
Discovering the Semantics of Relational Tables
through Mappings ?

Yuan An1, Alex Borgida2, and John Mylopoulos1

1 Department of Computer Science, University of Toronto, Canada
{yuana,jm}@cs.toronto.edu

2 Department of Computer Science, Rutgers University, USA
borgida@cs.rutgers.edu

Abstract. Many problems in Information and Data Management require a se-
mantic account of a database schema. At its best, such an account consists of
formulas expressing the relationship (“mapping”) between the schema and a for-
mal conceptual model or ontology (CM) of the domain. In this paper we describe
the underlying principles, algorithms, and a prototype tool that finds suchse-
mantic mappings from relational tables to ontologies, when given as inputsimple
correspondencesfrom columns of the tables to datatype properties of classes in
an ontology. Although the algorithm presented is necessarily heuristic, we offer
formal results showing that the answers returned by the tool are “correct” for re-
lational schemas designed according to standard Entity-Relationship techniques.
To evaluate its usefulness and effectiveness, we have applied the tool toa number
of public domain schemas and ontologies. Our experience shows that significant
effort is saved when using it to build semantic mappings from relational tables to
ontologies.
Keywords: Semantics, ontologies, mappings, semantic interoperability.

1 Introduction and Motivation

A number of important database problems have been shown to have improved solutions
by using a conceptual model or an ontology (CM) to provideprecise semanticsfor a
database schema. These3 include federated databases, data warehousing [2], and infor-
mation integration through mediated schemas [13, 8]. Sincemuch information on the
web is generated from databases (the “deep web”), the recentcall for a Semantic Web,
which requires a connection between web content and ontologies, provides additional
motivation for the problem of associating semantics with database-resident data (e.g.,
[10]). In almost all of these cases, semantics of the data is captured by some kind of
semantic mappingbetween the database schema and the CM. Although sometimes the
mapping is just asimpleassociation from terms to terms, in other cases what is required
is acomplexformula, often expressed in logic or a query language [14].

For example, in both the Information Manifold data integration system presented in
[13] and the DWQ data warehousing system [2], formulas of the formT (X) :- Φ(X,Y)

? This is an expanded and refined version of a research paper presented at ODBASE’05 [1]
3 For a survey, see [23].

are used to connect a relational data source to a CM expressedin terms of a Descrip-
tion Logic, whereT (X) is a single predicate representing a table in the relationaldata
source, andΦ(X,Y) is a conjunctive formula over the predicates representing the con-
cepts and relationships in the CM. In the literature, such a formalism is called local-as-
view (LAV), in contrast to global-as-view (GAV), where atomic ontology concepts and
properties are specified by queries over the database [14].

In all previous work it has been assumed thathumansspecify the mapping formulas
– a difficult, time-consuming and error-prone task, especially since the specifier must
be familiar with both the semantics of the database schema and the contents of the on-
tology. As the size and complexity of ontologies increase, it becomes desirable to have
some kind of computer tool to assist people in the task. Note that the problem of seman-
tic mapping discovery is superficially similar to that of database schema mapping, how-
ever the goal of the later is finding queries/rules for integrating/translating/exchanging
the underlying data. Mapping schemas to ontologies, on the other hand, is aimed at un-
derstanding the semantics of a schema expressed in terms of agiven semantic model.
This requires paying special attentions to various semantic constructs in both schema
and ontology languages.

We have proposed in [1] a tool that assists users in discovering mapping formulas
between relational database schemas and ontologies, and presented the algorithms and
the formal results. In this paper, we provide, in addition towhat appears in [1], more de-
tailed examples for explaining the algorithms, and we also present proofs to the formal
results. Moreover, we show how to handle GAV formulas that are often useful for many
practical data integration systems. The heuristics that underlie the discovery process
are based on a careful study of standard design process relating the constructs of the
relational model with those of conceptual modeling languages. In order to improve the
effectiveness of our tool, we assume some user input in addition to the database schema
and the ontology. Specifically, inspired by the Clio project[17], we expect the tool
user to providesimple correspondencesbetween atomic elements used in the database
schema (e.g., column names of tables) and those in the ontology (e.g., attribute/”data
type property” names of concepts). Given the set of correspondences, the tool is ex-
pected to reason about the database schema and the ontology,and to generate a list
of candidate formulas for each table in the relational database. Ideally, one of the for-
mulas is the correct one — capturing user intention underlying given correspondences.
The claim is that, compared to composing logical formulas representing semantic map-
pings, it is much easier for users to (i) draw simple correspondences/arrows from col-
umn names of tables in the database to datatype properties ofclasses in the ontology4

and then (ii) evaluate proposed formulas returned by the tool. The following example
illustrates the input/output behavior of the tool proposed.

Example 1.1An ontology contains concepts (classes), attributes of concepts (datatype
properties of classes), relationships between concepts (associations), and cardinality
constraints on occurrences of the participating concepts in a relationship. Graphically,
we use the UML notations to represent the above information.Figure 1 is an enter-

4 In fact, there exist already tools used in schema matching which help perform such tasks using
linguistic, structural, and statistical information (e.g., [4, 21]).

prise ontology containing some basic concepts and relationships. (Recall that cardinal-
ity constraints in UML are written at the opposite end of the association: a Department
has at least 4 Employees working for it, and an Employee worksin one Department.)
Suppose we wish to discover the semantics of a relational tableEmployee(ssn,name,

-hasSsn

-hasName

-hasAddress

-hasAge

Employee

-hasDeptNumber

-hasName

-.

-.

Department

works_for

controls
s
u

p

e

r
v

i
s

i
o

n

4..*
 1..1

1..1

0..1

1..1
 0..*

1..*

0..1

0..*

0..1

-hasNumber

-hasName

-.

-.

Worksite

manages

works_on
 0..1

Employee(ssn, name, dept, proj)

Fig. 1: Relational table, Ontology, and Correspondences.

dept, proj) with keyssn in terms of the enterprise ontology. Suppose that by lookingat
column names of the table and the ontology graph, the user draws the simple correspon-
dences shown as dashed arrows in Figure 1. This indicates, for example, that thessn
column corresponds to thehasSsn property of theEmployee concept. Using prefixes
T andO to distinguish tables in the relational schema and conceptsin the ontology
(both of which will eventually be thought of as predicates),we represent the correspon-
dences as follows:
T : Employee.ssn!O : Employee.hasSsn

T : Employee.name!O : Employee.hasName

T : Employee.dept!O : Department.hasDeptNumber

T : Employee.proj!O : Worksite.hasNumber

Given the above inputs, the tool is expected to produce a listof plausible mapping
formulas, which would hopefully include the following formula, expressing a possible
semantics for the table:
T :Employee(ssn, name, dept, proj) :-

O:Employee(x1), O:hasSsn(x1,ssn), O:hasName(x1,name), O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept), O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj).

Note that, as explained in [14], the above, admittedly confusing notation in the litera-
ture, should really be interpreted as the First Order Logic formula

(∀ssn, name, dept, proj) T :Employee(ssn, name, dept, proj) ⇒
(∃x1, x2, x3) O:Employee(x1) ∧...

because the ontologyexplainswhat is in the table (i.e., every tuple corresponds to an
employee), rather than guaranteeing that the table satisfies the closed world assumption
(i.e., for every employee there is a tuple in the table). �

An intuitive (but somewhat naive) solution, inspired by early work of Quillian [20],
is based on finding theshortestconnections between concepts. Technically, this in-
volves (i) finding the minimum spanning tree(s) (actually Steiner trees5) connecting the
“corresponded concepts” — those that have datatype properties corresponding to ta-
ble columns, and then (ii) encoding the tree(s) into formulas. However, in some cases
the spanning/Steiner tree may not provide the desired semantics for a table because
of known relational schema design rules. For example, consider the relational table
Project(name, supervisor), where the columnname is the key and corresponds to
the attributeO:Worksite.hasName, and columnsupervisor corresponds to the at-
tributeO:Employee.hasSsn in Figure 1. The minimum spanning tree consisting of
Worksite,Employee, and the edgeworks on probably does not match the semantics
of tableProject because there are multipleEmployees working on aWorksite ac-
cording to the ontology cardinality, yet the table allows only one to be recorded, since
supervisor is functionally dependent onname, the key. Therefore we must seek a
functional connection fromWorksite to Employee, and the connection will be the
manager of the department controlling the worksite. In thispaper, we use ideas of stan-
dard relational schema design from ER diagrams in order to craft heuristics that sys-
tematically uncover the connections between the constructs of relational schemas and
those of ontologies. We propose a tool to generate “reasonable” trees connecting the
set of corresponded concepts in an ontology. In contrast to the graph theoretic results
which show that there may be too many minimum spanning/Steiner trees among the
ontology nodes (for example, there are already 5 minimum spanning trees connecting
Employee,Department, andWorksite in the very simple graph in Figure 1), we ex-
pect the tool to generate only a small number of “reasonable”trees. These expectations
are born out by our experimental results, in Section 6.

As mentioned earlier, our approach is directly inspired by the Clio project [17, 18],
which developed a successful tool that infers mappings fromone set of relational tables
and/or XML schemas to another, given just a set of correspondences between their
respective attributes. Without going into further detailsat this point, we summarize the
contributions of this work:

– We identify a new version of the data mapping problem: that ofinferring complex
formulas expressing the semantic mapping between relational database schemas
and ontologies from simple correspondences.

– We propose an algorithm to find “reasonable” tree connection(s) in the ontology
graph. The algorithm is enhanced to take into account information about the schema
(key and foreign key structure), the ontology (cardinalityrestrictions), and standard
database schema design guidelines.

– To gain theoretical confidence, we give formal results for a limited class of schemas.
We show that if the schema was designed from a CM using techniques well-known
in the Entity Relationship literature (which provide a natural semantic mapping and
correspondences for each table), then the tool will recoveressentially all and only
the appropriate semantics. This shows that our heuristics are not just shots in the

5 A Steiner tree for a setM of nodes in graphG is a minimum spanning tree ofM that may
contain nodes ofG which are not inM .

dark: in the case when the ontology has no extraneous material, and when a table’s
scheme has not been denormalized, the algorithm will produce good results.

– To test the effectiveness and usefulness of the algorithm inpractice, we imple-
mented the algorithm in a prototype tool and applied it to a variety of database
schemas and ontologies drawn from a number of domains. We ensured that the
schemas and the ontologies were developed independently; and the schemas might
or might not be derived from a CM using the standard techniques. Our experience
has shown that the user effort in specifying complex mappings by using the tool is
significantly less than that by manually writing formulas from scratch.

The rest of the paper is structured as follows. We contrast our approach with related
work in Section 2, and in Section 3 we present the technical background and notation.
Section 4 describes an intuitive progression of ideas underlying our approach, while
Section 5 provides the mapping inference algorithm. In Section 6 we report on the
prototype implementation of these ideas and experiments with the prototype. Section 7
shows how to filter out unsatisfied mapping formulas by ontology reasoning. Section 8
discusses the issues of generating GAV mapping formulas. Finally, Section 9 concludes
and discusses future work.

2 Related Work

The Clio tool [17, 18] discovers formal queries describing how target schemas can
be populated with data from source schemas. To compare with it, we could view the
present work as extending Clio to the case when the source schema is a relational
database while the target is an ontology. For example, in Example 1.1, if one viewed the
ontology as a relational schema made of unary tables (such asEmployee(x1)), binary
tables (such ashasSsn(x1, ssn)) and the obvious foreign key constraints from binary
to unary tables, then one could in fact try to apply directly the Clio algorithm to the prob-
lem. The desired mapping formula from Example 1.1 would not be produced for several
reasons: (i) Clio [18] works by taking each table and using a chase-like algorithm to re-
peatedly extend it with columns that appear as foreign keys referencing other tables.
Such “logical relations” in the source and target are then connected by queries. In this
particular case, this would lead to logical relations such asworks for ./ Employee
./ Department, but none that join, through some intermediary,hasSsn(x1, ssn) and
hasDeptNumber(x2, dept), which is part of the desired formula in this case. (ii) The
fact thatssn is a key in the tableT :Employee, leads us to prefer (see Section 4)
a many-to-one relationship, such asworks for, over some many-to-many relation-
ship which could have been part of the ontology (e.g.,O:previouslyWorkedFor);
Clio does not differentiate the two. So the work to be presented here analyzes the key
structure of the tables and the semantics of relationships (cardinality, IsA) to elimi-
nate/downgradeunreasonableoptions that arise in mappings to ontologies.

Other potentially relevant work includesdata reverse engineering, which aims to
extract a CM, such as an ER diagram, from a database schema. Sophisticated algorithms
and approaches to this have appeared in the literature over the years (e.g., [15, 9]). The
major difference between data reverse engineering and our work is that we are given

an existing ontology, and want to interpret a legacy relational schema in terms of it,
whereas data reverse engineering aims to construct a new ontology.

Schema matching(e.g., [4, 21]) identifies semantic relations between schema ele-
ments based on their names, data types, constraints, and schema structures. The primary
goal is to find the one-to-one simple correspondences which are part of the input for our
mapping inference algorithms.

3 Formal Preliminaries

We do not restrict ourselves to any particular language for describing ontologies in
this paper. Instead, we use a generic conceptual modeling language (CML), which
containscommonaspects of most semantic data models, UML, ontology languages
such as OWL, and description logics. In the sequel, we use CM todenote an ontology
prescribed by the generic CML. Specifically, the language allows the representation
of classes/concepts(unary predicates over individuals),object properties/relationships
(binary predicates relating individuals), anddatatype properties/attributes(binary pred-
icates relating individuals with values such as integers and strings); attributes are single
valued in this paper. Concepts are organized in the familiaris-ahierarchy. Object prop-
erties, and their inverses (which are always present), are subject to constraints such
as specification of domain and range, plus cardinality constraints, which here allow 1
as lower bounds (calledtotal relationships), and 1 as upper bounds (calledfunctional
relationships).

We shall represent a given CM using a labeled directed graph,called anontology
graph. We construct the ontology graph from a CM as follows: We create a concept
node labeled withC for each conceptC, and an edge labeled withp from the concept
nodeC1 to the concept nodeC2 for each object propertyp with domainC1 and range
C2; for each suchp, there is also an edge in the opposite direction for its inverse, referred
to asp−. For each attributef of conceptC, we create a separate attribute node denoted
asNf,C , whose label isf , and add an edge labeledf from nodeC to Nf,C .6 For
eachis-a edge from a subconceptC1 to a superconceptC2, we create an edge labeled
with is-a from concept nodeC1 to concept nodeC2. For the sake of succinctness, we
sometimes use UML notations, as in Figure 1, to represent theontology graph. Note that
in such a diagram, instead of drawing separate attribute nodes, we place the attributes
inside the rectangle nodes; and relationships and their inverses are represented by a
single undirected edge. The presence of such an undirected edge, labeledp, between
conceptsC andD will be written in text as C ---p--- D . If the relationship p is
functional fromC to D, we write C ---p->-- D . For expressive CMLs such as
OWL, we may also connectC toD by p if we find an existential restriction stating that
each instance ofC is related tosomeinstance oronly instances ofD by p.

For relational databases, we assume the reader is familiar with standard notions
as presented in [22], for example. We will use the notationT (K,Y) to represent a
relational tableT with columnsKY , and keyK. If necessary, we will refer to the in-
dividual columns inY usingY [1], Y [2], . . ., and useXY as concatenation of columns.

6 Unless ambiguity arises, we say “nodeC”, when we mean “concept node labeledC”.

Our notational convention is that single column names are either indexed or appear in
lower-case. Given a table such asT above, we use the notationkey(T), nonkey(T) and
columns(T) to refer toK, Y andKY respectively. (Note that we use the terms “table”
and “column” when talking about relational schemas, reserving “relation(ship)” and
“attribute” for aspects of the CM.) A foreign key (abbreviated asf.k. henceforth) inT
is a set of columns F thatreferencesthe key of tableT ′, and imposes a constraint that
the projection ofT onF is a subset of the projection ofT ′ onkey(T ′).

In this paper, acorrespondenceT.c !D.f relates columnc of tableT to attribute
f of conceptD. Since our algorithms deal with ontology graphs, formally acorre-
spondenceL will be a mathematical relationL(T, c,D, f,Nf,D), where the first two
arguments determine unique values for the last three. This means that we only treat
the case when a table column corresponds to single attributeof a concept, and leave
to future work dealing with complex correspondences, whichmay represent unions,
concatenations, etc.

Finally, for LAV-like mapping, we use Horn-clauses in the form T (X) :- Φ(X,Y),
as described in Section 1, to representsemantic mappings, whereT is a table with
columnsX (which become arguments to its predicate), andΦ is a conjunctive formula
over predicates representing the CM, withY existentially quantified, as usual.

4 Principles of Mapping Inference

Given a tableT , and correspondencesL to an ontology provided by a person or a tool,
let the setCT consist of those concept nodes which have at least one attribute corre-
sponding to some column ofT (i.e.,D such that there is at least one tupleL(, ,D, ,)).
Our task is to find semantic connections between concepts inCT , because attributes can
then be connected to the result using the correspondence relation: for any nodeD,
one can imagine having edgesf to M , for every entryL(, ,D, f,M). The primary
principle of our mapping inference algorithm is to look forsmallest“reasonable” trees
connecting nodes inCT . We will call such a tree asemantic tree.

As mentioned before, the naive solution of finding minimum spanning trees or
Steiner trees does not give good results, because it must also be “reasonable”. We aim
to describe more precisely this notion of “reasonableness”.

Consider the case whenT (c, b) is a table with keyc, corresponding to an attribute
f on conceptC, andb is a foreign key corresponding to an attributee on conceptB.
Then for each value ofc (and hence instance ofC), T associates at most one value of
b (instance ofB). Hence the semantic mapping forT should be some formula that acts
as a function from its first to its second argument. The semantic trees for such formulas
look like functional edges in the ontology, and hence are more reasonable. For example,
given tableDep(dept, ssn, . . .), and correspondences
T :Dep.dept !O:Department.hasDeptNumber
T :Dep.ssn !O:Employee.hasSsn
from the table columns to attributes of the ontology in Figure 1, the proper semantic tree
usesmanages− (i.e.,hasManager) rather thanworks_for− (i.e.,hasWorkers).

Conversely, for tableT ′(c, b), wherec andb are as above, an edge that is functional
from C toB, or fromB to C, is likely not to reflect a proper semantics since it would

mean that the key chosen forT ′ is actually a super-key – an unlikely error. (In our
example, consider a tableT (ssn, dept), where both columns are foreign keys.)

To deal with such problems, our algorithm works in two stages: first connects the
concepts corresponding to key columns into askeleton tree, then connects the rest of
the corresponded nodes to the skeleton by functional edges (whenever possible).

We must however also deal with the assumption that the relational schema and
the CM were developed independently, which implies that notall parts of the CM
are reflected in the database schema. This complicates things, since in building the
semantic tree we may need to go through additional nodes, which end up not cor-
responding to columns of the relational table. For example,consider again the table
Project(name, supervisor) and its correspondences mentioned in Section 1. Be-
cause of the key structure of this table, based on the above arguments we will prefer
the functional path7 controls−.manages− (i.e., controlledBy followed by
hasManager), passing through nodeDepartment, over the shorter path consisting
of edgeworks_on, which is not functional. Similar situations arise when theCM
contains detailedaggregationhierarchies (e.g.,city part-of township part-of county
part-ofstate), which are abstracted in the database (e.g., a table with columns forcity
andstate only).

We have chosen to flesh out the above principles in a systematic manner by con-
sidering the behavior of our proposed algorithm on relational schemas designed from
Entity Relationship diagrams — a technique widely covered in undergraduate database
courses [22]. (We refer to thiser2rel schema design.) One benefit of this approach is
that it allows us to prove that our algorithm, though heuristic in general, is in some
sense “correct” for a certain class of schemas. Of course, inpractice such schemas may
be “denormalized” in order to improve efficiency, and, as we mentioned, only parts of
the CM may be realized in the database. Our algorithm uses thegeneral principles enun-
ciated above even in such cases, with relatively good results in practice. Also note that
the assumption that a given relational schema was designed from some ER conceptual
model does not mean that given ontology is this ER model, or iseven expressed in the
ER notation. In fact, our heuristics have to cope with the fact that it is missing essential
information, such as keys for weak entities.

To reduce the complexity of the algorithms, which essentially enumerate all trees,
and to reduce the size of the answer set, we modify an ontologygraph by collapsing
multiple edges between nodesE andF , labeledp1, p2, . . . say, into at most three edges,
each labeled by a string of the form′pj1 ; pj2 ; . . .

′: one of the edges has the names of all
functions fromE toF ; the other all functions fromF toE; and the remaining labels on
the third edge. (Edges with empty labels are dropped.) Note that there is no way that our
algorithm can distinguish between semantics of the labels on one kind of edge, so the
tool offers all of them. It is up to the user to choose between alternative labels, though
the system may offer suggestions, based on additional information such as heuristics
concerning the identifiers labeling tables and columns, andtheir relationship to property
names.

7 One consisting of a sequence of edges, each of which represents a function from its source to
its target.

5 Semantic Mapping Inference Algorithms

As mentioned, our algorithm is based in part on the relational database schema design
methodology from ER models. We introduce the details of the algorithm iteratively, by
incrementally adding features of an ER model that appear as part of the CM. We assume
that the reader is familiar with basics of ER modeling and database design [22], though
we summarize the ideas.

5.1 ER0: An Initial Subset of ER notions

We start with a subset, ER0, of ER that supports entity setsE (called just “entity”
here), with attributes (referred to byattribs(E)), and binary relationship sets. In order
to facilitate the statement of correspondences and theorems, we assume in this section
that attributes in the CM have globally unique names. (Our implemented tool does not
make this assumption.) An entity is represented as a concept/class in our CM. A bi-
nary relationship set corresponds to two properties in our CM, one for each direction.
Such a relationship is calledmany-manyif neither it nor its inverse is functional. A
strong entityS has some attributes that act as identifier. We shall refer to these using
unique(S) when describing the rules of schema design. Aweak entityW has instead
localUnique(W) attributes, plus a functional total binary relationshipp (denoted as
idRel(W)) to an identifying owner entity (denoted asidOwn(W)).

Example 5.1An ER0 diagram is shown in Figure 2, which has a weak entityDependent
and three strong entities:Employee, Department, andProject. The owner entity of
Dependent isEmployee and the identifying relationship isdependents of . Using the
notation we introduced, this means that
localUnique(Dependent) =deName, idRel(Dependent)= dependents of ,
idOwn(Dependent)= Employee. For the owner entityEmployee,
unique(Employee)= hasSsn. �

-hasSsn

-hasName

-hasAddress

-hasAge

Employee

-hasDeptNumber

-hasName

-.

-.

Department

-deName

-birthDate

-gender

-relationship

Dependent

works_for
 participates
dependents_of

4..*
 1..1
 1..*
 0..*
1..1
0..*

-hasNumber

-hasName

-.

-.

Project

Fig. 2: An ER0 Example.

Note that information about multi-attribute keys cannot berepresented formally in
even highly expressive ontology languages such as OWL. So functions like unique
are only used while describing theer2rel mapping, and are not assumed to be avail-
able during semantic inference. Theer2rel design methodology (we follow mostly [15,
22]) is defined by two components. To begin with, Table 1 specifies a mappingτ(O)
returning a relational table scheme for every CM componentO, whereO is either a con-
cept/entity or a binary relationship. (For each relationship exactly one of the directions
will be stored in a table.)

ER Model object O Relational Table τ (O)

Strong Entity S columns: X

primary key: K

Let X=attribs(S) f.k.’s: none

Let K=unique(S) anchor: S

semantics: T (X) :- S(y),hasAttribs(y, X).

identifier: identifyS(y, K) :- S(y),hasAttribs(y, K).

Weak Entity W columns: ZX

let primary key: UX

E = idOwn(W) f.k.’s: X

P = idrel(W) anchor: W

Z=attribs(W) semantics: T (X, U, V) :- W (y), hasAttribs(y, Z), E(w),P (y, w),

X = key(τ(E)) identifyE(w, X).

U =localUnique(W) identifier: identifyW (y, UX) :- W (y),E(w), P (y, w), hasAttribs(y, U),

V = Z − U identifyE(w, X).

Functional columns: X1X2

Relationship F primary key: X1

E1 --F->- E2 f.k.’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) anchor: E1

for i = 1, 2 semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), F (y1, y2), E2(y2),

identifyE2
(y2, X2).

Many-many columns: X1X2

Relationship M primary key: X1X2

E1 --M-- E2 f.k.’s: Xi referencesτ(Ei),

let Xi = key(τ(Ei)) semantics: T (X1, X2) :- E1(y1),identifyE1
(y1, X1), M(y1, y2),E2(y2),

for i = 1, 2 identifyE2
(y2, X2).

Table 1:er2rel Design Mapping.

In addition to the schema (columns, key, f.k.’s), Table 1 also associates with a rela-
tional tableT (V) a number of additional notions:

– an anchor, which is the central object in the CM from whichT is derived, and
which is useful in explaining our algorithm (it will be the root of the semantic tree);

– a formula for the semantic mapping for the table, expressed as a formula with head
T (V) (this is what our algorithm should be recovering); in the body of the formula,
the functionhasAttribs(x, Y) returns conjunctsattrj(x, Y [j]) for the individual
columnsY [1], Y [2], . . . in Y , whereattrj is the attribute name corresponded by
columnY [j].

– the formula for a predicateidentifyC(x, Y), showing how objectx in (strong or
weak) entityC can be identified by values inY 8.

Note thatτ is defined recursively, and will only terminate if there are no “cycles” in the
CM (see [15] for definition of cycles in ER).

8 This is needed in addition tohasAttribs, because weak entities have identifying values spread
over several concepts.

Example 5.2Whenτ is applied to conceptEmployee in Figure 2, we get the table
T :Employee(hasSsn,hasName,hasAddress,hasAge), with the anchorEmployee,
and the semantics expressed by the mapping:
T :Employee(hasSsn, hasName, hasAddress, hasAge) :-

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge).

Its identifier is represented by
identifyEmployee(y, hasSsn) :- O:Employee(y), O:hasSsn(y, hasSsn).

In turn,τ(Dependent) produces the tableT :Dependent(deName, hasSsn,
birthDate,...), whose anchor isDependent. Note that thehasSsn column is a foreign
key referencing thehasSsn column in theT :Employee table. Accordingly, its seman-
tics is represented as:
T :Dependent(deName, hasSsn, birthDate, ...) :-

O:Dependent(y), O:Employee(w), O:dependentsof(y, w),
identifyEmployee(w, hasSsn), O:deName(y, deName),
O:birthDate(y, birthDate) ...

and its identifier is represented as:
identifyDependent(y, deName, hasSsn) :-

O:Dependent(y), O:Employee(w), O:dependentsof(y, w),
identifyEmployee(w, hasSsn), O:deName(y, deName).

τ can be applied similarly to the other objects in Figure 2.τ(works for) produces
the tableworks for(hasSsn,hasDeptNumber). τ(participates) generates the table
participates(hasNumber, hasDeptNumber). Please note that the anchor of the table
generated byτ(works for) is Employee, while no single anchor is assigned to the
table generated byτ(participates). �

The second step of theer2rel schema design methodology suggests that the schema
generated usingτ can be modified by (repeatedly)merginginto the tableT0 of an en-
tity E the tableT1 of some functional relationship involving the same entityE (which
has a foreign key reference toT0). If the semantics ofT0 is T0(K,V) :- φ(K,V),
and of T1 is T1(K,W) :- ψ(K,W), then the semantics of table T=merge(T0,T1)
is, to a first approximation,T (K,V,W) :- φ(K,V), ψ(K,W). And the anchor ofT
is the entityE. (We defer the description of the treatment of null values which can
arise in the non-key columns ofT1 appearing inT .) For example, we could merge the
table τ(Employee) with the tableτ(works for) in Example 5.2 to form a new ta-
ble T :Employee2 (hasSsn, hasName, hasAddress, hasAge, hasDeptNumber),
where the columnhasDeptNumber is an f.k. referencingτ(Department). The se-
mantics of the table is:
T :Employee2(hasSsn, hasName, hasAddress, hasAge, hasDeptNumber):-

O:Employee(y), O:hasSsn(y, hasSsn), O:hasName(y, hasName),
O:hasAddress(y, hasAddress), O:hasAge(y, hasAge),
O:Department(w), O:works for(y, w), O:hasDeptNumber(w, hasDeptNumber).

Please note that one conceptual model may result in several different relational schemas,
since there are choices in which direction a one-to-one relationship is encoded (which
entity acts as a key), and how tables are merged. Note also that the resulting schema is

in Boyce-Codd Normal Form, if we assume that the only functional dependencies are
those that can be deduced from the ER schema (as expressed in FOL).

In this subsection, we assume that the CM has no so-called “recursive” relationships
relating an entity to itself, and no attribute of an entity corresponds to multiple columns
of any table generated from the CM. (We deal with these in Section 5.3.) Note that by the
latter assumption, we rule out for now the case when there areseveral relationships be-
tween a weak entity and its owner entity, such ashasMet connectingDependent and
Employee, because in this caseτ(hasMet) will need columnsdeName, ssn1, ssn2,
with ssn1 helping to identify the dependent, andssn2 identifying the (other) employee
they met.

Now we turn to the algorithm for finding the semantics of a table in terms of a given
CM. It amounts to finding the semantic trees between nodes in the setCT singled out by
the correspondences from columns of the tableT to attributes in the CM. As mentioned
previously, the algorithm works in several steps:

1. Determine a skeleton tree connecting the concepts corresponding to key columns;
also determine, if possible, a unique anchor for this tree.

2. Link the concepts corresponding to non-key columns usingshortest functional
paths to the skeleton/anchor tree.

3. Link any unaccounted-for concepts corresponding to other columns by arbitrary
shortest paths to the tree.

To flesh out the above steps, we begin with the tables created by the standard de-
sign process. If a table is derived by theer2rel methodology from an ER0 diagram,
then Table 1 provides substantial knowledge about how to determine the skeleton tree.
However, care must be taken when weak entities are involved.The following example
describes the right process to discover the skeleton and theanchor of a weak entity table.

Example 5.3 Consider tableT :Dept(number, univ, dean), with foreign key (f.k.)
univ referencing tableT :Univ(name, address) and correspondences shown in Figure
3. We can tell thatT :Dept represents a weak entity since its key has one f.k. as a subset
(referring to the strong entity on whichDepartment depends). To find the skeleton
and anchor of the tableT :Dept, we first need to find the skeleton and anchor of the
table referenced by the f.k.univ. The answer isUniversity. Next, we should look
for a total functional edge (path) from the correspondent ofnumber, which is con-
ceptDepartment, to the anchor,University. As a result, the linkDepartment

---belongsTo-->- University is returned as the skeleton, andDepartment
is returned as the anchor. Finally, we can correctly identify thedean relationship as the
remainder of the connection, rather than thepresident relationship, which would have
seemed a superficially plausible alternative to begin with.

Furthermore, suppose we need to interpret the tableT :Portal(dept, univ, address)
with the following correspondences:
T : Portal.dept!O : Department.hasDeptNumber

T : Portal.univ!O : University.hasUnivName

T : Portal.address!O : Host.hostName,
where not only is{dept, univ} the key but also an f.k. referencing the key of table

-hasUnivName

-hasAddres

University

-hasDeptNumber

-.

Department

-hasName

-hasBoD

Employee

belongsTo

0..*
 0..1
 0..*
1..1
 1..*
 -hostName

-.

Host

hasServerAt

president
 dean

1..1
1..1

0..1
0..1

Dept(
 number,univ
 ,
dean), univ and dean are f.k.s.

Fig. 3: Finding Correct Skeleton Trees and Anchors.

T :Dept. To find the anchor and skeleton of tableT :Portal, the algorithm first recur-
sively works on the referenced table. This is also needed when the owner entity of a
weak entity is itself a weak entity. �

The following is the functiongetSkeleton which returns a set of (skeleton, anchor)-
pairs, when given a tableT and a set of correspondencesL from key(T). The function is
essentially a recursive algorithm attempting to reverse the functionτ in Table 1. In order
to accommodate tables not designed according toer2rel, the algorithm has branches for
finding minimum spanning/Steiner trees as skeletons.
Function getSkeleton(T,L)
input: tableT , correspondencesL for key(T)
output: a set of (skeleton tree, anchor) pairs
steps:
Supposekey(T) contains f.k.sF1,. . . ,Fn referencing tablesT1(K1),..,Tn(Kn);

1. If n ≤ 1 andonc(key(T))9 is just a singleton set{C}, then return(C, {C}).10/*T is likely
about a strong entity: base case.*/

2. Else, letLi={Ti.Ki!L(T, Fi)}/*translate corresp’s thru f.k. reference.*/;
compute (Ssi, Anci) = getSkeleton(Ti, Li), for i = 1, .., n.

(a) If key(T) = F1, then return (Ss1, Anc1). /*T looks like the table for the functional
relationship of a weak entity, other than its identifying relationship.*/

(b) If key(T)=F1A, where columnsA are not part of an f.k. then/*T is possibly a weak
entity*/

if Anc1 = {N1} andonc(A) = {N} such that there is a (shortest) total functional
pathπ fromN toN1, then return (combine11(π, Ss1), {N}). /*N is a weak entity.
cf. Example 5.3.*/

9 onc(X) is the function which gets the setM of concepts corresponded by the columnsX.
10 Both here and elsewhere, when a conceptC is added to a tree, so are edges and nodes forC ’s

attributes that appear inL.
11 Functioncombine merges edges of trees into a larger tree.

(c) Else supposekey(T) has non-f.k. columnsA[1], . . . A[m], (m ≥ 0); letNs={Anci, i =

1, .., n} ∪ {onc(A[j]), j = 1, .., m}; find skeleton treeS′ connecting the nodes inNs

where any pair of nodes inNs is connected by a (shortest) non-functional path; return
(combine(S′, {Ssj}), Ns). /*Deal with many-to-many binary relationships; also the
default action for non-standard cases, such as when not finding identifying relationship
from a weak entity to the supposed owner entity. In this case no unique anchor exists.*/

In order for getSkeleton to terminate, it is necessary that there be no cycles in
f.k. references in the schema. Such cycles (which may have been added to represent
additional integrity constraints, such as the fact that a property is total) can be elim-
inated from a schema by replacing the tables involved with their outer join over the
key. getSkeleton deals with strong entities and their functional relationships in step
(1), with weak entities in step (2.b), and so far, with functional relationships of weak
entities in (2.a). In addition to being a catch-all, step (2.c) deals with tables represent-
ing many-many relationships (which in this section have keyK = F1F2), by finding
anchors for the ends of the relationship, and then connecting them with paths that are
not functional, even when every edge is reversed.

To find the entire semantic tree of a tableT , we must connect the concepts corre-
sponded by the rest of the columns, i.e.,nonkey(T), to the anchor(s). The connections
should be (shortest) functional edges (paths), since the key determines at most one value
for them; however, if such a path cannot be found, we use an arbitrary shortest path. The
following function,getTree, achieves the goal.

Function getTree(T,L)
input: tableT , correspondencesL for columns(T)
output: set of semantic trees12

steps:
1. Let Lk be the subset ofL containing correspondences fromkey(T);

compute(S′, Anc′)=getSkeleton(T ,Lk).
2. If onc(nonkey(T)) − onc(key(T)) is empty, then return (S′, Anc′). /*if all columns cor-

respond to the same set of concepts as the key does, then return the skeleton tree.*/
3. For each f.k.Fi in nonkey(T) referencingTi(Ki):

let Li
k = {Ti.Ki!L(T, Fi)}, and compute(Ss′′i , Anc′′i)= getSkeleton(Ti,Li

k). /*recall
that the functionL(T, Fi) is derived from a correspondenceL(T, Fi, D, f, Nf,D) such that
it gives a conceptD and its attributef (Nf,D is the attribute node in the ontology graph.)*/
find πi=shortest functional path fromAnc′ to Anc′′i ; let S = combine(S′, πi, {Ss′′i }).

4. For each columnc in nonkey(T) that is not part of an f.k., letN = onc(c); find π=shortest
functional path fromAnc′ to N ; updateS := combine(S, π). /*cf. Example 5.4.*/

5. In all cases above asking for functional paths, use a shortest path if afunctional one does not
exist.

6. ReturnS.

The following example illustrates the use ofgetTree when seeking to interpret a
table using a different CM than the one from which it was originally derived.

12 To make the description simpler, at times we will not explicitly account for thepossibility of
multiple answers. Every function is extended to set arguments by element-wise application of
the function to set members.

Example 5.4 In Figure 4, the tableT :Assignment(emp, proj, site) was originally
derived from a CM with the entityAssignment shown on the right-hand side of
the vertical dashed line. To interpret it by the CM on the left-hand side, the function
getSkeleton, in Step 2.c, returnsEmployee ---assignedTo--- Project

as the skeleton, and no single anchor exists. The set{Employee, Project} accompa-
nying the skeleton is returned. Subsequently, the functiongetTree seeks for the shortest
functional link from elements in{Employee,Project} toWorksite at Step 4. Conse-
quently, it connectsWorksite toEmployee via works on to build the final semantic
tree. �

-employee

-project

-site

Assignment

-projNumber

Project

-empNumber

Employee

works_on

1..*
 0..*

1..*

-siteName

Worksite

assignedTo

1..1

Assignment(
 emp
,proj
,site)

derived from

Fig. 4: Independently Developed Table and CM.

To get the logic formula from a tree based on correspondenceL, we provide the
procedureencodeTree(S,L) below, which basically assigns variables to nodes, and
connects them using edge labels as predicates.

Function encodeTree(S,L)
input: subtreeS of ontology graph, correspondencesL from table columns to attributes
of concept nodes inS.
output: variable name generated for root ofS, and conjunctive formula for the tree.
steps:SupposeN is the root ofS. LetΨ = true.
1. if N is an attribute node with labelf

find d such thatL(, d, , f,N) = true;
return(d, true). /*for leaves of the tree, which are attribute nodes, return the corresponding

column name as the variable and the formulatrue.*/

2. if N is a concept node with labelC, then introduce new variablex; add conjunct
C(x) to Ψ ;

for each edgepi fromN toNi /*recursively get the subformulas.*/

let Si be the subtree rooted atNi,
let (vi, φi(Zi))=encodeTree(Si, L),
add conjunctspi(x, vi) ∧ φi(Zi) to Ψ ;

3. return(x, Ψ).

University
 Department
 Employee

belongsTo
 dean

hasUnivName
 hasDeptNumber
 hasName

hasUnivName
 hasName
hasDeptNumber

Fig. 5: Semantic Tree ForDept Table.

Example 5.5Figure 5 is the fully specified semantic tree returned by the algorithm for
theT :Dept(number, univ, dean) table in Example 5.3. TakingDepartment as the
root of the tree, functionencodeTree generates the following formula:

Department(x), hasDeptNumber(x, number), belongsTo(x, v1), University(v1),
hasUnivName(v1, univ), dean(x, v2), Employee(v2), hasName(v2, dean).

As expected, the formula is the semantics the tableT :Dept as assigned by theer2rel
designτ . �

Now we turn to the properties of the mapping algorithm. In order to be able to make
guarantees, we have to limit ourselves to “standard” relational schemas, since otherwise
the algorithm cannot possibly guess the intended meaning ofan arbitrary table. For this
reason, let us consider only schemas generated by theer2rel methodology from a CM
encoding an ER diagram. We are interested in two properties:(1) A sense of “com-
pleteness”: the algorithm finds the correct semantics (as specified in Table 1). (2) A
sense of “soundness”: if for such a table there are multiple semantic trees returned by
the algorithm, then each of the trees would produce an indistinguishable relational table
according to theer2rel mapping. (Note that multiple semantic trees are bound to arise
when there are several relationships between 2 entities which cannot be distinguished
semantically in a way which is apparent in the table (e.g., 2 or more functional proper-
ties fromA toB). To formally specify the properties, we have the followingdefinitions.

A homomorphismh from the columns of a tableT1 to the columns of a tableT2 is
a one-to-one mappingh: columns(T1)→columns(T2), such that (i)h(c) ∈ key(T2)
for everyc ∈ key(T1); (ii) by convention, for a set of columnsF , h(F [1]F [2] . . .) is
h(F [1])h(F [2]) . . .; (iii) h(Y) is an f.k. ofT2 for everyY which is an f.k. ofT1; and (iv)
if Y is an f.k. ofT1, then there is a homomorphism from thekey(T ′

1) of T ′

1 referenced
by Y to thekey(T ′

2) of T ′

2 referenced byh(Y) in T2.

Definition 1. A relational tableT1 is isomorphic to another relational tableT2, if there
is a homomorphism fromcolumns(T1) to columns(T2) and vice versa.

Informally, two tables are isomorphic if there is a bijection between their columns
which preserves recursively the key and foreign key structures. These structures have
direct connections with the structures of the ER diagrams from which the tables were
derived. Since theer2rel mappingτ may generate the “same” table when applied to
different ER diagrams (considering attribute/column names have been handled by cor-

respondences), a mapping discovery algorithm with “good” properties should report all
and only those ER diagrams.

To specify the properties of the algorithm, suppose that thecorrespondenceLid is
the identity mapping from table columns to attribute names,as set up in Table 1. The
following lemma states the interesting property ofgetSkeleton.

Lemma 1. Let ontology graphG encode an ER0 diagramE . LetT= τ(C) be a rela-
tional table derived from an objectC in E according to theer2rel rules in Table 1. Given
Lid from T to G, andL′ = the restriction ofLid to key(T), thengetSkeleton(T,L′)
returns(S,Anc) such that,

– Anc is theanchor of T (anchor(T)).
– If C corresponds to a (strong or weak) entity, thenencodeTree(S,L′) is logically

equivalent toidentifyC .

Proof The lemma is proven by using induction on the number of applications of the
functiongetSkeleton resulting from a single call on the tableT .

At the base case, step 1 ofgetSkeleton indicates thatkey(T) links to a single
concept inG. According to theer2rel design, tableT is derived either from a strong
entity or a functional relationship from a strong entity. For either case,anchor(T) is
the strong entity, andencodeTree(S, L′) is logically equivalent toidentifyE , whereE
is the strong entity.

For the induction hypothesis, we assume that the lemma holdsfor each table that is
referenced by a foreign key inT .

On the induction steps, step 2.(a) identifies that tableT is derived from a functional
relationship from a weak entity. By the induction hypothesis, the lemma holds for the
weak entity. So does it for the relationship.

Step 2.(b) identifies thatT is a table representing a weak entityW with an owner
entityE. Since there is only one total functional relationship froma weak entity to its
owner entity,getSkeleton correctly returns the identifying relationship. By the induc-
tion hypothesis, we prove thatencodeTree(S,L′) is logically equivalent toidentifyW .
�

We now state the desirable properties of the mapping discovery algorithm. First,
getTree finds the desired semantic mapping, in the sense that

Theorem 1. Let ontology graphG encode an ER0 diagramE . Let tableT be part of a
relational schema obtained byer2rel derivation fromE . GivenLid from T to G, then
some treeS returned bygetTree(T,Lid) has the property that the formula generated
by encodeTree(S,Lid) is logically equivalent to the semantics assigned toT by the
er2rel design.

Proof SupposeT is obtained by merging the table for a entityE with tables representing
functional relationshipsf1, . . . , fn, n ≥ 0, involving the same entity.

Whenn = 0, all columns will come fromE, if it is a strong entity, or fromE
and its owner entiti(es), whose attributes appear inkey(T). In either case, step 2 of
getTree will apply, returning the skeletonS. encodeTree then uses the full original
correspondence to generate a formula where the attributes of E corresponding to non-
key columns generate conjuncts that are added to formulaidentifyE . Following Lemma

1, it is easy to show by induction on the number of such attributes that the result is
correct.

Whenn > 0, step 1 ofgetTree constructs a skeleton tree, which representsE
by Lemma 1. Step 3 adds edgesf1, . . . , fn from E to other entity nodesE1, . . . , En

returned respectively as roots of skeletons for the other foreign keys ofT . Lemma 1
also shows that these translate correctly. Steps 4 and 5 cannot apply to tables generated
according toer2rel design. So it only remains to note thatencodeTree creates the
formula for the final tree, by generating conjuncts forf1, . . . , fn and for the non-key
attributes ofE, and adding these to the formulas generated for the skeletonsubtrees at
E1, . . . , En.

This leaves tables generated from relationships in ER0 — the cases covered in the
last two rows of Table 1 — and these can be dealt with using Lemma 1. �

Note that this result is non-trivial, since, as explained earlier, it would not be satisfied
by the current Clio algorithm [18], if applied blindly toE viewed as a relational schema
with unary and binary tables. SincegetTree may return multiple answers, the following
converse “soundness” result is significant.

Theorem 2. If S′ is any tree returned bygetTree(T,Lid), withT ,Lid, andE as above
in Theorem 1, then the formula returned byencodeTree(S′, Lid) represents the se-
mantics ofsometableT ′ derivable byer2rel design fromE , whereT ′ is isomorphic to
T .

Proof The theorem is proven by showing that each tree returned bygetTree will result
in tableT ′ isomorphic toT .

For the four cases in Table 1,getTree will return a single semantic tree for a table
derived from an entity (strong or weak), and possibly multiple semantic trees for a
(functional) relationship table. Each of the semantic trees returned for a relationship
table is identical to the original ER diagram in terms of the shape and the cardinality
constraints. As a result, applyingτ to the semantic tree generates a table isomorphic to
T .

Now supposeT is a table obtained by merging the table for entityE with n tables
representing functional relationshipsf1, . . . , fn from E to somen other entities. The
recursive callsgetTree in step 3 will return semantic trees, each of which represent
functional relationships fromE. As above, these would result in tables that are isomor-
phic to the tables derived from the original functional relationshipsfi, i = 1...n. By the
definition of themerge operation, the result of merging these will also result in a table
T ′ which is isomorphic toT �

We wish to emphasize that the above algorithms has been designed to deal even with
schemas not derived usinger2rel from some ER diagram. An application of this was
illustrated already in Example 5.4. Another application ofthis is the use of functional
paths instead of just functional edges. The following example illustrates an interesting
scenario in which we obtained the right result.

Example 5.6Consider the following relational table
T (personName, cityName, countryName),

where the columns correspond to, respectively, attributespname, cname, andctrname
of conceptsPerson,City andCountry in a CM. If the CM contains a path such

that Person -- bornIn ->- City -- locatedIn ->- Country , then the
above table, which is not in 3NF and was not obtained usinger2rel design (which
would have required a table forCity), would still get the proper semantics:
T(personName, cityName, countryName) :-

Person(x1), City(x2),Country(x3), bornIn(x1,x2), locatedIn(x2,x3),
pname(x1,personName), cname(x2,cityName),ctrname(x3,countryName).

If, on the other hand, there was a shorter functional path fromPerson toCountry, say
an edge labeledcitizenOf, then the mapping suggested would have been:
T(personName, cityName, countryName) :-

Person(x1), City(x2), Country(x3), bornIn (x1,x2),citizenOf(x1,x3), ...
which corresponds to theer2rel design. Moreover, hadcitizenOf not been func-
tional, then once again the semantics produced by the algorithm would correspond to the
non-3NF interpretation, which is reasonable since the table, having onlypersonName
as key, could not store multiple country names for a person. �

5.2 ER1: Reified Relationships

It is desirable to also have n-ary relationship sets connecting entities, and to allow re-
lationship sets to have attributes in an ER model; we label the language allowing us to
model such aspects by ER1. Unfortunately, these features are not directly supportedin
most CMLs, such as OWL, which only have binary relationships.Such notions must
instead be represented by“reified relationships” [3] (we use an annotation * to indicate
the reified relationships in a diagram): concepts whose instances represent tuples, con-
nected by so-called “roles” to the tuple elements. So, ifBuys relatesPerson, Shop
andProduct, through rolesbuyer, source andobject, then these are explicitly repre-
sented as (functional) binary associations, as in Figure 6.And a relationship attribute,
such as when the buying occurred, becomes an attribute of theBuys concept, such as
whenBought.

Person

-whenBought

Buys*
 Shop

product

buyer
 source

object

1..1

0..*

1..1
1..1
 0..*
 0..*

Fig. 6: N-ary Relationship Reified.

Unfortunately, reified relationships cannot be distinguished reliably from ordinary
entities in normal CMLs based on purely formal, syntactic grounds, yet they need to be
treated in special ways during semantic recovery. For this reason we assume that they

can be distinguished onontological grounds. For example, in Dolce [7], they are sub-
classes of top-level conceptsQuality andPerdurant/Event. For a reified relation-
shipR, we use functionsroles(R) andattribs(R) to retrieve the appropriate (binary)
properties.

ER model object O Relational Table τ (O)

Reified Relationship R columns: ZX1 . . . Xn

if there is a functional primary key: X1

roler1 for R f.k.’s: X1, . . . , Xn

E1 --<- r1 ->-- R anchor: R

--- rj ->-- Ej semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

let Z=attribs(R) identifyEi
(wi, Xi), . . .

Xi=key(τ(Ei)) identifier: identifyR(y, X1) :- R(y), E1(w), r1(y, w),

whereEi fills role ri identifyE1
(w, X1).

Reified Relationship R columns: ZX1 . . . Xn

if r1, . . . , rn are roles ofR primary key: X1 . . . Xn

let Z=attribs(R) f.k.’s: X1, . . . , Xn

Xi=key(τ(Ei)) anchor: R

whereEi fills role ri semantics: T (ZX1 . . . Xn) :- R(y),Ei(wi), hasAttribs(y, Z), ri(y, wi),

identifyEi
(wi, Xi), . . .

identifier: identifyR(y, . . . Xi . . .) :- R(y), . . . Ei(wi), ri(y, wi),

identifyEi
(wi, Xi),...

Table 2:er2rel Design for Reified Relationship.

Theer2rel designτ of relational tables for reified relationships is an extension of the
treatment of binary relationships, and is shown in Table 2. As with entity keys, we are
unable to capture in CM situations where some subset of more than one roles uniquely
identifies the relationship. Theer2rel designτ on ER1 also admits themerge operation
on tables generated byτ . Merging applies to an entity table with other tables of some
functional relationships involving the same entity. In this case, the merged semantics is
the same as that of merging tables obtained by applyingτ to ER0, with the exception
that some functional relationships may be reified.

To discover the correct anchor for reified relationships andget the proper tree, we
need to modifygetSkeleton, by adding the following case between steps 2(b) and 2(c):

– If key(T)=F1F2 . . . Fn and there exist reified relationshipRwith n rolesr1, . . . , rn
pointing at the singleton nodes inAnc1, . . . , Ancn respectively,
then letS = combine({rj}, {Ssj}), and return(S, {R}).

getTree should compensate for the fact that ifgetSkeleton finds areifiedversion of a
many-many binary relationship, it will no longer look for anunreified one in step 2c.
So after step 1. we add

– if key(T) is the concatenation of two foreign keysF1F2, andnonkey(T) is empty,
compute (Ss1,Anc1) and (Ss2, Anc2) as in step 2. ofgetSkeleton; then find

ρ=shortest many-many path connectingAnc1 toAnc2;
return (S′) ∪ (combine(ρ, Ss1, Ss2))

In addition, when traversing the ontology graph for finding shortest paths in both func-
tions, we need to recalculate the lengths of paths when reified relationship nodes are
present. Specifically, a path of length 2 passing through a reified relationship node
should be counted as a path of length 1, because a reified binary relationship could
have been eliminated, leaving a single edge.13 Note that a semantic tree that includes a
reified relationship node is valid only if all roles of the reified relationship have been in-
cluded in the tree. Moreover, if the reified relation had attributes of its own, they would
show up as columns in the table that are not part of any foreignkey. Therefore, a filter
is required at the last stage of the algorithm:

– If a reified relationshipR appears in the final semantic tree, then so must all its
role edges. And if one suchR has as attributes the columns of the table which do
not appear in foreign keys or the key, then all other candidate semantics need to be
eliminated.

The previous version ofgetTree was set up so that with these modifications, roles and
attributes to reified relationships will be found properly.

If we continue to assume that no more than one column corresponds to the same
entity attribute, the previous theorems hold for ER1 as well. To see this, consider the
following two points. First, the tree identified for any table generated from a reified re-
lationship is isomorphic to the one from which it was generated, since the foreign keys
of the table identify exactly the participants in the relationship, so the only ambiguity
possible is the reified relationship (root) itself. Second,if an entityE has a set of (bi-
nary) functional relationships connecting to a set of entitiesE1,. . .,En, then merging
the corresponding tables withτ(E) results in a table that is isomorphic to a reified re-
lationship table, where the reified relationship has a single functional role with fillerE
and all other role fillers are the set of entitiesE1,. . .,En.

5.3 Replication

We next deal with the equivalent of the full ER1 model, by allowing recursive relation-
ships, where a single entity plays multiple roles, and the merging of tables for different
functional relationships connecting the same pair of entity sets (e.g.,works_for and
manages). In such cases, the mapping described in Table 1 is not quitecorrect because
column names would be repeated in the multiple occurrences of the foreign key. In our
presentation, we will distinguish these (again, for ease ofpresentation) by adding su-
perscripts as needed. For example, if entity setPerson, with keyssn, is connected to
itself by thelikes property, then the table forlikes will have schemaT [ssn1, ssn2].

During mapping discovery, such situations are signaled by the presence of multi-
ple columnsc andd of tableT corresponding to the same attributef of conceptC.
In such situations, we modify the algorithm to first make a copy Ccopy of nodeC,
as well as its attributes, in the ontology graph. Furthermore,Ccopy participates in all

13 A different way of “normalizing” things would have been to reify even binary associations.

the object relationsC did, so edges for this must also be added. After replication,we
can setonc(c) = C and onc(d) = Ccopy, or onc(d) = C and onc(c) = Ccopy

(recall thatonc(c) retrieves the concept corresponded to by columnc in the algo-
rithm). This ambiguity is actually required: given a CM withPerson and likes as
above, a tableT [ssn1, ssn2] could have two possible semantics:likes(ssn1, ssn2) and
likes(ssn2, ssn1), the second one representing the inverse relationship,likedBy. The
problem arises not just with recursive relationships, as illustrated by the case of a ta-
bleT [ssn, addr1, addr2], wherePerson is connected by two relationships,home and
office, to conceptBuilding, which has anaddress attribute.

The main modification needed to thegetSkeleton andgetTree algorithms is that
no tree should contain two or more functional edges of the form D --- p ->-- C

and its replicateD --- p ->-- Ccopy , because a functionp has a single value, and

hence the different columns of a tuple corresponding to it will end up having identical
values: a clearly poor schema.

As far as our previous theorems, one can prove that by making copies of an entityE
(sayE andEcopy), and also replicating its attributes and participating relationships, one
obtains an ER diagram from which one can generate isomorphictables with identical
semantics, according to theer2rel mapping. This will hold true as long as the predicate
used forboth E andEcopy isE(); similarly, we need to use the same predicate for the
copies of the attributes and associations in whichE andEcopy participate.

Even in this case, the second theorem may be in jeopardy if there are multiple
possible “identifying relationships” for a weak entity, asillustrated by the following
example.
Example 5.7An educational department in a provincial government records the trans-
fers of students between universities in its databases. A student is a weak entity de-
pending for identification on the university in which the student is currently registered.
A transfered student must have registered in another university before transferring. The
tableT :Transferred(sno, univ, sname) records who are the transferred students,
and their name. The tableT :previous(sno, univ, pUniv) stores the information about
thepreviousUniv relationship. A CM is depicted in Figure 7. To discover the seman-

-sno

-sname

TransferredStudent

-name

-address

University

registerIn

previousUniv

1..1
1..*

0..*
 1..1

TransferredStudent(
 sno,univ
 ,sname
)

Fig. 7: A Weak Entity and Its Owner Entity.

tics of tableT :Transferred, we link the columns to the attributes in the CM as shown
in Figure 7. One of the skeletons returned by the algorithm for the T :Transferred

will be TransferredStudent --- previousUniv ->-- University .
But the design resulting from this according to theer2rel mapping is not isomorphic
to key(Transferred), sincepreviousUniv is not the identifying relationship of the
weak entityTransferredStudent. �

From above example, we can see that the problem is the inability of CMLs such as
UML and OWL to fully capture notions like “weak entity” (specifically the notion of
identifying relationship), which play a crucial role in ER-based design. We expect such
cases to be quite rare though – we certainly have not encountered any in our example
databases.

5.4 Extended ER: Adding Class Specialization

The ability to represent subclass hierarchies, such as the one in Figure 8 is a hallmark
of CMLs and modern so-called Extended ER (EER) modeling.

Almost all textbooks (e.g., [22]) describe several techniques for designing relational
schemas in the presence of class hierarchies

1. Map each concept/entity into a separate table following the standarder2rel rules.
This approach requires two adjustments: First, subclassesmust inherit identifying
attributes from a single super-class, in order to be able to generate keys for their
tables. Second, in the table created for an immediate subclassC ′ of classC, its
key key(τ(C ′)) should also be set to reference as a foreign keyτ(C), as a way of
maintaining inclusion constraints dictated by the is-a relationship.

2. Expand inheritance, so thatall attributes and relations involving a classC appear on
all its subclassesC ′. Then generate tables as usual for the subclassesC ′, though not
for C itself. This approach is used only when the subclasses coverthe superclass.

3. Some researchers also suggest a third possibility: “Collapse up” the information
about subclasses into the table for the superclass. This canbe viewed as the result
of merge(TC , TC′), whereTC(K,A) andTC′(K,B) are the tables generated for
C and its subclassC ′ according to technique (1.) above. In order for this design to
be “correct”, [15] requires thatTC′ not be the target of any foreign key references
(hence not have any relationships mapped to tables), and thatB be non-null (so that
instances ofC ′ can be distinguished from those ofC).

The use of the key for the root class, together with inheritance and the use of foreign
keys to also check inclusion constraints, make many tables highly ambiguous. For ex-
ample, according to the above, tableT (ss#, crsId), with ss# as the key and a foreign
key referencingT ′, could represent at least
(a)Faculty teachCourse
(b)Lecturer teachCourse
(c)Lecturer coordCourse.
This is made combinatorially worse by the presence of multiple and deep hierarchies
(e.g., imagine a parallelCourse hierarchy), and the fact that not all ontology concepts
are realized in the database schema, according to our scenario. For this reason, we have
chosen to deal with some of the ambiguity by relying on users,during the establishment
of correspondences. Specifically, the user is supposed to provide a correspondence from

-ss#

Person

-college

Faculty

-csrId

Course

Assist. Professor
Professor
 Lecturer

teach

coord

1..*
 0..1

0..1

1..*

Fig. 8: Specialization Hierarchy.

columnc to attributef on the lowest class whose instances provide data appearing in
the column. Therefore, in the above example of tableT (ss#, crsId), ss# should be
set to correspond tossn on Faculty in case (a), while in cases (b) and (c) it should
correspond toss# onLecturer. This decision was also prompted by the CM manip-
ulation tool that we are using, which automatically expandsinheritance, so thatss#
appears on all subclasses.

Under these circumstances, in order to deal appropriately with designs (1.) and (2.)
above, we do not need to modify our earlier algorithm in any way, as long as we first ex-
pand inheritance in the graph. So the graph would showLecturer -- teaches;

coord ->- Course in the above example, andLecturer would have all the at-
tributes ofFaculty.

To handle design (3.), we add to the graph an actual edge for the inverse of the
is-a relation: a functional edge labeledalsoA, with lower-bound0; e.g., Faculty

--- alsoA ->-- Lecturer . It is then sufficient to allow ingetTree for func-
tional paths between concepts to includealsoA edges; e.g.,Faculty can now be con-
nected toCourse through pathalsoA followed bycoord. ThealsoA edge is trans-
lated into the identity predicate, and it is assigned cost zero in evaluating a functional
path mixed withalsoA edge and other ordinary functional edges.14

In terms of the properties of the algorithm we have been considering so far, the
above three paragraphs have explained that among the answers returned by the algo-
rithm will be the correct one. On the other hand, if there are multiple results returned by
the algorithm, as shown in Example 5.7, some semantic trees may not result in isomor-

14 It seems evident that ifB is-a C, andB is associated withA via p, then this is a stronger
semantic connection betweenC andA than ifC is associated toD via aq1, andD is associated
to A via q2.

phic tables to the original table, if there are more than one total functional relationships
from a weak entity to its owner entity.

5.5 Outer Joins

The observant reader has probably noticed that the definition of the semantic mapping
for T = merge(TE , Tp), whereTE(K,V) :- φ(K,V) andTp(K,W) :- ψ(K,W), was
not quite correct:T (K,V,W):-φ(K,V),ψ (K,W) describes a join onK, rather than
a left-outer join, which is what is required ifp is a non-total relationship. In order to
specify the equivalent of outer joins in a perspicuous manner, we will use conjuncts
of the formdµ(X,Y)eY , which will stand for the formulaµ(X,Y) ∨ (Y = null ∧
¬∃Z.µ(X,Z)), indicating that null should be used if there are no satisfying values for
the variablesY . With this notation, the proper semantics for merge isT (K,V,W) :
−φ(K,V), dψ(K,W)eW .

In order to obtain the correct formulas from trees,encodeTree needs to be modified
so that when traversing a non-total edgepi that is not part of the skeleton, in the second-
to-last line of the algorithm we must allow for the possibility of vi not existing.

6 Implementation and Experimentation

So far, we have developed the mapping inference algorithm byinvestigating the con-
nections between the semantic constraints in relational models and that in ontologies.
The theoretical results show that our algorithm will reportthe “right” semantics for
most schemas designed following the widely accepted designmethodology. Nonethe-
less, it is crucial to test the algorithm in real-world schemas and ontologies to see its
overall performance. To do this, we have implemented the mapping inference algorithm
in our prototype systemMAPONTO, and have applied it on a set of real-world schemas
and ontologies. In this section, we describe the implementation and provide some evi-
dence for the effectiveness and usefulness of the prototypetool by discussing the set of
experiments and our experience.
Implementation. We have implemented theMAPONTO tool as a third-party plugin of
the well-known KBMS Prot́eǵe15 which is an open platform for ontology modeling and
knowledge acquisition. As OWL becomes the official ontology language of the W3C,
intended for use with Semantic Web initiatives, we use OWL as the CML in the tool.
This is also facilitated by the Protéǵe’s OWL plugin [12], which can be used to edit
OWL ontologies, to access reasoners for them, and to acquire instances for semantic
markup. TheMAPONTO plugin is implemented as a full-size user interface tab that
takes advantage of the views of Protéǵe user interface. As shown in Figure 9, users
can choose database schemas and ontologies, create and manipulate correspondences,
generate and edit candidate mapping formulas and graphicalconnections, and produce
and save the final mappings into designated files. In addition, there is a library of other
Prot́eǵe plugins that visualize ontologies graphically and manageontology versions.
Those plugins sustain our goal of providing an interactively intelligent tool to database

15 http://protege.stanford.edu

administrators so that they may establish semantic mappings from the database to on-
tologies more effectively.

Fig. 9: MAPONTO Plugin of Protege.

Schemas and Ontologies.Our test data were obtained from various sources, and we
have ensured that the databases and ontologies were developed independently. The test
data are listed in Table 3. They include the following databases: the Department of Com-
puter Science database in the University of Toronto; the VLDB conference database;
the DBLP computer science bibliography database; the COUNTRY database appear-
ing in one of reverse engineering papers [11] (Although thecountryschema is not a
real-world database, it appears as a complex experimental example in [11], and has
some reified relationship tables, so we chose it to test this aspect of our algorithm); and
the test schemas in OBSERVER [16] project. For the ontologies, our test data include:
the academic department ontology in the DAML library; the academic conference on-
tology from the SchemaWeb ontology repository; the bibliography ontology in the li-
brary of the Stanford’s Ontolingua server; and the CIA factbook ontology. Ontologies
are described in OWL. For each ontology, the number of links indicates the number
of edges in the multi-graph resulted from object properties. We have made all these
schemas and ontologies available on our web page:www.cs.toronto.edu/ ˜yuana/research
/maponto/relational/testData.html.
Results and Experience.To evaluate our tool, we sought to understand whether the
tool could produce the intended mapping formula if the simple correspondences were
given. We were especially concerned with the number of formulas presented by the tool
for users to sift through. Further, we wanted to know whetherthe tool was still useful if
the correct formula was not generated. In this case, we expected that a user could more

Database SchemaNumber of Number of Ontology Number of Number of

Tables Columns Nodes Links

UTCS Department 8 32 Academic Department 62 1913

VLDB Conference 9 38 Academic Conference 27 143

DBLP Bibliography 5 27 Bibliographic Data 75 1178

OBSERVER Project 8 115 Bibliographic Data 75 1178

Country 6 18 CIA factbook 52 125

Table 3: Characteristics of Schemas and Ontologies for the Experiments.

easily debug a generated formula to reach the correct one instead of creating it from
scratch. A summary of the experimental results are listed inTable 4 which shows the
average size of each relational table schema in each database, the average number of
candidates generated, and the average time for generating the candidates. Notice that
the number of candidates is the number of semantic trees obtained by the algorithm.
Also, a single edge of an semantic tree may represent the multiple edges between two
nodes, collapsed using ourp; q abbreviation. If there arem edges in a semantic tree and
each edge hasni (i = 1, ..,m) original edges collapsed, then there are

∏m

i ni original
semantic trees. We show below a formula generated from such acollapsed semantic
tree:
TaAssignment(courseName, studentName) :-

Course(x1), GraduateStudent(x2), [hasTAs;takenBy](x1,x2),
workTitle(x1,courseName), personName(x2,studentName).

where, in the semantic tree, the nodeCourse and the nodeGraduateStudent are
connected by a single edge with labelhasTAs;takenBy, which represents two separate
edges,hasTAs andtakenBy.

Database SchemaAvg. Number of Avg. Number of Avg. Execution

Cols/per table Candidates generated time(ms)

UTCS Department 4 4 279

VLDB Conference 5 1 54

DBLP Bibliography 6 3 113

OBSERVER Project 15 2 183

Country 3 1 36

Table 4: Performance Summary for Generating Mappings from Relational Tables to Ontologies.

Table 4 indicates thatMAPONTO only presents a few mapping formulas for users
to examine. This is due in part to our compact representationof parallel edges between
two nodes shown above. To measure the overall performance, we manually created the
mapping formulas for all the 36 tables and compared them to the formulas generated by
the tool. We observed that the tool produced correct formulas for 31 tables. This demon-

strates that the tool is able to infer the semantics of many relational tables occurring in
practice in terms of an independently developed ontology.

We were also interested in the usefulness of the tool in thosecases where the formu-
las generated were not the intended ones. For each such formula, we compared it to the
manually generated correct one, and we used a very coarse measurement to record how
much effort it would take to “debug” the generated formula: the number of changes of
predicate names in a formula. For example, the tool generated the following formula
for the tableStudent(name, office, position, email, phone, supervisor):

Student(x1), emailAddress(x1,email), personName(x1,name), Professor(x2),
Department(x3), head(x3,x2), affiliatedOf(x3,x1),
personName(x2, supervisor)... (1)

If the intended semantics for the above table columns is:

Student(x1), emailAddress(x1,email), personName(x1,name), Professor(x2),
ResearchGroup(x3), head(x3,x2), affiliatedOf(x3,x1),
personName(x2, supervisor)... (2)

then one can change the predicateDepartment(x3) to ResearchGroup(x3) in formula (1)
instead of writing the entire formula (2) from scratch. Our experience working with the
data sets shows that at average only about 30% predicates in asingle incorrect formula
returned by theMAPONTO tool needed to be modified to reach the correct formula. This
is a significant saving in terms of human labors.

Tables 4 indicate that execution times were not significant,since, as predicted, the
search for subtrees and paths took place in a relatively small neighborhood.

We believe it is instructive to consider the various categories of problematic schemas
and mappings, and the kind of future work they suggest.

(i) Absence of tables which should be present according toer2rel. For example, we
expect the connectionPerson -- researchInterest --- Research to be
returned for the tableAreaOfInterest(name, area). However,MAPONTO returned
Person -<- headOf --- ResearchGroup -<- researchProject ---

Research , because there was no table for the conceptResearch in the schema,
and soMAPONTO treated it as a weak entity table. Such problems are caused, among
others, by the elimination of tables that represent finite enumerations, or ones that can
be recovered by projection from tables representing total many-to-many relationships.
These pose an important open problem for now.

(ii) Mapping formula requiring selection.The tableEuropean(country, gnp) means
countries which are located in Europe. From the database point of view, this selects
tuples representing European countries. Currently,MAPONTO is incapable of generat-
ing formulas involving the equivalent to relational selection. This particular case is an
instance of the need to express “higher-order” correspondences, such as between ta-
ble/column names and ontology values. A similar example appears in [17].

(iii) Non-standard design.One of the bibliography tables had columns forauthor
andotherAuthors for each document.MAPONTO found a formula that was close to the

desired one, with conjunctshasAuthor(d, author), hasAuthor(d, otherAuthors),
but not surprisingly, could not add the requirement thatotherAuthors is really the
concatenation of all but the first author.

7 Filtering Mappings through Ontology Reasoning

Rich ontologies provide a new opportunity for eliminating “unreasonable” mappings.
For example, suppose the ontology specifies that in a library, once a book is reserved for
an event, it cannot be borrowed by a person. In this case, a candidate semantic formula
such as

Book(x), borrow(x, y), Person(y), reservedFor(x, z), Event(z)

can be eliminated, since no objectsx can satisfy it16.
When ontologies, which include constraints such as the one about borrowing and

reservedFor, are expressed in OWL, one can use OWL reasoning to detect theseprob-
lems. To do so, one first translates the semantic tree into an OWL concept, and then
checks it for (un)satisfiability in the context of the ontology axioms, using the standard
reasoning algorithms for Description Logics.

For example, the above formula is equivalent to the OWL concept:

<owl:intersectionOf>
<owl:Class rdf:about="#Book"/>
<owl:Restriction>

<owl:onProperty rdf:resource=#borrow/>
<owl:someValuesFrom rdf:resource="#Person"/>

</owl:Restriction>
<owl:Restriction>

<owl:onProperty rdf:resource=#reservedFor/>
<owl:someValuesFrom rdf:resource="#Event"/>

</owl:Restriction>
</owl:intersectionOf>

The algorithm for performing this translation in general,encodeTreeAsConcept(S),
is almost identical toencodeTree, except that the recursive calls return OWL concepts
Ci, which lead to conjuncts of the formrestriction(pi, someValuesFrom(Ci)):

Function encodeTreeAsConcept(S)
input: subtreeS of ontology graph
output: abstract syntax of OWL concept logically equivalent to the FOL formula
encodeTree(S,L)
steps:SupposeN is the root ofS.
1. if N is an attribute node with labelf

16 Maybe a relationship likecontactAuthor(x, y), different fromborrow(x, y), needs to be
used.

returnrestriction(f ,minCardinality(1)). /*for leaves of the tree, which are attribute
nodes, just ensure that the attribute is present.*/

2. if N is a concept node with labelC, then initializeΨ to beintersectionOf(C);
for each edgepi fromN toNi /*recursively get the restrictions */

let Si be the subtree rooted atNi;
let φi=encodeTreeAsConcept(Si);
add toΨ asomeValuesFrom(φi) restriction onpi.

3. returnΨ .

The ontologies we have found so far are unfortunately not sufficiently rich to demon-
strate the usefulness of this idea.

8 Finding GAV Mappings

Arguments have been made that the proper way to connect ontologies and databases for
the purpose of information integration is to show how concepts and properties in the
ontology can be expressed as queries over the database – the so-called GAV approach.

To illustrate the idea, consider Example 1.1, from Section 1, where the semantic
mapping we proposed was
T :Employee(ssn, name, dept, proj) :-

O:Employee(x1), O:hasSsn(x1,ssn), O:hasName(x1,name), O:Department(x2),
O:works for(x1,x2), O:hasDeptNumber(x2,dept), O:Worksite(x3), O:works on(x1,x3),
O:hasNumber(x3,proj).

In this case, we are looking for formulas which expressO:Department, O:works on,
etc. in terms ofT :Employee, etc., as illustrated below.

We note that a strong motivation for mappings between ontologies and databases
expressed in this way is that they can be used to populate the ontology with instances
from the database – a task that is expected to be important forthe Semantic Web.

An essential initial step is dealing with the fact that in theontology (as in object
oriented databases), objects have intrinsic identity, which is lost in the relational data
model, where this notion is replaced by external identifiers/keys. For this purpose, the
standard approach is to introduce special Skolem functionsthat generate these identi-
fiers from the appropriate keys, as in:

O:Employee(ff(ssn)) :- T :Employee(ssn, , ,).
One then needs to express the external identifiers using axioms that relate these Skolem
functions with the appropriate ontology attributes:

O:hasSsn(ff(ssn),ssn) :- T :Employee(ssn, , ,).
Finally, one can express the associations by using the aboveidentifiers:

O:works on(ff(ssn),gg(dept)) :- T :Employee(ssn, ,dept,).
The following less ad-hoc approach leads to almost identical results, but relies on

the logical translation of the original mapping, found by the algorithms presented earlier
in this paper. For example, the actual semantics of tableT :Employee is expressed by
the formula

(∀ssn, name, dept, proj) T :Employee(ssn, name, dept, proj) ⇒
(∃x, y, z) O:Employee(x)∧ O:hasSsn(x,ssn) ∧ O:hasName(x,name) ∧

O:Department(y) ∧ O:hasDeptNumber(y,dept) ∧ O:works for(x,y) ∧
O:Worksite(z) ∧ O:works on(x,z) ∧ O:hasNumber(z,proj).

The above formula can be Skolemized to eliminate the existential quantifiers to yield17:
(∀ssn, name, dept) T :Employee(ssn, name, dept) ⇒

O:Employee(f(ssn, name, dept)) ∧ O:hasSsn(f(ssn, name, dept),ssn) ∧
O:hasName(f(ssn, name, dept),name) ∧ O:Department(g(ssn, name, dept)) ∧
O:hasDeptNumber(g(ssn, name, dept),dept)∧
O:works for(f(ssn, name, dept),g(ssn, name, dept)).

This implies logically a collection of formulas, including
(∀ssn, name, dept) O:Employee(f(ssn, name, dept)) ⇐ T :Employee(ssn, name, dept).
(∀ssn, name, dept)O:hasSsn(f(ssn, name, dept),ssn)⇐T :Employee(ssn, name, dept).
(∀ssn, name, dept) O:works for(f(ssn, name, dept),g(ssn, name, dept)) ⇐

T :Employee(ssn, name, dept).
Note however that different tables, such asT :manages(ssn, dept) say, introduce dif-
ferent Skolem functions, as in :

O:Employee(h(ssn, dept)) ⇐ T :manages(ssn, dept).
O:hasSsn(h(ssn, dept),ssn) ⇐ T :manages(ssn, dept).

Unfortunately, this appears to leave open the problem of connecting the ontology indi-
viduals obtained fromT :manages andT :Employee. The answer is provided by the
fact thatO:hasSsn is inverse functional (ssn is a key), which means that there should
be an ontology axiom

(∀u, v, ssn) O:hasSsn(u, ssn) ∧ O:hasSsn(v, ssn) ⇒ u = v

This implies, among others, that
(∀ssn, name, dept) f(ssn, name, dept) = h(ssn, dept).

So we need to answer queries over the ontology using all such axioms.

A final, important connection to make in this case is with the research on answering
queries using views [6]: The semantic mappings found by the earlier algorithms in this
paper can be regarded as view definitions for each relationaltables, using conjunctive
queries over ontology predicates (“tables”). What we are seeking in this section is an-
swers to queries phrased in terms of the ontology predicates, but rephrased in terms of
relational tables, where the data instances reside — which is exactly the problem of
query answering using views. The kind of rules we proposed earlier in this section are
known as “inverse rules” [19], and in fact Duschka and Levy [5] even deal (implicitly)
with the alias problem we mentioned above by their solution to the query answering
problem in the presence of functional dependencies: keys functionally determine the
rest of the columns in the table.

The one difference in our case worth noting is that we are willing to countenance
answers which contain Skolem functions (since this is how wegenerate object id’s in
the ontology).

9 Conclusion and Future Work

We have proposed a heuristic algorithm for inferring semantic mapping formulas be-
tween relational tables and ontologies starting from simple correspondences. Our algo-
17 For simplicity, we eliminate henceforth the part dealing with projects.

rithm relies on information from the database schema (key and foreign key structure)
and the ontology (cardinality restrictions,is-ahierarchies). Theoretically, our algorithm
infers all and only the relevant semantics if a relational schema was generated using
standard database design principles. In practice, our experience working with indepen-
dently developed schemas and ontologies has shown that significant effort can be saved
in specifying the LAV mapping formulas.

Numerous additional sources of knowledge, including richer ontologies, actual data
stored in the tables, linguistic and semantic relationships between identifiers in tables
and the ontology, can be used to refine the suggestions ofMAPONTO, including provid-
ing a rank ordering for them. As in the original Clio system, more complex correspon-
dences (e.g., from columns to sets of attribute names or class names), should also be
investigated in order to generate the full range of mappingsencountered in practice.

Acknowledgments:We are most grateful to Renée Miller and Yannis Velegrakis for
their clarifications concerning Clio, comments on our results, and encouragement. Re-
maining errors are, of course, our own. We also deeply appreciate the reviewers’ careful
readings and constructive comments.

References

1. Y. An, A. Borgida, and J. Mylopoulos Inferring Complex Semantic Mappings between
Relational Tables and Ontologies from Simple Correspondences. InODBASE’05, pages
1152-1169, 2005.

2. D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and R. Rosati.Data Integration in
Data Warehousing.J. of Coop. Info. Sys., 10(3):237–271, 2001.

3. M. Dahchour and A. Pirotte. The Semantics of Reifying n-ary Relationships as Classes. In
ICEIS’02, pages 580–586, 2002.

4. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering Complex
Semantic Matches between Database Schemas. InSIGMOD’04, pages 383–394, 2004.

5. O. M. Duschka and A. Y. Levy. Recursive Plans for Information Gathering. InIJCAI’97,
pages 778-784, 1997.

6. A. Y. Halevy. Answering queries using views: A survey.VLDB Journal, 10(4):270-294,
2001.

7. A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L. Schneider.Sweetening Ontologies
with DOLCE. InEKAW’02, pages 166–181, 2002.

8. F. Goasdoue et al. Answering queries using views: A KRDB perspective for the semantic
web. ACM TOIT, 4(3), 2004.

9. J.-L. Hainaut. Database Reverse Engineering. http:// citeseer.ist.psu.edu/ article/ hain-
aut98database.html, 1998.

10. S. Handschuh, S. Staab, and R. Volz. On Deep Annotation. InProc. WWW’03, 2003.
11. P. Johannesson. A method for transforming relational schemas into conceptual schemas. In

ICDE, pages 190–201, 1994.
12. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The Protege OWL Plugin: An

Open Development Environment for Semantic Web Applications. InISWC2004, Nov. 2004.
13. A. Y. Levy, D. Srivastava, and T. Kirk. Data Model and Query Evaluation in Global Infor-

mation Systems.J. of Intelligent Info. Sys., 5(2):121–143, Dec 1996.
14. A. Y. Levy. Logic-Based Techniques in Data Integration. In Jack Minker (ed),Logic Based

Artificial Intelligence., Kluwer Publishers, 2000

15. V. M. Markowitz and J. A. Makowsky. Identifying Extended Entity-Relationship Object
Structures in Relational Schemas.IEEE TSE, 16(8):777–790, August 1990.

16. E. Mena, V. Kashyap, A. Sheth, and A. Illarramendi. OBSERVER:An Approach for Query
Processing in Global Information Systems Based on Interoperation Across Preexisting On-
tologies. InCoopIS’96, pages 14–25, 1996.

17. R. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query Discovery. In
VLDB’00, pages 77–88, 2000.

18. L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and R. Fagin.Translating Web Data. In
VLDB’02, pages 598–609, 2002.

19. Xiaolei Qian. Query Folding. InProc. ICDE, 48-55, 1996.
20. M. R. Quillian. Semantic Memory. InSemantic Information Processing. Marvin Minsky

(editor). 227-270. The MIT Press. 1968.
21. E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.

VLDB Journal, 10:334–350, 2001.
22. R. Ramakrishnan and M. Gehrke.Database Management Systems (3rd ed.). McGraw Hill,

2002.
23. H. Wache, T. Vogele, U. Visser, H. Stuckenschmidt, G. Schuster,H. Neumann, and S. Hub-

ner. Ontology-Based Integration of Information - A Survey of Existing Approaches. In
IJCAI’01 Workshop. on Ontologies and Information Sharing, 2001.

