémple, that thesn
column corresponds to theisSsn property of theEmployee concept. Using prefixes
7 and O to distinguish tables in the relational schema and condeptise ontology
(both of which will eventually be thought of as predicates,represent the correspon-
dences as follows:
T : Employee.ssne~QO : Employee.hasSsn
T : Employee.name«~Q : Employee.hasName
T : Employee.depte~~Q : Department.hasDept Number
T : Employee.proje~QO : Worksite.hasNumber
Given the above inputs, the tool is expected to produce afigtlausible mapping
formulas, which would hopefully include the following fotrda, expressing a possible
semantics for the table:
T:Employeegsn, name, dept, proj) :-
O:Employeeft1), O:hasSsnt1,ssn), O:hasNamet:,name), O:Departmentfz),
O:worksfor(z1,22), O:hasDeptNumbesf(z, dept), O:Worksitefs), O:workson(z,zs),
O:hasNumbetfs,proj).
Note that, as explained in [14], the above, admittedly csimiy notation in the litera-
ture, should really be interpreted as the First Order Logimiila
(Vssn, name, dept, proj) T:Employee§sn, name, dept, proj) =
(Fz1, 22, 23) O:Employeeg:) A...
because the ontologgxplainswhat is in the table (i.e., every tuple corresponds to an
employee), rather than guaranteeing that the table satthfieclosed world assumption
(i.e., for every employee there is a tuple in the table). |

An intuitive (but somewhat naive) solution, inspired bylgawork of Quillian [20],

is based on finding thehortestconnections between concepts. Technically, this in-
volves (i) finding the minimum spanning tree(s) (actuallgiBér tree®) connecting the
“corresponded concepts” — those that have datatype piepardrresponding to ta-
ble columns, and then (ii) encoding the tree(s) into forrauldowever, in some cases
the spanning/Steiner tree may not provide the desired d@ador a table because
of known relational schema design rules. For example, denghe relational table
Project(name, supervisor), where the colummame is the key and corresponds to
the attributeQ:Worksite.hasName, and columnsupervisor corresponds to the at-
tribute O: Employee.hasSsn in Figure 1. The minimum spanning tree consisting of
Worksite, Employee, and the edg@orks_on probably does not match the semantics
of table Project because there are multiplémployees working on alVorksite ac-
cording to the ontology cardinality, yet the table allowdyoone to be recorded, since
supervisor is functionally dependent oname, the key. Therefore we must seek a
functional connection fronWorksite to Employee, and the connection will be the
manager of the department controlling the worksite. In plaiger, we use ideas of stan-
dard relational schema design from ER diagrams in orderafi beuristics that sys-
tematically uncover the connections between the constrfatelational schemas and
those of ontologies. We propose a tool to generate “reasghabes connecting the
set of corresponded concepts in an ontology. In contrasteataph theoretic results
which show that there may be too many minimum spanning/&tehnees among the
ontology nodes (for example, there are already 5 minimumrsipg trees connecting
Employee, Department, andW orksite in the very simple graph in Figure 1), we ex-
pect the tool to generate only a small number of “reasonalde’s. These expectations
are born out by our experimental results, in Section 6.

As mentioned earlier, our approach is directly inspiredhzyE€lio project [17, 18],
which developed a successful tool that infers mappings fsnmset of relational tables
and/or XML schemas to another, given just a set of corresproces between their
respective attributes. Without going into further detailshis point, we summarize the
contributions of this work:

— We identify a new version of the data mapping problem: thanfefrring complex
formulas expressing the semantic mapping between re#dtabatabase schemas
and ontologies from simple correspondences.

— We propose an algorithm to find “reasonable” tree connefg)oin the ontology
graph. The algorithm is enhanced to take into account irdition about the schema
(key and foreign key structure), the ontology (cardinaiéstrictions), and standard
database schema design guidelines.

— To gain theoretical confidence, we give formal results famétéd class of schemas.
We show that if the schema was designed from a CM using teabsaigell-known
in the Entity Relationship literature (which provide a matisemantic mapping and
correspondences for each table), then the tool will recegsentially all and only
the appropriate semantics. This shows that our heuristesat just shots in the

5 A Steiner tree for a sel/ of nodes in graptG is a minimum spanning tree dif that may
contain nodes off which are not inM.

dark: in the case when the ontology has no extraneous matarthwhen a table’s
scheme has not been denormalized, the algorithm will predood results.

— To test the effectiveness and usefulness of the algorithpractice, we imple-
mented the algorithm in a prototype tool and applied it to aetg of database
schemas and ontologies drawn from a number of domains. Weezhshat the
schemas and the ontologies were developed independemdlyha schemas might
or might not be derived from a CM using the standard techrsigOeair experience
has shown that the user effort in specifying complex mappgusing the tool is
significantly less than that by manually writing formulasrfr scratch.

The rest of the paper is structured as follows. We contrasapproach with related
work in Section 2, and in Section 3 we present the technicgtdraund and notation.
Section 4 describes an intuitive progression of ideas Uyidgrour approach, while
Section 5 provides the mapping inference algorithm. In i8ecd we report on the
prototype implementation of these ideas and experimeritstivé prototype. Section 7
shows how to filter out unsatisfied mapping formulas by omgjgleasoning. Section 8
discusses the issues of generating GAV mapping formulaallfzi Section 9 concludes
and discusses future work.

2 Related Work

The Clio tool [17, 18] discovers formal queries describirmvhtarget schemas can
be populated with data from source schemas. To compare witreicould view the
present work as extending Clio to the case when the sourcarecls a relational
database while the target is an ontology. For example, imipkal.1, if one viewed the
ontology as a relational schema made of unary tables (suemagoyee(x1)), binary
tables (such aBasSsn(z1, ssn)) and the obvious foreign key constraints from binary
to unary tables, then one could in fact try to apply dirediky €lio algorithm to the prob-
lem. The desired mapping formula from Example 1.1 would mqttmduced for several
reasons: (i) Clio [18] works by taking each table and usingase-like algorithm to re-
peatedly extend it with columns that appear as foreign keferencing other tables.
Such “logical relations” in the source and target are themeeted by queries. In this
particular case, this would lead to logical relations sustvarks_for <t Employee

<1 Department, but none that join, through some intermedigiysSsn(x1, ssn) and
hasDept Number(x2, dept), which is part of the desired formula in this case. (ii) The
fact thatssn is a key in the tablel: Employee, leads us to prefer (see Section 4)
a many-to-one relationship, such asrks_for, over some many-to-many relation-
ship which could have been part of the ontology (e@.previouslyW orkedF or);
Clio does not differentiate the two. So the work to be presgihiere analyzes the key
structure of the tables and the semantics of relationslugsdipality, ISA) to elimi-
nate/downgradanreasonabl@ptions that arise in mappings to ontologies.

Other potentially relevant work includekata reverse engineeringvhich aims to
extracta CM, such as an ER diagram, from a database schepfastmated algorithms
and approaches to this have appeared in the literature lnegretars (e.g., [15, 9]). The
major difference between data reverse engineering and otk i& that we are given

an existing ontology, and want to interpret a legacy reteticschema in terms of it,
whereas data reverse engineering aims to construct a neloont

Schema matchinge.g., [4, 21]) identifies semantic relations between sehete-
ments based on their names, data types, constraints, ashaatructures. The primary
goal is to find the one-to-one simple correspondences whehaxt of the input for our
mapping inference algorithms.

3 Formal Preliminaries

We do not restrict ourselves to any particular language &mcdbing ontologies in
this paper. Instead, we use a generic conceptual modelivguége (CML), which
containscommonaspects of most semantic data models, UML, ontology langgiag
such as OWL, and description logics. In the sequel, we use Clénote an ontology
prescribed by the generic CML. Specifically, the languadgewa the representation
of classes/concepfsinary predicates over individual®)bject properties/relationships
(binary predicates relating individuals), addtatype properties/attributgbinary pred-
icates relating individuals with values such as integetssirings); attributes are single
valued in this paper. Concepts are organized in the fanigliathierarchy. Object prop-
erties, and their inverses (which are always present), @rgest to constraints such
as specification of domain and range, plus cardinality cairgs, which here allow 1
as lower bounds (calletbtal relationships), and 1 as upper bounds (caflatttional
relationships).

We shall represent a given CM using a labeled directed greadled anontology
graph We construct the ontology graph from a CM as follows: We t@eaconcept
node labeled withC for each concept’, and an edge labeled withfrom the concept
node(to the concept nod€’; for each object property with domainC; and range
C5; for each such, there is also an edge in the opposite direction for its swgneferred
to asp~. For each attributg of concept”, we create a separate attribute node denoted
as Ny ¢, whose label isf, and add an edge labelgdfrom nodeC to Ny .% For
eachis-a edge from a subconcept; to a superconcepts, we create an edge labeled
with is-a from concept nod€’; to concept nod€’,. For the sake of succinctness, we
sometimes use UML notations, as in Figure 1, to represemirttedogy graph. Note that
in such a diagram, instead of drawing separate attributes)ode place the attributes
inside the rectangle nodes; and relationships and the@rses are represented by a
single undirected edge. The presence of such an undiredtes] lbeled, between
concept” and D will be written in text a ---p--- @ If the relationship p is
functional fromC to D, we write ---p->-- @ For expressive CMLs such as
OWL, we may also connect to D by p if we find an existential restriction stating that
each instance af’ is related tasomeinstance oonly instances oD by p.

For relational databases, we assume the reader is familiarstandard notions
as presented in [22], for example. We will use the notafidii, V') to represent a
relational tablel” with columnsKY', and keyK. If necessary, we will refer to the in-
dividual columns inY” usingY'[1], Y[2], ..., and useXY as concatenation of columns.

5 Unless ambiguity arises, we say “no6&, when we mean “concept node labelét.

Our notational convention is that single column names dleeeindexed or appear in
lower-case. Given a table such’/Asibove, we use the notatidey(T), nonkey(T) and
columns(T) to refer toK, Y and K'Y respectively. (Note that we use the terms “table”
and “column” when talking about relational schemas, rasgr¥relation(ship)” and
“attribute” for aspects of the CM.) A foreign key (abbre@dtasf.k. henceforth) inl’
is a set of columns F thageferencegshe key of tablel”, and imposes a constraint that
the projection ofl’ on F is a subset of the projection @ onkey(7").

In this paper, &orrespondencé’.c «~~D. f relates columm of tableT" to attribute
f of conceptD. Since our algorithms deal with ontology graphs, formallgaare-
spondencd. will be a mathematical relatiofv (7, ¢, D, f, Ny p), where the first two
arguments determine unique values for the last three. Thimnsithat we only treat
the case when a table column corresponds to single attridfiaeconcept, and leave
to future work dealing with complex correspondences, whitdy represent unions,
concatenations, etc.

Finally, for LAV-like mapping, we use Horn-clauses in therfoT' (X) - #(X,Y),
as described in Section 1, to represeaimantic mappingsvhereT is a table with
columnsX (which become arguments to its predicate), énd a conjunctive formula
over predicates representing the CM, witlexistentially quantified, as usual.

4 Principles of Mapping Inference

Given a tablel’, and correspondencésto an ontology provided by a person or a tool,
let the setCr consist of those concept nodes which have at least onelwdtrdmrre-
sponding to some column @f(i.e., D such thatthere is at least one tuple, _, D, _, .)).
Our task is to find semantic connections between concepts,ibecause attributes can
then be connected to the result using the corresponderatiorelfor any nodeD,
one can imagine having edg¢so M, for every entryL(_, ., D, f, M). The primary
principle of our mapping inference algorithm is to look fanallest'reasonable” trees
connecting nodes ii;. We will call such a tree aemantic tree

As mentioned before, the naive solution of finding minimunarsging trees or
Steiner trees does not give good results, because it mosbaldeasonable”. We aim
to describe more precisely this notion of “reasonableness”

Consider the case whéf\(c, b) is a table with key, corresponding to an attribute
f on conceptC, andb is a foreign key corresponding to an attributen conceptB.
Then for each value of (and hence instance ¢f), T' associates at most one value of
b (instance ofB). Hence the semantic mapping fbrshould be some formula that acts
as a function from its first to its second argument. The seim#mees for such formulas
look like functional edges in the ontology, and hence areemeasonable. For example,
given tableDep(dept, ssn, .. .), and correspondences
T:Dep.dept «~O:Department.hasDept Number
T:Dep.ssn «~O:Employee.hasSsn
from the table columns to attributes of the ontology in Fegliythe proper semantic tree
usesranages— (i.e.,hasManager) ratherthamor ks_f or — (i.e.,hasWor ker s).

Conversely, for tabl&”(c, b), wherec andb are as above, an edge that is functional
from C to B, or from B to C, is likely not to reflect a proper semantics since it would

mean that the key chosen f@t' is actually a super-key — an unlikely error. (In our
example, consider a tabl&(ssn, dept), where both columns are foreign keys.)

To deal with such problems, our algorithm works in two stadiest connects the
concepts corresponding to key columns intskaleton tregthen connects the rest of
the corresponded nodes to the skeleton by functional eddesngver possible).

We must however also deal with the assumption that the oelatischema and
the CM were developed independently, which implies thataibparts of the CM
are reflected in the database schema. This complicatessttsingce in building the
semantic tree we may need to go through additional nodesshwémd up not cor-
responding to columns of the relational table. For examgbasider again the table
Project(name, supervisor) and its correspondences mentioned in Section 1. Be-
cause of the key structure of this table, based on the abouemants we will prefer
the functional path’ cont r ol s—.nmanages~ (i.e., control | edBy followed by
hasManager), passing through nodBepartment, over the shorter path consisting
of edgewor ks_on, which is not functional. Similar situations arise when tbi
contains detaileéggregationhierarchies (e.ggity part-of township part-of county
part-of state), which are abstracted in the database (e.g., a table witimes forcity
andstate only).

We have chosen to flesh out the above principles in a systematnner by con-
sidering the behavior of our proposed algorithm on relai@themas designed from
Entity Relationship diagrams — a technique widely coveredridergraduate database
courses [22]. (We refer to thisr2rel schema desighOne benefit of this approach is
that it allows us to prove that our algorithm, though heigigt general, is in some
sense “correct” for a certain class of schemas. Of courg@aictice such schemas may
be “denormalized” in order to improve efficiency, and, as wentioned, only parts of
the CM may be realized in the database. Our algorithm usegetieral principles enun-
ciated above even in such cases, with relatively good eBufiractice. Also note that
the assumption that a given relational schema was desigosdsome ER conceptual
model does not mean that given ontology is this ER model, evés expressed in the
ER notation. In fact, our heuristics have to cope with thé¢ flaat it is missing essential
information, such as keys for weak entities.

To reduce the complexity of the algorithms, which essdgtethumerate all trees,
and to reduce the size of the answer set, we modify an ontajoggh by collapsing
multiple edges between nodesandF, labeledp;, po, . . . say, into at most three edges,
each labeled by a string of the formy, ; p;,;...": one of the edges has the names of all
functions fromE to F'; the other all functions fron#" to F; and the remaining labels on
the third edge. (Edges with empty labels are dropped.) Matiethere is no way that our
algorithm can distinguish between semantics of the labelsne kind of edge, so the
tool offers all of them. It is up to the user to choose betwdtsrraative labels, though
the system may offer suggestions, based on additionalnvg#tion such as heuristics
concerning the identifiers labeling tables and columnslaeid relationship to property
names.

" One consisting of a sequence of edges, each of which represemistiafiufrom its source to
its target.

5 Semantic Mapping Inference Algorithms

As mentioned, our algorithm is based in part on the relatidatabase schema design
methodology from ER models. We introduce the details of therithm iteratively, by
incrementally adding features of an ER model that appeaa®the CM. We assume
that the reader is familiar with basics of ER modeling andblase design [22], though
we summarize the ideas.

5.1 ERy: An Initial Subset of ER notions

We start with a subset, BRof ER that supports entity sefs (called just “entity”
here), with attributes (referred to lajtribs(E)), and binary relationship sets. In order
to facilitate the statement of correspondences and thepremassume in this section
that attributes in the CM have globally unique names. (Oylié@mented tool does not
make this assumption.) An entity is represented as a caofetasst in our CM. A bi-
nary relationship set corresponds to two properties in ddr @e for each direction.
Such a relationship is calleghany-manyif neither it nor its inverse is functional. A
strong entityS has some attributes that act as identifier. We shall refenéset using
unigue(S) when describing the rules of schema desigrnwéak entityl’” has instead
localUnique(WW) attributes, plus a functional total binary relationshigdenoted as
idRel(W)) to an identifying owner entity (denoted &Own(11)).

Example 5.1An ER, diagram is shown in Figure 2, which has a weak erfitpendent
and three strong entitie&€mployee, Department, and Project. The owner entity of
Dependent is Employee and the identifying relationship i&pendents_of. Using the
notation we introduced, this means that

localUnique(Dependent) =deN ame, idRel(Dependent)= dependents_of,
idOwn(Dependent)= Employee. For the owner entityymployee,

unique(Employee)= hasSsn. |
Dependent Employee Department Project
-deName -hasSsn -hasDeptNumbe FhasNumbe
-birthDate | 0..* 1..1 |-hasName |[4.* 1..1}-hasName 1.* 0..* thasName
-gender dependents_of|-hasAddresy works for |- participates .
-relationship -hasAge - - L.

Fig. 2: An ER, Example.

Note that information about multi-attribute keys cannotégresented formally in
even highly expressive ontology languages such as OWL. Sdifuns like unique
are only used while describing tleg2rel mapping, and are not assumed to be avail-
able during semantic inference. Té2rel design methodology (we follow mostly [15,
22]) is defined by two components. To begin with, Table 1 djgeca mapping-(O)
returning a relational table scheme for every CM compognthereO is either a con-
cept/entity or a binary relationship. (For each relatiopgxactly one of the directions
will be stored in a table.)

ER Model object O Relational Table 7(O)
Strong Entity S |columns: X
primary key: K
Let X=attribs(S) |fk.’s: nong
Let K=unique(S) |anchor: S
semantics: T(X) - S(y),hasAttribs(y, X).
identifier: identify g (v, K') :- S(y),hasAttribs(y, K).
Weak Entity W |columns: ZX
let primary key: UX
E =idown(W) |[fk.'s: X
P = idrel(W) anchor: w
Z=attribs(W) semantics: T(X,U,V):-W(y), hasAttribs(y, Z), E(w),P(y, w),
X = key(7(E)) identify g (w, X).
U =localUnique(W) |identifier: identifyyy (v, UX) - W(y),E(w), P(y, w), hasAttribs(y, U),
V=Z-U identify > (w, X).
Functional columns: X1Xo
Relationship F |primary key: X,
--F->- fk.s: X; references (E;),
let X; = key(7(E;))|anchor: Eq
fori =1,2 semantics: T(X1, X2) - El(yl),ideminy1 (y1, X1), F(y1,92), E2(y2),
identiny2 (y2, X2).
Many-many columns: X1Xo
Relationship M |primary key: X1 X2
— -M-- fk.s: X; references (E;),
let X; = key(7(E;))|semantics: T'(X1, X2) :- El(yl),identiny1 (y1, X1), M (y1,92),E2(y2),
fori =1,2 identiny2 (y2, X2).

Table 1:er2rel Design Mapping.

In addition to the schema (columns, key, f.k.’s), Table bassociates with a rela-
tional tableT' (V') a number of additional notions:

— an anchor, which is the central object in the CM from which is derived, and
which is useful in explaining our algorithm (it will be theabof the semantic tree);

— aformula for the semantic mapping for the table, expressedfarmula with head
T(V) (this is what our algorithm should be recovering); in theyofithe formula,
the functionhasAttribs(z,Y") returns conjunctattr;(z, Y[5]) for the individual
columnsY[1],Y[2],... in Y, whereattr; is the attribute name corresponded by
columnY[j].

— the formula for a predicat&lentify(z,Y"), showing how object: in (strong or
weak) entityC' can be identified by values iri®.

Note thatr is defined recursively, and will only terminate if there ace“oycles” in the
CM (see [15] for definition of cycles in ER).

8 This is needed in addition toasAttribs, because weak entities have identifying values spread
over several concepts.

Example 5.2When 7 is applied to concepEmployee in Figure 2, we get the table
T:Employee(hasSsn, hasName, hasAddress, hasAge), with the ancho&Zmployee,
and the semantics expressed by the mapping:
T:EmployeefasSsn, hasName, hasAddress, hasAge) :-

O:Employeef), O:hasSsny, hasSsn), O:hasNamey, hasName),

O:hasAddress(, hasAddress), O:hasAge{, hasAge).
Its identifier is represented by
identify g, 1oyec (U RasSsn) - O:Employeef), O:hasSsny, hasSsn).

In turn, 7(Dependent) produces the tabl&: Dependent(deN ame, hasSsn,
birthDate,...), whose anchor iBependent. Note that thérasSsn column is a foreign
key referencing théasSsn column in theZ : Employee table. Accordingly, its seman-
tics is represented as:
7T :Dependent{e Name, hasSsn, birthDate, ...) :-

O:Dependenty), O:Employee(v), O:dependentsf(y, w),

identify Empioyee (W, hasSsn), O:deNameg, de N ame),

O:birthDategy, birthDate) ...
and its identifier is represented as:
identify p.cpndent (¥, deName, hasSsn) :-

O:Dependentf), O:Employee(v), O:dependentsf(y, w),

identify 5, 1 oyec (W, hasSsn), O:deNamey, de N ame).

7 can be applied similarly to the other objects in FigurerQuorks_for) produces
the tableworks_for(hasSsn, hasDept Number). T(participates) generates the table
participates(hasNumber, hasDept Number). Please note that the anchor of the table
generated by-(works_for) is Employee, while no single anchor is assigned to the
table generated by(participates). |

The second step of the2rel schema design methodology suggests that the schema
generated using can be modified by (repeatedlgjerginginto the tablel of an en-
tity E the tablel; of some functional relationship involving the same enfitywhich
has a foreign key reference). If the semantics ofly is To(K,V) :- ¢(K,V),
and of T is Ty (K, W) :- ¢(K,W), then the semantics of table ifrerge(7,.74)
is, to a first approximation] (K, V, W) :- ¢(K,V), ¢ (K, W). And the anchor ofl’
is the entity £. (We defer the description of the treatment of null valuescivltan
arise in the non-key columns @f appearing iril’.) For example, we could merge the
table 7 (Employee) with the tabler(works_for) in Example 5.2 to form a new ta-
ble 7:Employee2 (hasSsn, hasName, hasAddress, hasAge, hasDept Number),
where the columrhasDept Number is an f.k. referencing (Department). The se-
mantics of the table is:

T :Employee2kasSsn, hasName, hasAddress, hasAge, hasDept Number):-

O:Employeef)), O:hasSsn{, hasSsn), O:hasName(, hasN ame),

O:hasAddress(, hasAddress), O:hasAgef, hasAge),

O:Departmentp), O:worksfor(y, w), O:hasDeptNumbetq, hasDept N umber).

Please note that one conceptual model may result in sevieakdt relational schemas,
since there are choices in which direction a one-to-ongioakship is encoded (which
entity acts as a key), and how tables are merged. Note alsththeesulting schema is

in Boyce-Codd Normal Form, if we assume that the only fumetlalependencies are
those that can be deduced from the ER schema (as express@d)in F

In this subsection, we assume that the CM has no so-calledrsize” relationships
relating an entity to itself, and no attribute of an entityresponds to multiple columns
of any table generated from the CM. (We deal with these ini@@&t3.) Note that by the
latter assumption, we rule out for now the case when therseameral relationships be-
tween a weak entity and its owner entity, sucthasM et connectingDependent and
Employee, because in this cas€hasMet) will need columnsie Name, ssnl, ssn2,
with ssnl helping to identify the dependent, an¢h2 identifying the (other) employee
they met.

Now we turn to the algorithm for finding the semantics of a¢dblterms of a given
CM. It amounts to finding the semantic trees between nodé®isdC singled out by
the correspondences from columns of the tdbte attributes in the CM. As mentioned
previously, the algorithm works in several steps:

1. Determine a skeleton tree connecting the concepts pamegng to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns usimgrtest functional
paths to the skeleton/anchor tree.

3. Link any unaccounted-for concepts corresponding toratblumns by arbitrary
shortest paths to the tree.

To flesh out the above steps, we begin with the tables cregtélgelbstandard de-
sign process. If a table is derived by tB2rel methodology from an ERdiagram,
then Table 1 provides substantial knowledge about how teraete the skeleton tree.
However, care must be taken when weak entities are involMeel following example
describes the right process to discover the skeleton arahttieor of a weak entity table.

Example 5.3 Consider tablel: Dept(number, univ, dean), with foreign key (f.k.)

univ referencing tabl@ :Univ(name, address) and correspondences shown in Figure

3. We can tell tha? : Dept represents a weak entity since its key has one f.k. as a subset
(referring to the strong entity on whicPepartment depends). To find the skeleton
and anchor of the tabl&: Dept, we first need to find the skeleton and anchor of the
table referenced by the f.luniv. The answer id/niversity. Next, we should look

for a total functional edge (path) from the correspondent@iber, which is con-

cept Department, to the anchor{/niversity. As a result, the Iin
---bel ongsTo- - >- is returned as the skeleton, abdpartment
is returned as the anchor. Finally, we can correctly idgitti€ dean relationship as the
remainder of the connection, rather than phesident relationship, which would have
seemed a superficially plausible alternative to begin with.

Furthermore, suppose we need to interpret the tAbleortal(dept, univ, address)
with the following correspondences:
T : Portal.depte~~Q : Department.hasDept Number
T : Portal.unive~QO : University.hasUnivName

T : Portal.address«~Q© : Host.hostName,
where not only is{dept, univ} the key but also an f.k. referencing the key of table

Employee
1.1 -hasNameA
-hasBoD) \1"1
president I | dean
0.1~ " \o..1
University Department Host
- * \ 0.* 0.1
-hasUnivName_ | 1.1 1. —ha}sDeptNumber - "~ |-hostName
-hasAddres \QelongsTo \{ hasServerAt
\
N\ ol N
\(\
a .
Dept(number.univ__, dean), univ and dean are f.k.s.

Fig. 3: Finding Correct Skeleton Trees and Anchors.

T:Dept. To find the anchor and skeleton of talflePortal, the algorithm first recur-

sively works on the referenced table. This is also neededwine owner entity of a

weak entity is itself a weak entity. |
The following is the functiometSkeleton which returns a set of (skeleton, anchor)-

pairs, when given a tablE and a set of correspondendefrom key (7). The function is

essentially a recursive algorithm attempting to reversduhctionr in Table 1. In order

to accommodate tables not designed accordimy2cel, the algorithm has branches for

finding minimum spanning/Steiner trees as skeletons.

Function getSkeleton(T',L)

input: tableT, correspondences for key(T")

output: a set of (skeleton tree, anchor) pairs

steps:

Supposeey(T') contains f.k.F,. .. ,F, referencing table$} (K1),...1n (K»);

1. If n < 1 andonc(key(T'))° is just a singleton setC}, then return(C, {C'}).2°#T is likely
about a strong entity: base case.*/

2. Else, letL;={T;.K;~~ L(T, F;) }/*translate corresp’s thru f.k. reference;*/
compute §'s;, Anc;) = getSkeleton(T;, L;), fori =1, .., n.

(a) If key(T) = Fy, then return §s1, Anci). I*T looks like the table for the functional
relationship of a weak entity, other than its identifying relationship.*/
(b) If key(T)=F1 A, where columns4 are not part of an f.k. theffiT is possibly a weak
entity*/
if Anc; = {N1} andonc(A) = {N} such that there is a (shortest) total functional
pathr from N to Ny, then return¢ombine*(r, Ss1), {N}). /* N is a weak entity.
cf. Example 5.3.*/

9 onc(X) is the function which gets the s&f of concepts corresponded by the coluriis

10 Both here and elsewhere, when a conagpg added to a tree, so are edges and nodeS"®or
attributes that appear ib.

1 Functioncombine merges edges of trees into a larger tree.

(c) Else supposkey(T') has non-f.k. columngd([1],... A[m], (m > 0); let Ny={ Anc;,i =
1,..,n} U{onc(Alj]),j = 1,..,m}; find skeleton tre&S” connecting the nodes iN,
where any pair of nodes iV; is connected by a (shortest) non-functional path; return
(combine(S’, {Ss;}), Ns). I*Deal with many-to-many binary relationships; also the
default action for non-standard cases, such as when not finding idengtiffiationship
from a weak entity to the supposed owner entity. In this case no uniqueragsis.*/

In order forgetSkeleton to terminate, it is necessary that there be no cycles in
f.k. references in the schema. Such cycles (which may hage hdded to represent
additional integrity constraints, such as the fact that@perty is total) can be elim-
inated from a schema by replacing the tables involved wiirtbuter join over the
key. getSkeleton deals with strong entities and their functional relatiapshin step
(1), with weak entities in step (2.b), and so far, with fuontl relationships of weak
entities in (2.a). In addition to being a catch-all, stegg)2leals with tables represent-
ing many-many relationships (which in this section have key= F; F5), by finding
anchors for the ends of the relationship, and then conrgethiem with paths that are
not functional, even when every edge is reversed.

To find the entire semantic tree of a talifewe must connect the concepts corre-
sponded by the rest of the columns, ireonkey(7T'), to the anchor(s). The connections
should be (shortest) functional edges (paths), since thdétermines at most one value
for them; however, if such a path cannot be found, we use amasbshortest path. The
following function,getTree, achieves the goal.

Function getTree(T,L)
input: tableT, correspondences for columns(7')
output: set of semantic tree$
steps:
1. Let L be the subset af containing correspondences frawy (7');
compute(S’, Anc’)=getSkeleton(T",Ly).
2. If onc(nonkey(T')) — onc(key(T)) is empty, then returny’, Anc’). /*if all columns cor-
respond to the same set of concepts as the key does, then returni¢tersitee.*/
3. For each f.kF; in nonkey(T") referencingl; (K;):
let Li = {T;.K;~~L(T, F;)}, and computéSs!, Anc})= getSkeleton(T;,L). /*recall
that the functionL (7, F;) is derived from a correspondené€T’, F;, D, f, Ny p) such that
it gives a concepD and its attributef (N¢, p is the attribute node in the ontology graph.)*/
find 7r;=shortest functional path fromnc’ to Anc}; let.S = combine(S’, m;, {Ss{' }).
4. For each columi in nonkey(T) that is not part of an f.k., leN = onc(c); find r=shortest
functional path fromAnc’ to N; updateS := combine(S, 7). /*cf. Example 5.4.*/
5. In all cases above asking for functional paths, use a shortest pdtmiféonal one does not

exist.
6. ReturnsS.

The following example illustrates the use g@étTree when seeking to interpret a
table using a different CM than the one from which it was ovédly derived.

12 To make the description simpler, at times we will not explicitly account forpssibility of
multiple answers. Every function is extended to set arguments by elem@mnapplication of
the function to set members.

Example 5.4In Figure 4, the tablel: Assignment(emp, proj, site) was originally
derived from a CM with the entitydssignment shown on the right-hand side of
the vertical dashed line. To interpret it by the CM on the-tefhd side, the function

getSkeleton, in Step 2.c, returnsEnpl oyee | - - - assi gnedTo- - -

as the skeleton, and no single anchor exists. Thé Betployee, Project} accompa-

nying the skeleton is returned. Subsequently, the fungéiiree seeks for the shortest
functional link from elements id Employee, Project} to Worksite at Step 4. Conse-
quently, it connect$V orksite to Employee via works_on to build the final semantic

tree.]
Employee . F’rolect :
-empNumbeE assignedTo -prOJhLumber |
~ \

~ \)

1+ ~ S~ \) Assignment

works_on ~ \ . -employee
1.1 derived fjom .
-project

N
. Novo
Worksite Assignment(emp .pro ’S"te) <::I _site
)
7)

-siteName

-~ /’ |

—— e s =

Fig. 4: Independently Developed Table and CM.

To get the logic formula from a tree based on correspondénage provide the
procedureencodeTree(S, L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)
input: subtreeS of ontology graph, correspondendefrom table columns to attributes
of concept nodes ily.
output: variable name generated for root®fand conjunctive formula for the tree.
steps:SupposeV is the root ofS. Let¥ = true.
1. if N is an attribute node with labgl
find d such thatlL(_, d, _, f, N) = true;
return(d, true). I*for leaves of the tree, which are attribute nodes, return the corresiognd
column name as the variable and the formtitae.*/
2. if N is a concept node with labégl, then introduce new variable; add conjunct
C(z)to¥;
for each edge; from N to N; /*recursively get the subformulas.*/
let S; be the subtree rooted Af;,
let (vs, 9:(Z;))=encodeTree(S;, L),
add conjuncte; (x, v;) A ¢;(Z;) to ¥,
3. return(x, ¥).

hasDeptNumber

hasUnivName hasDeptNumber hasName
\ | /
University Department Employee
-belongsTo - —dean —

Fig.5: Semantic Tree FdDept Table.

Example 5.5Figure 5 is the fully specified semantic tree returned by therdghm for
the 7: Dept(number, univ, dean) table in Example 5.3. Takingpepartment as the
root of the tree, functioencodeTree generates the following formula:

Departmentt), hasDeptNumbei(, number), belongsTag, v1), University(:),
hasUnivNamef; , univ), dean{, v2), Employee(z), hasNamefz, dean).

As expected, the formula is the semantics the tghlPept as assigned by ther2rel
designr. [|

Now we turn to the properties of the mapping algorithm. Ineoitd be able to make
guarantees, we have to limit ourselves to “standard” mhati schemas, since otherwise
the algorithm cannot possibly guess the intended meaniag afbitrary table. For this
reason, let us consider only schemas generated bgrivel methodology from a CM
encoding an ER diagram. We are interested in two propeifigsA sense of “com-
pleteness”: the algorithm finds the correct semantics (asifsgd in Table 1). (2) A
sense of “soundness”; if for such a table there are multipieamtic trees returned by
the algorithm, then each of the trees would produce an indigishable relational table
according to theer2rel mapping. (Note that multiple semantic trees are bound s®ari
when there are several relationships between 2 entitieshwda@nnot be distinguished
semantically in a way which is apparent in the table (e.gr, @are functional proper-
ties fromA to B). To formally specify the properties, we have the followiwfinitions.

A homomorphisnk from the columns of a tabl; to the columns of a tabl&; is
a one-to-one mapping: columns(7;)—columns(7%), such that (i)h(c) € key(T5)
for everyc € key(11); (i) by convention, for a set of columnB, h(F[1]F[2]...) is
R(F[1)R(F[2]) .. .; (i) h(Y)is anf.k. ofT; for everyY which is an f.k. offy; and (iv)
if Y is an f.k. ofT}, then there is a homomorphism from tkey(77) of T referenced
by Y to thekey(T3) of T3 referenced by.(Y') in Tx.

Definition 1. A relational tableT; is isomorphic to another relational tablg,, if there
is a homomorphism frormolumns(7}) to columns(73) and vice versa.

Informally, two tables are isomorphic if there is a bijectioetween their columns
which preserves recursively the key and foreign key strestuThese structures have
direct connections with the structures of the ER diagrams fwhich the tables were
derived. Since ther2rel mappingr may generate the “same” table when applied to
different ER diagrams (considering attribute/column naufm@ve been handled by cor-

respondences), a mapping discovery algorithm with “goadpprties should report all
and only those ER diagrams.

To specify the properties of the algorithm, suppose thattreespondencé,; is
the identity mapping from table columns to attribute nanassset up in Table 1. The
following lemma states the interesting propertygetSkeleton.

Lemma 1. Let ontology graphg encode an ERdiagramé&. LetT= 7(C) be a rela-
tional table derived from an object in £ according to theer2rel rules in Table 1. Given
L;q fromT to G, and L’ = the restriction of L;; to key(T), thengetSkeleton(T’, L")
returns(.S, Anc) such that,

— Ancis theanchor of T' (anchor(T)).
— If C corresponds to a (strong or weak) entity, themcodeTree(S, L) is logically
equivalent tddentify,-.

Proof The lemma is proven by using induction on the number of appibas of the
functiongetSkeleton resulting from a single call on the taklé

At the base case, step 1 gétSkeleton indicates thakey(T") links to a single
concept inG. According to theer2rel design, tablél" is derived either from a strong
entity or a functional relationship from a strong entity.rEither caseanchor(7T) is
the strong entity, andncodeTree(S, L') is logically equivalent tadentify ;, whereE
is the strong entity.

For the induction hypothesis, we assume that the lemma fai@sch table that is
referenced by a foreign key ifi.

On the induction steps, step 2.(a) identifies that tdbig derived from a functional
relationship from a weak entity. By the induction hypotlsesine lemma holds for the
weak entity. So does it for the relationship.

Step 2.(b) identifies thaf is a table representing a weak entity with an owner
entity E. Since there is only one total functional relationship frarweak entity to its
owner entity,getSkeleton correctly returns the identifying relationship. By the tred
tion hypothesis, we prove thahcodeTree(S, L') is logically equivalent tadentifyyy.
|

We now state the desirable properties of the mapping disgalgorithm. First,
getTree finds the desired semantic mapping, in the sense that

Theorem 1. Let ontology grapty encode an ERdiagramé. Let tableT” be part of a
relational schema obtained ®r2rel derivation from&. GivenL,;; from T to G, then
some treeS returned bygetTree(T, L;;) has the property that the formula generated
by encodeTree(S, L;;4) is logically equivalent to the semantics assigned'tby the
er2rel design.

Proof Supposéd’ is obtained by merging the table for a entliywith tables representing
functional relationshipg, . . ., f., n > 0, involving the same entity.

Whenn = 0, all columns will come fromFE, if it is a strong entity, or from~
and its owner entiti(es), whose attributes appeaken(T). In either case, step 2 of
getTree will apply, returning the skeletoy. encodeTree then uses the full original
correspondence to generate a formula where the attriblitEscorresponding to non-
key columns generate conjuncts that are added to forinefdify ;. Following Lemma

1, it is easy to show by induction on the number of such atteibuhat the result is
correct.

Whenn > 0, step 1 ofgetTree constructs a skeleton tree, which represdits
by Lemma 1. Step 3 adds edggs. .., f. from E to other entity node#, ..., E,
returned respectively as roots of skeletons for the othesida keys of7". Lemma 1
also shows that these translate correctly. Steps 4 and ®tapply to tables generated
according toer2rel design. So it only remains to note thatcodeTree creates the
formula for the final tree, by generating conjuncts for. .., f,, and for the non-key
attributes ofF’, and adding these to the formulas generated for the skedetatnees at
Ey, ... E,.

This leaves tables generated from relationships ig ERthe cases covered in the
last two rows of Table 1 — and these can be dealt with using Larhm |

Note that this result is non-trivial, since, as explainedieit would not be satisfied
by the current Clio algorithm [18], if applied blindly tviewed as a relational schema
with unary and binary tables. SingetTree may return multiple answers, the following
converse “soundness” result is significant.

Theorem 2. If S” is any tree returned bgetTree (T, L;4), with T, L;4, and€ as above
in Theorem 1, then the formula returned egcodeTree(S’, L;;) represents the se-
mantics ofsometableT” derivable byer2rel design frome, whereT” is isomorphic to
T.

Proof The theorem is proven by showing that each tree returnegbbtiyee will result
in tableT” isomorphic tdl".

For the four cases in Table getTree will return a single semantic tree for a table
derived from an entity (strong or weak), and possibly midtipemantic trees for a
(functional) relationship table. Each of the semanticgresturned for a relationship
table is identical to the original ER diagram in terms of thagge and the cardinality
constraints. As a result, applyingto the semantic tree generates a table isomorphic to
T.

Now supposéd’ is a table obtained by merging the table for enfityvith n tables
representing functional relationshigs, . . ., f,, from E to somen other entities. The
recursive callggetTree in step 3 will return semantic trees, each of which represent
functional relationships froniv. As above, these would result in tables that are isomor-
phic to the tables derived from the original functional tiglashipsf;,i = 1...n. By the
definition of themerge operation, the result of merging these will also result inlae
T’ which is isomorphic td" |

We wish to emphasize that the above algorithms has beemaelig deal even with
schemas not derived usimg2rel from some ER diagram. An application of this was
illustrated already in Example 5.4. Another applicatiortho$ is the use of functional
paths instead of just functional edges. The following exanifustrates an interesting
scenario in which we obtained the right result.

Example 5.6Consider the following relational table
T (personName, cityN ame, countryName),
where the columns correspond to, respectively, attriqutese, cname, andctrname
of conceptsPerson, City and Country in a CM. If the CM contains a path such

that[Per son]- - bornin-> |City|-- | ocatedln->- , then the
above table, which is not in 3NF and was not obtained usirtgel design (which
would have required a table fé¥ity), would still get the proper semantics:
T(personName, city N ame, countryName) -

Persong1), City(z2),Countrygs), borning,x2), locatedingz,zs),

pnameg: ,personName), cnamegs,city N ame),ctrnamegs,country N ame).
If, on the other hand, there was a shorter functional patin fRerson to Country, say
an edge labeledi t i zenOF , then the mapping suggested would have been:
T(personName, city N ame, countryName) -

Persont1), City(z2), Countrys), bornin (1,22),CitizenOf@c1,x3), ...
which corresponds to ther2rel design. Moreover, hadi ti zenOf not been func-
tional, then once again the semantics produced by the tigovwould correspond to the
non-3NF interpretation, which is reasonable since thestdiaving onlypersonName
as key, could not store multiple country names for a person. |

5.2 ER;: Reified Relationships

It is desirable to also have n-ary relationship sets cotmgentities, and to allow re-
lationship sets to have attributes in an ER model; we lalelahguage allowing us to
model such aspects by ERJnfortunately, these features are not directly suppdrted
most CMLs, such as OWL, which only have binary relationshisch notions must
instead be represented hgified relationships”[3] (we use an annotation * to indicate
the reified relationships in a diagram): concepts whosamt&s represent tuples, con-
nected by so-called “roles” to the tuple elements. Sd3ifys relatesPerson, Shop
and Product, through roleduyer, source andobject, then these are explicitly repre-
sented as (functional) binary associations, as in Figufné.a relationship attribute,
such as when the buying occurred, becomes an attribute d@fye concept, such as
whenBought.

Person Buys* Shop
buyer source
-whenBought
L1 0..* 0.* 1.1

*

0. object

1.1

product

Fig. 6: N-ary Relationship Reified.

Unfortunately, reified relationships cannot be distingais reliably from ordinary
entities in normal CMLs based on purely formal, syntactwugrds, yet they need to be
treated in special ways during semantic recovery. For gason we assume that they

can be distinguished amntological groundsFor example, in Dolce [7], they are sub-
classes of top-level concepfuality and Perdurant/Event. For a reified relation-
ship R, we use functionsoles(R) andattribs(R) to retrieve the appropriate (binary)
properties.

ER model object O Relational Table 7(O)
Reified Relationship R |columns: ZX1...Xn
if there is a functional |primary key: X,
roler; for R fk.'s: X1,...,Xn
--<-r1->-- anchor: R
S re>-- semantics: T(ZXi...X,):- R(y).E;:(w,;), hasAttribs(y, Z), r; (y, w,),
let Z=attribs(R) identinyi (wiy Xi)y. -
X;=key(T(E;)) identifier: identify p (v, X1) - R(y), E1(w), r1(y, w),
whereE; fills role r; identiny1 (w, X71).
Reified Relationship R |columns: ZX1 ... Xy
if r1,...,r, areroles ofR|primary key: Xi... X,
let Z=attribs(R) fk.’s: D C Xn
Xi=key(T(E,;)) anchor: R
whereE; fills role r; semantics: T(ZX1...Xy):- R(y),E;(w;), hasAttribs(y, Z), r; (y, w;),
|dent|nyi(wi, Xi)y. ..
identifier: identify p (v, ... Xi...) = R(y), ... Bi(w:), ri(y, ws),
identify i (ws, Xi),...

Table 2:er2rel Design for Reified Relationship.

Theer2rel designr of relational tables for reified relationships is an extengif the
treatment of binary relationships, and is shown in Table 2with entity keys, we are
unable to capture in CM situations where some subset of rharedne roles uniquely
identifies the relationship. Tha2rel designr on ER, also admits thenerge operation
on tables generated by Merging applies to an entity table with other tables of some
functional relationships involving the same entity. Irstbase, the merged semantics is
the same as that of merging tables obtained by applyit@ER,, with the exception
that some functional relationships may be reified.

To discover the correct anchor for reified relationships getdthe proper tree, we
need to modifygetSkeleton, by adding the following case between steps 2(b) and 2(c):

— If key(T)=F1 F; ... F, and there exist reified relationshipwith » rolesr, . .
pointing at the singleton nodes itvicy, . . ., Anc, respectively,
then letS = combine({r;}, {Ss;}), and return(S, { R}).
getTree should compensate for the fact thag#tSkeleton finds areified version of a
many-many binary relationship, it will no longer look for anreified one in step 2c.
So after step 1. we add
— if key(T) is the concatenation of two foreign keys F», andnonkey(T) is empty,
compute Fs1,Anci) and (Ssa, Ancs) as in step 2. ofgetSkeleton; then find

T

p=shortest many-many path connectigc; to Ancs;
return (5’) U (combine(p, Ss1, Ss2))

In addition, when traversing the ontology graph for findihgi$est paths in both func-
tions, we need to recalculate the lengths of paths when dei@ilationship nodes are
present. Specifically, a path of length 2 passing throughifeederelationship node
should be counted as a path of length 1, because a reifiedybielationship could
have been eliminated, leaving a single edfjBote that a semantic tree that includes a
reified relationship node is valid only if all roles of thefied relationship have been in-
cluded in the tree. Moreover, if the reified relation hadilatiies of its own, they would
show up as columns in the table that are not part of any foregnTherefore, a filter

is required at the last stage of the algorithm:

— If a reified relationshipk appears in the final semantic tree, then so must all its
role edges. And if one sucR has as attributes the columns of the table which do
not appear in foreign keys or the key, then all other candidatantics need to be
eliminated.

The previous version gjetTree was set up so that with these modifications, roles and
attributes to reified relationships will be found properly.

If we continue to assume that no more than one column comelspt the same
entity attribute, the previous theorems hold forE&& well. To see this, consider the
following two points. First, the tree identified for any talgenerated from a reified re-
lationship is isomorphic to the one from which it was genedasince the foreign keys
of the table identify exactly the participants in the redaghip, so the only ambiguity
possible is the reified relationship (root) itself. Secahdn entity £/ has a set of (bi-
nary) functional relationships connecting to a set of @it ,.. .,F,,, then merging
the corresponding tables with{ ') results in a table that is isomorphic to a reified re-
lationship table, where the reified relationship has a sifighctional role with fillerE
and all other role fillers are the set of entities,. . .,E,,.

5.3 Replication

We next deal with the equivalent of the full ERhodel, by allowing recursive relation-
ships, where a single entity plays multiple roles, and theging of tables for different
functional relationships connecting the same pair of gistits (e.g.wor ks_f or and
manages). In such cases, the mapping described in Table 1 is not cuiitect because
column names would be repeated in the multiple occurrencés doreign key. In our
presentation, we will distinguish these (again, for easpre$entation) by adding su-
perscripts as needed. For example, if entityRBetson, with key ssn, is connected to
itself by thelikes property, then the table fdikes will have schemd&[ssnt!, ssn?].
During mapping discovery, such situations are signalechiypresence of multi-
ple columnse and d of tableT' corresponding to the same attribyteof conceptC.
In such situations, we modify the algorithm to first make ayc6f,,, of nodeC,
as well as its attributes, in the ontology graph. Furtheem6t..,, participates in all

13 A different way of “normalizing” things would have been to reify evenasinassociations.

the object relationg’ did, so edges for this must also be added. After replicatian,
can setonc(c) = C andonc(d) = Ceopy, Or onc(d) = C andonc(c) = Ceopy
(recall thatonc(c) retrieves the concept corresponded to by colutmin the algo-
rithm). This ambiguity is actually required: given a CM wifPerson andlikes as
above, a tabl@'[ssn, ssn?] could have two possible semantitgies(ssnt, ssn?) and
likes(ssn?, ssn'), the second one representing the inverse relationglig] By. The
problem arises not just with recursive relationships, lastilated by the case of a ta-
ble T'[ssn, addr, addr?], wherePerson is connected by two relationshipsyme and
of fice, to conceptBuilding, which has amddress attribute.

The main modification needed to tigetSkeleton andgetTree algorithms is that
no tree should contain two or more functional edges of thm ---p ->--

and its replicateD]- - - p ->-- , because a functionhas a single value, and
hence the different columns of a tuple corresponding tolitenid up having identical
values: a clearly poor schema.

As far as our previous theorems, one can prove that by makipigs of an entity®
(sayE andE,,,,), and also replicating its attributes and participatirigtienships, one
obtains an ER diagram from which one can generate isomotahles with identical
semantics, according to tlee2rel mapping. This will hold true as long as the predicate
used forboth E andE.,,, is E(_); similarly, we need to use the same predicate for the
copies of the attributes and associations in whithnd E..,, participate.

Even in this case, the second theorem may be in jeopardy rié thee multiple
possible “identifying relationships” for a weak entity, #isistrated by the following
example.

Example 5.7An educational department in a provincial government rdedine trans-
fers of students between universities in its databasesudest is a weak entity de-
pending for identification on the university in which thedguat is currently registered.
A transfered student must have registered in another wgiiydrefore transferring. The
table T:Trans ferred(sno, univ, sname) records who are the transferred students,
and their name. The tablE:previous(sno, univ, pUniv) stores the information about
the previousUniv relationship. A CM is depicted in Figure 7. To discover thmae-

TransferredStudent 1.*) 1..1 |University
registerin
SN0 € ~ = -name
~< * 1.1 W%
-sname e o ~ | 0.)) -t address
— IS previousUniv
S
h e]
AN ~a
\ *o
Y A"

TransferredStudent(sno.univ_,sname)

Fig. 7: A Weak Entity and Its Owner Entity.

tics of table7 :T'rans ferred, we link the columns to the attributes in the CM as shown
in Figure 7. One of the skeletons returned by the algorithntte 7:Transferred

will be [Tr ansf er r edSt udent | --- previousUni v ->-- |University|

But the design resulting from this according to #2rel mapping is not isomorphic
to key(T'ransferred), sincepreviousUniv is not the identifying relationship of the
weak entityT'rans ferredStudent. |

From above example, we can see that the problem is the ityatifilCMLs such as
UML and OWL to fully capture notions like “weak entity” (spéicially the notion of
identifying relationship), which play a crucial role in Bsed design. We expect such
cases to be quite rare though — we certainly have not enaeahsay in our example
databases.

5.4 Extended ER: Adding Class Specialization

The ability to represent subclass hierarchies, such asntbénoFigure 8 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [22]) describe several techagfor designing relational
schemas in the presence of class hierarchies

1. Map each concept/entity into a separate table followlvegstandarer2rel rules.
This approach requires two adjustments: First, subclassss inherit identifying
attributes from a single super-class, in order to be ablesteetate keys for their
tables. Second, in the table created for an immediate ss&€laof classC, its
key key(7(C”)) should also be set to reference as a foreignk@y), as a way of
maintaining inclusion constraints dictated by the is-atiehship.

2. Expand inheritance, so theit attributes and relations involving a claSsappear on
allits subclasse§”. Then generate tables as usual for the subclasselsough not
for C itself. This approach is used only when the subclasses togesuperclass.

3. Some researchers also suggest a third possibility: &psé up” the information
about subclasses into the table for the superclass. Thiseaiewed as the result
of merge(T¢, Tc), whereTo (K, A) andT¢ (K, B) are the tables generated for
C and its subclas€’ according to technique (1.) above. In order for this design t
be “correct”, [15] requires thdf, not be the target of any foreign key references
(hence not have any relationships mapped to tables), ahéthe non-null (so that
instances o’ can be distinguished from those @j.

The use of the key for the root class, together with inhecitaand the use of foreign
keys to also check inclusion constraints, make many talggyhambiguous. For ex-
ample, according to the above, taliléss#, crsId), with ss# as the key and a foreign
key referencing”, could represent at least
(a) Faculty teachCourse
(b) Lecturer teachCourse
(c) Lecturer coordCourse.

This is made combinatorially worse by the presence of meli#gmd deep hierarchies
(e.g., imagine a parall&€l'ourse hierarchy), and the fact that not all ontology concepts
are realized in the database schema, according to our szdparthis reason, we have
chosen to deal with some of the ambiguity by relying on uskreng the establishment
of correspondences. Specifically, the user is supposedtidera correspondence from

Person
-SS#
Facult Course
y teach
-college csrid
1..* 0..1
AN 0.1
coord
1..*
Professor Assist. Professor Lecturer

Fig. 8: Specialization Hierarchy.

columnc to attributef on the lowest class whose instances provide data appeating i
the column Therefore, in the above example of tafiléss#, crsld), ss# should be
set to correspond tesn on Faculty in case (a), while in cases (b) and (c) it should
correspond tas# on Lecturer. This decision was also prompted by the CM manip-
ulation tool that we are using, which automatically expaimteritance, so thats#
appears on all subclasses.

Under these circumstances, in order to deal appropriatitydesigns (1.) and (2.)
above, we do not need to modify our earlier algorithm in any,wa long as we first ex-
pand inheritance in the graph. So the graph would -- teaches;
coord ->- in the above example, anBlecturer would have all the at-
tributes of Faculty.

To handle design (3.), we add to the graph an actual edge éointlerse of the
is-a relation: a functional edge labeledsoA, with lower-boundo; e.g.,| Facul ty |

--- al soA ->-- [Lecturer | Itis then sufficient to allow irgetTree for func-
tional paths between concepts to inclades 0A edges; e.g.Faculty can now be con-
nected taCourse through patral soA followed bycoor d. Theal soAedge is trans-
lated into the identity predicate, and it is assigned cost reevaluating a functional
path mixed withal soA edge and other ordinary functional eddés.

In terms of the properties of the algorithm we have been denmsig so far, the
above three paragraphs have explained that among the anstemed by the algo-
rithm will be the correct one. On the other hand, if there aoétiple results returned by
the algorithm, as shown in Example 5.7, some semantic tregswt result in isomor-

141t seems evident that iB is-a C, and B is associated withd via p, then this is a stronger
semantic connection betweéhand A than ifC' is associated t& via aq:, andD is associated
to A via gz.

phic tables to the original table, if there are more than oted functional relationships
from a weak entity to its owner entity.

5.5 Outer Joins

The observant reader has probably noticed that the defirdfithe semantic mapping
for T = merge(Tg,T,), whereTg(K,V) - (K, V) andT, (K, W) :- (K, W), was
not quite correctT (K, V,W):-¢(K, V)¢ (K, W) describes a join o, rather than
a left-outer join, which is what is required jfis a non-total relationship. In order to
specify the equivalent of outer joins in a perspicuous manme will use conjuncts
of the form [1(X,Y)]Y, which will stand for the formulau(X,Y) Vv (Y = null A
-3Z.u(X, Z)), indicating that null should be used if there are no satigfyalues for
the variablesY”. With this notation, the proper semantics for merg&'{dd, vV, W) :

In order to obtain the correct formulas from treescodeTree needs to be modified
so that when traversing a non-total edgéhat is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the posstyildf v; not existing.

6 Implementation and Experimentation

So far, we have developed the mapping inference algorithimimstigating the con-
nections between the semantic constraints in relationaefscand that in ontologies.
The theoretical results show that our algorithm will repiie “right” semantics for
most schemas designed following the widely accepted desi&gghodology. Nonethe-
less, it is crucial to test the algorithm in real-world sclasnand ontologies to see its
overall performance. To do this, we have implemented thepingpnference algorithm

in our prototype systermAPONTO, and have applied it on a set of real-world schemas
and ontologies. In this section, we describe the implentiemtand provide some evi-
dence for the effectiveness and usefulness of the protatypdy discussing the set of
experiments and our experience.

Implementation. We have implemented theAPONTO tool as a third-party plugin of
the well-known KBMS Praige!® which is an open platform for ontology modeling and
knowledge acquisition. As OWL becomes the official ontologryguage of the W3C,
intended for use with Semantic Web initiatives, we use OWLhasG@ML in the tool.
This is also facilitated by the Pragg’s OWL plugin [12], which can be used to edit
OWL ontologies, to access reasoners for them, and to acqustenices for semantic
markup. ThemapPoNTO plugin is implemented as a full-size user interface tab that
takes advantage of the views of Fagt user interface. As shown in Figure 9, users
can choose database schemas and ontologies, create amilatantorrespondences,
generate and edit candidate mapping formulas and graptooakections, and produce
and save the final mappings into designated files. In addlitiene is a library of other
Progcgt plugins that visualize ontologies graphically and manag®logy versions.
Those plugins sustain our goal of providing an interacyivetelligent tool to database

15 http://protege.stanford.edu

administrators so that they may establish semantic mapging the database to on-

tologies more effectively.

7 A

BE >3

[- |

[Schema [f

Schema Elements

sties | Croms | 2
:foumlngv i

Maponto

R b i b B

r

[M maponto

1|/ Mapping Formulas | Underlying Connections, |

@ name [PK] [NOT MULL]
@ office

@ supervisor [FK]
@ (T) academicStaff
@ (T) adminStaff
- (T) technicalstaff

@ () Work
(C) Course

@ (CiPerson
@ (C)student
() GraduateStudent
(C) UnclergracuateStucient

@ position _ (E}Research workTitle¢x2,area).
@ email @ (C)Publication @
@ phone @ (C) Organization 14. rolestname,researchGroup) :-

v i Correspondini Logical Formulas
9 (T stuclent A\ ol Thing 13. areasOfinteresthame,ared) :- e

PersonX1),Research(X2),ResearchGroup(X3),
researchProject(x3,X2,head(x3,X1),personMName(x1,

Person(xX1),ResearchGroup¢X2),head(xX2,Xx1),
personNameX1,name)researchGroup in {SubClassh

@) 15, courseccourseNumber,courseTitle,instructor,
Course(X1),cour (x1,coursel workT)|

9 @ areasOfinterest ? \C) worker [ResearchGroup (X2, Chair(X3),affiliatedOr3,x2), [
@ nare [PK] [FK] [NOT RMULL] @ (C) AdministrativeStaff teacherOf¢x3.X1),area in {SubClassNamesOf@Researc
@ area [PK] [NOT NULL] @ (C) Assistant teacherOf(ed,X1),personNamedXd,instructon].
© (D) roles ® (&) Faculry < 1| | 16. courseccourseNumber, courseTitle,instructor,
@ (Tl cou ([l ectirar i
5 Course(X1),cour x1,coursel workT
H & _ ||'M [ResearchGroupX2),DeandX3),affiliated 0fx3,X2),
teacherOfX3.X1),area in SubClassNamesOfResear:
Correspondences teacherOfx4,X1),personNameXd,instructon].
b - e
student. name++{Class:Student (DatatypeProperty persontame)) ‘ = Open @ 17. course(courseNumber,courseTitle,instructor,
student. position+*(Class Student () ﬁ CoursegXl),cour X1,course WOrKT]
lstudent. email#»(Class:Student (DatatypeProperty:emailAddress)) [ResearchGroup(2),Faculty (3), affiliated Of (X3,X2),

- teacherOf(x3,X1),area in SubClassNamesOfResear:
student. superdsart-*(Class: Professor (DatatypeProperty persanhlame)y [Edit [teacherOf(x3,X1),personName(x3,instructon].
academicstaff name¥-+Class: Faculty (DatatypeProperty personiame)) % Remove ? - |
lacademicstart. positian#+(Class: Faculty) = - —

T T q | Gsave vpon | Bem | XRe. | @@save |

Fig. 9:maPONTO Plugin of Protege.

Schemas and OntologiesOur test data were obtained from various sources, and we
have ensured that the databases and ontologies were dedéhojependently. The test
data are listed in Table 3. They include the following dassisathe Department of Com-
puter Science database in the University of Toronto; the Blddnference database;
the DBLP computer science bibliography database; the CORMdatabase appear-
ing in one of reverse engineering papers [11] (Althoughdbentry schema is not a
real-world database, it appears as a complex experimexaahe in [11], and has
some reified relationship tables, so we chose it to test #piea of our algorithm); and
the test schemas in OBSERVER [16] project. For the ontofggiar test data include:
the academic department ontology in the DAML library; thademic conference on-
tology from the SchemaWeb ontology repository; the bibiamiy ontology in the li-
brary of the Stanford’s Ontolingua server; and the CIA factbontology. Ontologies
are described in OWL. For each ontology, the number of linkcates the number
of edges in the multi-graph resulted from object properti#s have made all these
schemas and ontologies available on our web pageu.cs.toronto.edu/ “yuana/research
/maponto/relational/testData.html

Results and ExperienceTo evaluate our tool, we sought to understand whether the
tool could produce the intended mapping formula if the semprrespondences were
given. We were especially concerned with the number of féampresented by the tool
for users to sift through. Further, we wanted to know whethertool was still useful if
the correct formula was not generated. In this case, we &qgditat a user could more

Database SchemgNumber of| Number of Ontology Number of|[Number of
Tables | Columns Nodes Links
UTCS Departmen 8 32 Academic Department 62 1913
VLDB Conference| 9 38 Academic Conferenge 27 143
DBLP Bibliograph 5 27 Bibliographic Data 75 1178
OBSERVER Projegt 8 115 Bibliographic Data 75 1178
Country 6 18 CIA factbook 52 125

Table 3: Characteristics of Schemas and Ontologies for the Experiments.

easily debug a generated formula to reach the correct oteath®f creating it from
scratch. A summary of the experimental results are listethlile 4 which shows the
average size of each relational table schema in each databasaverage number of
candidates generated, and the average time for generagngahdidates. Notice that
the number of candidates is the number of semantic treetneltay the algorithm.
Also, a single edge of an semantic tree may represent thépheuidges between two
nodes, collapsed using opirg abbreviation. If there are: edges in a semantic tree and
each edge has; (i = 1, ..,m) original edges collapsed, then there Bf&' n; original
semantic trees. We show below a formula generated from swdtapsed semantic
tree:
TaAssignmentfourse N ame, student Name) -
Coursef1), GraduateStudentt), [hasTAs;takenBy](x1,x2),
workTitle(z1,courseName), personName(z,student Name).
where, in the semantic tree, the no@eurse and the nodezraduateStudent are
connected by a single edge with labelsTAs;takenBy, which represents two separate
edgeshasT As andtaken By.

Database SchemgAvg. Number of| Avg. Number of |Avg. Execution
Cols/per table [Candidates generated time(ms)
UTCS Departmen 4 4 279
VLDB Conference| 5 1 54
DBLP Bibliograph 6 3 113
OBSERVER Projegt 15 2 183
Country 3 1 36

Table 4: Performance Summary for Generating Mappings from Re#dfi@bles to Ontologies.

Table 4 indicates tha'APONTO only presents a few mapping formulas for users
to examine. This is due in part to our compact representafiparallel edges between
two nodes shown above. To measure the overall performarecmamually created the
mapping formulas for all the 36 tables and compared themetéottimulas generated by
the tool. We observed that the tool produced correct forafida31 tables. This demon-

strates that the tool is able to infer the semantics of malayioaal tables occurring in
practice in terms of an independently developed ontology.

We were also interested in the usefulness of the tool in tbases where the formu-
las generated were not the intended ones. For each suchlfgmeicompared it to the
manually generated correct one, and we used a very coarseiragent to record how
much effort it would take to “debug” the generated formuke humber of changes of
predicate names in a formula. For example, the tool gerethtsfollowing formula
for the tableStudent(name, of fice, position, email, phone, supervisor):

Studentg), emailAddressg; ,email), personNamae(; ,name), Professor(z),
Departmentfs), head{s,z2), affiliatedOf@rs,x1),
personNamexz, supervisor)... (1)

If the intended semantics for the above table columns is:

Studentf), emailAddressg; ,email), personNamaef(; ,name), Professorts),
ResearchGroupg), head{s,z2), affiliatedOf(rs,z1),
personNamexz, superuvisor)... (2)

then one can change the predicBtgpartment¢3) to ResearchGroupss) in formula (1)
instead of writing the entire formula (2) from scratch. Oxperience working with the
data sets shows that at average only about 30% predicatesrigla incorrect formula
returned by thenAPONTO tool needed to be modified to reach the correct formula. This
is a significant saving in terms of human labors.

Tables 4 indicate that execution times were not significsinte, as predicted, the
search for subtrees and paths took place in a relativelyi sraighborhood.

We believe it is instructive to consider the various categgoof problematic schemas
and mappings, and the kind of future work they suggest.

(i) Absence of tables which should be present accordirg2eel. For example, we
expect the connectidiPer son |- - r esear chi nt er est - - - to be
returned for the tablelreaO f Interest(name, area). However,MAPONTO returned
-<- headf --- [Resear chG oup |- <- resear chProj ect ---

[Resear ch |, because there was no table for the condéptearch in the schema,
and SOMAPONTO treated it as a weak entity table. Such problems are causeshg

others, by the elimination of tables that represent finitenegrations, or ones that can
be recovered by projection from tables representing totaly¥io-many relationships.
These pose an important open problem for now.

(i) Mapping formula requiring selectioihe tableEuropean(country, gnp) means
countries which are located in Europe. From the databag# pbiview, this selects
tuples representing European countries. Curremth?ONTO is incapable of generat-
ing formulas involving the equivalent to relational select This particular case is an
instance of the need to express “higher-order” correspmrete such as between ta-
ble/column names and ontology values. A similar exampleappin [17].

(iif) Non-standard desigrOne of the bibliography tables had columns datthor
andother Authors for each documentaaApoNTO found a formula that was close to the

desired one, with conjunctsasAuthor(d, author), hasAuthor(d, other Authors),
but not surprisingly, could not add the requirement thdter Authors is really the
concatenation of all but the first author.

7 Filtering Mappings through Ontology Reasoning

Rich ontologies provide a new opportunity for eliminatinghfeasonable” mappings.
For example, suppose the ontology specifies that in a lipoaige a book is reserved for
an event, it cannot be borrowed by a person. In this case,didzta semantic formula
such as

Book(z), borrow(z,), Persong), reservedFor, z), Event¢)

can be eliminated, since no objeetsan satisfy i#t®.

When ontologies, which include constraints such as the ooetébrrowing and
reservedFor, are expressed in OWL, one can use OWL reasoning to detectgiase
lems. To do so, one first translates the semantic tree intoVedh €oncept, and then
checks it for (un)satisfiability in the context of the ontgyoaxioms, using the standard
reasoning algorithms for Description Logics.

For example, the above formula is equivalent to the OWL coticep

<ow :intersectionC >
<ow : O ass rdf: about ="#Book"/ >
<ow : Restriction>
<ow : onProperty rdf:resource=#borrow >
<ow : soneVal uesFrom r df : resour ce="#Person"/ >
</ow : Restriction>
<ow : Restriction>
<ow : onProperty rdf:resource=#reservedFor/>
<ow : soneVal uesFrom r df : resour ce="#Event"/ >
</ow : Restriction>
</ow :intersectionO>

The algorithm for performing this translation in geneeticodeTreeAsConcept(S),
is almost identical tencodeTree, except that the recursive calls return OWL concepts
C;, which lead to conjuncts of the fornestriction(p;, someValuesFrom(C;)):

Function encodeTreeAsConcept(.S)

input: subtreeS of ontology graph

output: abstract syntax of OWL concept logically equivalent to thd.F@rmula
encodeTree(S, L)

steps:SupposeV is the root ofS.

1.if N is an attribute node with labgl

1 Maybe a relationship likeontact Author(z,v), different fromborrow(z,y), needs to be
used.

returnrestriction(f,minCardinality(1)). /*for leaves of the tree, which are attribute
nodes, just ensure that the attribute is present.*/
2. if N is a concept node with labél, then initialize? to beintersectionOf(C);
for each edge; from N to N; /*recursively get the restrictions */

let S; be the subtree rooted Af;;

let ¢;=encodeTreeAsConcept(S;);

add to¥ asomeValuesFrom(¢;) restriction onp;.
3. returny.

The ontologies we have found so far are unfortunately ndicserftly rich to demon-
strate the usefulness of this idea.

8 Finding GAV Mappings

Arguments have been made that the proper way to connecbgigsland databases for
the purpose of information integration is to show how coteegmd properties in the
ontology can be expressed as queries over the databases-¢hbesl GAV approach.

To illustrate the idea, consider Example 1.1, from Sectipwlere the semantic
mapping we proposed was
T :Employeegsn, name, dept, proj) :-

O:Employeef:), O:hasSsnti,ssn), O:hasNamet; ,name), O:Department(s),

O:works for(z1,x2), O:hasDeptNumbesf(z,dept), O:Worksitefs), O:works.on(zx1,z3),

O:hasNumbet{s,proj).

In this case, we are looking for formulas which exprés®epartment, O:works_on,
etc. in terms of7 : Employee, etc., as illustrated below.

We note that a strong motivation for mappings between ogietoand databases
expressed in this way is that they can be used to populatentiséogy with instances
from the database — a task that is expected to be importatitddemantic Web.

An essential initial step is dealing with the fact that in th@ology (as in object
oriented databases), objects have intrinsic identityctving lost in the relational data
model, where this notion is replaced by external identifi@s. For this purpose, the
standard approach is to introduce special Skolem functimaisgenerate these identi-
fiers from the appropriate keys, as in:

O:Employeeff(ssn)) :- T:Employee§sn,_,-,-).

One then needs to express the external identifiers usingaxitat relate these Skolem
functions with the appropriate ontology attributes:

O:hasSsrit(ssn),ssn) :- T:Employeegsn,_,_,_).

Finally, one can express the associations by using the dbewéfiers:

O:works.on(ff(ssn),g9(dept)) :- 7:Employeegsn,_.dept,-).

The following less ad-hoc approach leads to almost idelntésults, but relies on
the logical translation of the original mapping, found by #igorithms presented earlier
in this paper. For example, the actual semantics of t@&blemployee is expressed by
the formula

(Vssn, name, dept, proj) T :Employeegsn, name, dept, proj) =

3z, y, z) O:Employeef)A O:hasSsng,ssn) A O:hasNamegf,name) A

O:Department{) A O:hasDeptNumbeif(dept) A O:worksfor(z,y) A
O:Worksiteg) A O:workson(z,z) A O:hasNumber{,proj).
The above formula can be Skolemized to eliminate the exislequantifiers to yield’":
(Vssn, name, dept) T :Employeegsn, name, dept) =
O:Employeef(ssn, name, dept)) A O:hasSsrf(ssn, name, dept),ssn) A
O:hasNamd{(ssn, name, dept),name) A O:Departmentf(ssn, name, dept)) A
O:hasDeptNumbeg(ssn, name, dept),dept)\
O:works for(f(ssn, name, dept),g(ssn, name, dept)).
This implies logically a collection of formulas, including
(Vssn, name, dept) O:Employeef(ssn, name, dept)) < T :Employeegsn, name, dept).
(Vssn, name, dept) O:hasSsri(ssn, name, dept),ssn) < 7 :Employee§sn, name, dept).
(Vssn, name, dept) O:works for(f(ssn, name, dept),g(ssn, name, dept)) <
T :Employeegsn, name, dept).
Note however that different tables, suchZ&snanages(ssn, dept) say, introduce dif-
ferent Skolem functions, as in :
O:Employeeli(ssn, dept)) < 7 :manages{(sn, dept).
O:hasSst{(ssn, dept),ssn) < T :manages{sn, dept).
Unfortunately, this appears to leave open the problem oheoting the ontology indi-
viduals obtained fron¥ :manages and7:Employee. The answer is provided by the
fact thatO:hasSsn is inverse functionaldsn is a key), which means that there should
be an ontology axiom
(Yu, v, ssn) O:hasSsng, ssn) A O:hasSsnf, ssn) = u = v
This implies, among others, that
(Vssn, name, dept) f(ssn, name, dept) = h(ssn, dept).
So we need to answer queries over the ontology using all sticma.

A final, important connection to make in this case is with tasearch on answering
gueries using views [6]: The semantic mappings found by #nkee algorithms in this
paper can be regarded as view definitions for each relattabdds, using conjunctive
queries over ontology predicates (“tables”). What we ar&iggdn this section is an-
swers to queries phrased in terms of the ontology predichtesephrased in terms of
relational tables, where the data instances reside — whigxactly the problem of
query answering using views. The kind of rules we proposelitean this section are
known as “inverse rules” [19], and in fact Duschka and Leviyejfgen deal (implicitly)
with the alias problem we mentioned above by their solutmithe query answering
problem in the presence of functional dependencies: keystifinally determine the
rest of the columns in the table.

The one difference in our case worth noting is that we arangilto countenance
answers which contain Skolem functions (since this is howgesmerate object id’s in
the ontology).

9 Conclusion and Future Work

We have proposed a heuristic algorithm for inferring semsamiapping formulas be-
tween relational tables and ontologies starting from séngolrrespondences. Our algo-

17 For simplicity, we eliminate henceforth the part dealing with projects.

rithm relies on information from the database schema (kelyfareign key structure)
and the ontology (cardinality restrictioris;a hierarchies). Theoretically, our algorithm
infers all and only the relevant semantics if a relation&lesna was generated using
standard database design principles. In practice, ouriexmpe working with indepen-
dently developed schemas and ontologies has shown thitcagheffort can be saved
in specifying the LAV mapping formulas.

Numerous additional sources of knowledge, including nichreologies, actual data
stored in the tables, linguistic and semantic relatiorshigtween identifiers in tables
and the ontology, can be used to refine the suggestiomaPONTO, including provid-
ing a rank ordering for them. As in the original Clio systengrencomplex correspon-
dences (e.g., from columns to sets of attribute names os dases), should also be
investigated in order to generate the full range of mappargountered in practice.

Acknowledgments: We are most grateful to Rér Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our reswnd encouragement. Re-
maining errors are, of course, our own. We also deeply afaieethe reviewers’ careful
readings and constructive comments.

References

1. Y. An, A. Borgida, and J. Mylopoulos Inferring Complex Semanticpidiags between
Relational Tables and Ontologies from Simple Correspondence®©DRBASE’05 pages
1152-1169, 2005.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rogadita Integration in
Data Warehousingl. of Coop. Info. Sys10(3):237-271, 2001.

3. M. Dahchour and A. Pirotte. The Semantics of Reifying n-ary Relatipssas Classes. In
ICEIS'02 pages 580-586, 2002.

4. R.Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMBRBcovering Complex
Semantic Matches between Database Schem&AMOD’04 pages 383—-394, 2004.

5. O. M. Duschka and A. Y. Levy. Recursive Plans for Informaticati@ring. InlJCAI'97,
pages 778-784, 1997.

6. A. Y. Halevy. Answering queries using views: A surveyL DB Journal 10(4):270-294,
2001.

7. A.Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schnei@aeetening Ontologies
with DOLCE. InEKAW'02 pages 166-181, 2002.

8. F. Goasdoue et al. Answering queries using views: A KRDB petispefor the semantic
web. ACM TOIT, 4(3), 2004.

9. J.-L. Hainaut. Database Reverse Engineeringhttp:// citeseer.ist.psu.edu/ article/ hain-
aut98database.html, 1998.

10. S. Handschuh, S. Staab, and R. Volz. On Deep AnnotatidArom WWW’032003.

11. P. Johannesson. A method for transforming relational scheneasanceptual schemas. In
ICDE, pages 190-201, 1994.

12. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musere Photege OWL Plugin: An
Open Development Environment for Semantic Web Application$SWC2004Nov. 2004.

13. A.Y. Levy, D. Srivastava, and T. Kirk. Data Model and Quenalation in Global Infor-
mation Systemsl. of Intelligent Info. Sys5(2):121-143, Dec 1996.

14. A.Y. Levy. Logic-Based Techniques in Data Integration. In Jaakiit (ed),Logic Based
Artificial Intelligence, Kluwer Publishers, 2000

15.

16.

17.

18.

19.
20.

21.

22.

23.

V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity}&@®nship Object
Structures in Relational SchemdBEE TSE 16(8):777-790, August 1990.

E. Mena, V. Kashyap, A. Sheth, and A. lllarramendi. OBSERVERApproach for Query
Processing in Global Information Systems Based on Interoperatioos8dtreexisting On-
tologies. InCooplS’'96 pages 14-25, 1996.

R. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping asr@Discovery. In
VLDB'00, pages 77-88, 2000.

L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and R. Fagianslating Web Data. In
VLDB'02, pages 598-609, 2002.

Xiaolei Qian. Query Folding. IRroc. ICDE, 48-55, 1996.

M. R. Quillian. Semantic Memory. ISemantic Information Processinilarvin Minsky
(editor). 227-270. The MIT Press. 1968.

E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatiet@a Matching.
VLDB Journaj 10:334-350, 2001.

R. Ramakrishnan and M. Gehrkgatabase Management Systems (3rd.ebllgGraw Hill,
2002.

H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schudtédeumann, and S. Hub-
ner. Ontology-Based Integration of Information - A Survey of Existingpfoaches. In
IJCAI'01 Workshop. on Ontologies and Information Shari2g01.

