
A Semantic Approach to Discovering Schema Mapping Expressions

Yuan An
University of Toronto
yuana@cs.toronto.edu

Alex Borgida
Rutgers University

borgida@cs.rutgers.edu

Reńee J. Miller John Mylopoulos
University of Toronto

{miller,jm}@cs.toronto.edu

Abstract

In many applications it is important to find a meaning-
ful relationship between the schemas of a source and target
database. This relationship is expressed in terms of declara-
tive logical expressions called schema mappings. The more
successful previous solutions have relied on inputs such as
simple element correspondences between schemas in addi-
tion to local schema constraints such as keys and referential
integrity. In this paper, we investigate the use of an alternate
source of information about schemas, namely the presumed
presence of semantics for each table, expressed in terms of
a conceptual model (CM) associated with it. Our approach
first compiles each CM into a graph and represents each
table’s semantics as a subtree in it. We then develop algo-
rithms for discovering subgraphs that are plausible connec-
tions between those concepts/nodes in the CM graph that
have attributes participating in element correspondences. A
conceptual mapping candidate is now a pair of source and
target subgraphs which are semantically similar. At the end,
these are converted to expressions at the database level. We
offer experimental results demonstrating that, for test cases
of non-trivial mapping expressions involving schemas from
a number of domains, the“semantic” approach outperforms
the traditional technique in terms of recall and especially
precision.

1 Introduction

In many applications, including data exchange, it is
necessary to discover a meaningful relationship between
a source and a target schema. Such a relationship is ex-
pressed by a collection of mapping expressions in a declar-
ative language. The discovery problem is inherently dif-
ficult to automate, so interactive and semi-automatic tools
are assumed to be the solution. Such a tool may employ a
two-phase paradigm. First, specify somesimple correspon-
dencesbetween schema elements; there are many tools that
support such “matching” currently [16]. Then, derive plau-
sible declarative mappings for users to select from. Systems
that behave like this include TranSem [14], Clio [13, 15],

HePToX [4] and MQG [11].
In this paper, we focus on the second problem, that of

deriving plausible declarative mapping expressions start-
ing from element correspondences.The element correspon-
dences we consider will be quite simple: pairs of column
names in the source and target relational schema, presum-
ably signifying that data from the source column will con-
tribute to data to appear in the target column. For example,
in Figure 1,v1 is a correspondence between columnpname

of tableperson and columnaname of hasBookSoldAt.
Current solutions such as Clio [15] and MQG [11] rely

on integrity constraints (especially referential integrity con-
straints) to assemble “logically connected elements”, which
then give rise to mappings between the tables.

However, as shown by the motivating examples below,
this technique sometimes does not produce directly the most
natural semantic connections, nor the most likely one, when
there are several. In this paper, we investigate a complemen-
tary approach, which assumes an additional source of in-
formation, namely thesemanticsof the database schemas.
To capture the semantics of a database schema, we use a
conceptual model of the domain (abbreviated as CM), and a
formal description of how it relates to the database schema.1

We observe that obtaining the semantics of a schema is not
necessarily a difficult task. For example, many database
schemas are developed from a conceptual model, such as
an Extended Entity-Relationship diagram. Consequently,
keeping the EER schema and the mapping between the EER
schema and the relational schema needs limited effort.2 In
addition, we have recently developed a tool [1, 2, 3] to re-
cover the semantics of a legacy database schema in terms
of an existing CM that covers roughly the same domain of
discourse as the database. This could be quite useful, given
the proliferation of ontologies and conceptual models moti-
vated by visions of the Semantic Web.

It is important to note that wedo not assumethat the
CMs for the source and target are identical, or are connected
at the semantic level, as in many data integration proposals.
Instead, we rely on the element correspondences between

1Such semantic specifications are found in [5, 2, 3], for example.
2In [2, 3], we have shown how to do this formally for standard designs.

the table columns, which have proven to be so useful for
others.

We next clarify the input/output of the problem studied,
including the notation for relational model and CM used in
this paper, through several motivating examples.
Example 1.1:Consider the source relational schema given
in the upper part of Figure 1. It contains five tables:
person(pname), writes(pname, bid), book(bid), soldAt(bid, sid),
and bookstore(sid). In a relational schema, the underlined
column name(s), such aspname, indicates the primary
key of each table. A dashed arrow represents aReferen-
tial Integrity Constraint (RIC), e.g., a foreign key refer-
encing a key. For example, the dashed arrowr1 pointing
from column pname of the tablewrites(pname,bid) to col-
umnpname of the tableperson(pname), written textually as
writes.pname⊆ person.pname, indicates that the values in the
former column are a subset of the latter.

0..*
1..*
 0..*
1..*

person(
p
name
)
 writes(
p
name
,bid
)
 book(
bid
)
 soldAt(
bid,sid
)
 bookstore(
 sid
)

hasBookSoldAt(
 aname,sid
)

v
1
 v
2

SOURCE:

TARGET:

r
1
 r
2

r
3
 r
4

-pname: key

Person

-bid: key

Book

-sid: key

Bookstore
writes
 soldAt

0..*
1..*

-aname: key

Author

-sid: key

Bookstore

hasBookSoldAt

Figure 1. Relational Schemas, CMs, and Cor-
respondences

The conceptual semantics of a database is normally spec-
ified using a conceptual modeling language, CML. In this
paper, the CML captures common features of data models
like EER and UML. Specifically, CML provides forentity
sets (“classes”), relationships between classes (“proper-
ties”), andattributes,as well ascardinality constraintsim-
posed on the participation in relationships. We use UML’s
notation for cardinality constraints on binary relations and
their inverses, wheremin..max specifies lower and upper
bounds on the number of range objects related to a sin-
gle domain object. Thus,0..∗ means“no constraint”, 1..
means“total participation” , while ..1 indicates that each
domain instancefunctionally determinesthe other partici-
pating instance inR. For instance, in Figure 1, a person
writes 0 or more books, while a book is written by 1 or more
persons. To encode constraints for identifying objects, we
need a specialkey annotation to indicate (collections of) at-
tributes that act as identifiers of entities. As illustratedin
the next example, CML also supports subclass hierarchies.

Continuing with our example, atarget schemais given
in the lower part of Figure 1. The target schema contains,

among others, a tablehasBookSoldAt(aname,sid). The table is
associated with the CM shown below it.

Now let us turn to the mapping task. To initiate the pro-
cess, inter-schema correspondences need to be specified.
We use the simplest form of correspondences discovered
by most matchers, relating pairs of column names in the
source and target. Figure 1 shows two correspondences us-
ing solid lines with arrows:v1, connectingperson.pname

in the source tohasBookSoldAt.aname in the target, andv2,
connectingbookstore.sid in the source tohasBookSoldAt.sid

in the target. Textually, a correspondence is written as
person.pname!hasBookSoldAt.aname.
Current Solution The current solutions, which we call the
RIC-based techniques, take as input the source schema, the
target schema, database constraints (including keys, foreign
keys, and more generally RICs), and the correspondences.
In our examples, we will use an approach proposed in Clio
[15], that is perhaps the most general of the solutions and
generates GLAV mappings in the form of source-to-target
tuple-generating dependencies [7]. Specifically, to generate
a mapping expression, Clio uses an extension of the rela-
tional chase algorithm to first assemble logically connected
elements into so-calledlogical relations. In this example,
RICsr1 andr2 are applied to tablewrites(pname,bid) to pro-
duce the logical relation (expression):

S1: person(pname) ./ writes(pname, bid) ./ book(bid).
Likewise, we can chase the tablesoldAt(bid,sid) usingr3 and
r4 to produce:

S2: book(bid) ./ soldAt(bid,sid) ./ bookstore(sid).
In the target, a logical relation is:

T1: hasBookSoldAt(aname,sid).
To interpret the correspondences, Clio looks at each pair of
source and target logical relations, and checks which are
coveredby the pair. For example, the pair〈S1, T1〉 covers
v1, while the pair〈S2, T1〉 coversv2. So the mappings
are actually written as〈S1, T1, v1〉 and〈S2, T1, v2〉. The
complete algorithm will then generate (among others) the
following two candidate mapping expressions:

M1: ∀pname, bid.(person(pname)∧writes(pname, bid)

∧book(bid)→∃xhasBookSoldAt(pname, x)).
M2: ∀bid, sid.(book(bid)∧soldAt(bid, sid)∧bookstore(sid)

→∃yhasBookSoldAt(y, sid)).

Since, in this example, the tablesperson(pname) and
bookstore(bid) are also logical relations, then the following
are also candidate mappings:

M3: ∀pname(person(pname)→∃xhasBookSoldAt(pname, x)).
M4: ∀sid(bookstore(sid)→∃yhasBookSoldAt(y, sid)).

Thereafter, all candidate mappings are presented to the user
for further examination and debugging.

Note that the mappingsM1 throughM4 do not produce
complete tuples in the target relations. Thus, when map-
pings are realized as queries (as in data exchange), Skolem

functions are generally used to represent existentially quan-
tified variables [15]. In some cases, Skolem functions (and
more complex mapping expressions like nested mappings)
can be used to represent how data generated by different
mappings should be merged [8]. However, no mapping gen-
eration algorithm that we are aware of would automatically
generate a mapping that pairs authors with bookstores that
stock their books, an interpretation we motivate below.
Alternate Solution We believe that the following is a more
natural mapping expression in this case and should be gen-
erated as a candidate:

M5: ∀pname, bid, sid.(person(pname)∧writes(pname, bid)

∧Book(bid)∧soldAt(bid, sid)∧bookstore(sid)

→ hasBookSoldAt(pname, sid)).

The mapping pairs in the source a person and a bookstore
when the person writes a book and the book is sold at the
bookstore. Looking into the semantics of the schemas, we
observe that there is indeed a semantic connection between
the classesPerson andBookstore, namely the composition
of writes andsoldAt.

Furthermore, note that the many-to-many cardinality
constraint that can be inferred for the composed con-
nection is compatible with that of the target relationship
hasBookSoldAt. Contrast this to the hypothetical case when
the upper bound ofhasBookSoldAt would have been 1, indi-
cating that each author is associated with at most one book-
store: we contend that such pairings are semantically in-
compatible, and do not lead to reasonable mapping expres-
sions.

Note that the RIC-based techniques avoid generating
lossy joins (like writes./soldAt), because these would
provide an overabundance of logical relations, making the
technique much less useful in practice. So any semantic
solution must strictly limit, though not rule out, the use of
such compositions. �

Example 1.2: CML supports the modeling of classes con-
nected by ISA relationships, as well asdisjointnessand
completenessconstraints concerning the subclasses.

isa
isa

Employee

ssn: key

name

Programmer

acnt

Engineer

site

Figure 2. Using Rich Semantics in CM

Consider a CM, illustrated in Figure 2, with
class Employee and two subclassesEngineer and
Programmer, which are not disjoint, and cover the
superclass. The bottom classes and their respective

ISA relationships represent the semantics of the tables
programmer(ssn,name,acnt) and engineer(ssn,name,site), form-
ing the source schema. Suppose that the target database has
schemaemployee(eid,name,site,acnt), and its CM is identical
to Figure 2. These two databases represent alternative ways
of encoding ISA hierarchies in relational tables, except for
the fact that they use different identifiers,ssn and eid, as
keys. Given correspondences that pair all columns with
identical names (sossn and eid do not correspond), the
RIC-based techniques will suggest mappings〈programmer,
employee〉 and〈engineer, employee〉, which will not merge the
information about the engineer programmers. We would
prefer instead a mapping that makes this connection and
computes the outer-joins. This will be made possible by
the presence of the superclass in the CM, which is absent
in the database schema. �

Example 1.3: In addition to cardinality considerations, the
CM may contain additional information useful in eliminat-
ing or prioritizing possible mappings. For example, con-
sider a case resembling Example 1.2, where information
aboutDepartments andFaculty are encoded using different
internal keys in the source and target db. If the source had
two functional relationships,chairOf and deanOf, between
Department andFaculty, while the target only had one, call
it foo, then even considering cardinality constraints one can-
not distinguish the two mapping candidates:〈chairOf, foo〉
and〈deanOf, foo〉. On the other hand, if the semantics indi-
cates thatchairOf andfoo arepartOf relationships (marked
by filled-in diamond in UML), butdeanOf is not, then the
second mapping is less likely and can be eliminated or
downgraded. �

The rest of the paper presents our principled approach
to the problem of schema mapping using table semantics.
In summary, the proposed algorithm will be seen to obtain
better recall than RIC-based techniques by using ISA rela-
tionships not visible as RICs, and looking,if necessary, for
“minimally lossy joins”; and better precision, by (i) elim-
inating certain candidate logical relations, like ones that
cannot be consistently satisfied because of constraints such
as disjointness, and (ii) eliminating mappings that pair re-
lationships that have suspiciously different semantics. As
Clio, our approach will generate GLAV mappings in the
form of source-to-target tuple-generating dependencies.

The remaining content is organized as follows: Section
2 details the representation of table semantics. Section 3
describes the algorithm for mapping generation. Section 4
evaluates, using a set of experiments, the proposed approach
in comparison to the techniques that use only constraints in
the logical schema. Section 5 discusses related work. Fi-
nally, Section 6 presents conclusions and points to possible
future directions.

2 Representing the Semantics of Schemas

We shall represent a given CM using a labeled directed
graph, called aCM graph. We assume that attributes in CMs
are simple and single-valued (composite and multi-valued
attributes can be transformed into classes). We construct
the CM graph from a CM described in the CML introduced
in Example 1.1 as follows: We create a class node labeled
with C for each classC, and adirected edgelabeled withp
from the class nodeC1 to the class nodeC2 for each binary
relationship setp linking C1 to C2; for each suchp, there is
also an edge in the opposite direction for itsinverse, labeled
with p−.

Note that we will deal with n-ary relationships, rela-
tionships with attributes, and so-called higher-order rela-
tionships (which relate relationships themselves) in Section
3.3 by reifying them. We shall eventually also reify many-
to-many binary relationships since the algorithm will treat
these the same way.

For each attributef of a classC, create a separate at-
tribute node, whose label isf , and also add an edge labeled
with f from C to the attribute node. For each subclassC1

of a classC2, create an edge labeled withisa connectingC1

to C2 with cardinality1..1, and0..1 on the inverse. For the
sake of succinctness, we use UML notation to represent a
CM graph, placing the attributes inside the class rectangle
nodes, and representing relationships and their inverses by
a single undirected edge. The presence of such an (undi-
rected) edge, labeledp, between classesC andD will be
written in text asC ---p--- D . It will be important for
our approach to distinguishfunctional edges— ones with
upper bound cardinality of 1, and their composition:func-
tional paths. If the relationshipp is functional fromC to D,
we write C ---p->-- D .

In this paper, the semantics of a table is represented by a
subtree in a CM graph. We call such a subtree aseman-
tic tree (or s-tree), where columns of the table associate
uniquely with attribute nodes of the s-tree. This represen-
tation of table semantics was presented in [3], and corre-
sponds to a subclass of conjunctive formulas (which can be
derived from the s-tree). The encoding uses unary predi-
cates for classes, binary predicates for attributes, and binary
predicates for binary relationships. For relational schemas,
we use a LAV-like logical formula of the formT (X) →
∃Y.Φ(X,Y) to represent the semantics of tableT , whereT
has columnsX (which become arguments to its predicate),
andΦ is a conjunctive formula over predicates represent-
ing an s-tree. The encoding introduces a new variable for
every node in the tree, and proceeds recursively (see [3]).
For example, the source tablewrites(pname,bid) in Figure
1, whose semantics is represented by the s-tree consisting
of nodesPerson andBook connected by edgewrites, as well
as the attributespname andbid of Person andBook, respec-
tively, has logical semantics

T :writes(pname, bid) →O:Person(x),
O:Book(y), O:writes(x, y),
O:pname(x, pname), O:bid(y, bid).

where we use prefixesT andO to distinguish terms in the
relational schema and the CM, and we omit the existential
quantifiers on the right.

In order to handle multiple relationships between enti-
ties, as well as “recursive” relationships, while continuing
to use trees, we duplicate concept nodes, and all the rela-
tionships in which they participate (see [3]). So, for ex-
ample, the semantics of tablepers(pid,name,age,spousePid)

is represented by a graph with two nodes,Person and
Personcopy1, connected by edgehasSpouse. And an ad-
ditional column, pers.bestFriendPid, would require an ad-
ditional node,Personcopy2, connected toPerson by edge
hasBestFriend. Note that this approach allows us to han-
dle correctlycyclic RICs since the table semantics has to
specify the number of times the loop has to be unfolded.

We remind the reader that there are well-known method-
ologies for designing logical database schemas from a CM,
such as EER diagrams. We call such methodologieser2rel
designs(e.g., [12]). Essentially, theer2rel design maps each
class/entity to a (class/entity) table, and each relationship to
a (relationship) table, with foreign keys to the participating
entities. In addition, it also permits merging tableT1 into
tableT2 when the key ofT1 has a foreign key to the key
of T2; such a merge reduces the need for joins, at the cost
of possibly introducing null values in some columns ofT1.
We can now assert that s-trees allow the encoding of the se-
mantics of all tables obtained byer2rel design, and there are
ways of dealing with more complex formulasΦ, but this is
beyond the scope of this paper, since it requires using non-
trees, which complicate matters considerably.

The previous study [3] also associates two additional no-
tions with the semantics of a tableT : (1) An anchor, which
is the central object in the s-tree from whichT is derived,
if an er2rel design was used. For example, ifT(c,d) was
derived from a functional relationshipC ---p->-- D ,
thenC is the anchor of tableT . (2) A rule expressing how
classes involved in the s-tree ofT are identified by columns
of T . In the preceding example, classC is identified by the
columnc of T , while classD is identified by the columnd.
(More details about these can be found in [3].)

3 Generating Mapping Candidates

3.1 Description of the Problem

The input to our problem consists of (i) a source rela-
tional schemaS and a target relational schemaT ; (ii) a CM
(GS and GT respectively) associated with each relational
schema (S andT resp.) via table semantic mappings; (iii) a
set of correspondencesL linking a setL(S) of columns in
S to a setL(T) of columns inT . Assuming thatL speci-
fies pairwise “similar” table columns, we seek to find a pair

of expressions〈E1, E2〉 which are “semantically similar” in
terms of modeling the subject matter.

As shown earlier, the table semantics relate each table
in the schema to an s-tree in the respective CM graph, as-
sociating with each table column a class node in the graph
through the bijective associations between columns and at-
tribute nodes. Consequently, the setL(S) of columns gives
rise to a setCS of marked class nodes in the graphGS . Like-
wise, the setL(T) gives rise to a setCT of marked class
nodes in the graphGT . We call the s-trees associated with
tables that have columns participating inL pre-selected s-
trees. Our approach will consist of two major steps: (1)
finding a subgraphD1 connecting concept nodes inCS , and
a subgraphD2 connecting concept nodes inCT such thatD1

andD2 are “semantically similar” — we call theseconcep-
tual subgraphs (CSG); (2) translatingD1 andD2, including
the relevant attribute nodes, into algebraic expressionsE1

andE2, and returning the triple〈E1, E2,LM 〉 as a mapping
candidate, whereLM ⊆ L is the set of correspondences
covered by the pair〈E1, E2〉.

In the rest of this section, we first present the CSGs for
different situations and illustrate the algorithms for discov-
ering them using examples. Then, we describe a process of
translating a CSG into an algebraic expression by using the
table semantics in terms of LAV expressions.

3.2 Basic Conceptual Model

We first consider basic constructs: classes and functional
binary relationships, including ISA. We delay the treatment
of all other kinds of relationships to the next subsection.

There are many ways to connect the marked nodes inCS

to create CSGs; similarly forCT . We propose to system-
atically explore the information encoded in the correspon-
dences and the table semantics to discover a pair of similar
CSGs. First, note that a nodev ∈ CS corresponds to a
nodeu ∈ CT whenv andu have attributes that are asso-
ciated with corresponding columns via the table semantics.
Second, we take into consideration the following: (i) For a
pair of nodes (v1, v2) in CS and a pair of nodes (u1, u2) in
CT , with v1 corresponding tou1 andv2 corresponding to
u2, if there is to be a connection betweenv1 andv2 then
it should be “semantically similar” or at least “compatible”
to the connection betweenu1 and u2. The compatibility
is decided by either the cardinality constraints of the con-
nections, or the semantic type of the connections, e.g.,is-a
andpartOf .3 (ii) Since columns appearing in the same ta-
ble are assumed to represent particularly relevant semantic
connections between the concepts carrying the respective
attributes, there is a preference that the CSGs use edges
from the pre-selected s-trees. (iii) To the extent that there
are choices available, we want the CSG to represent “intu-

3Such principles are well known in the ontology and CM integration
literature.

itively meaningful concepts/queries”. (iv) All things being
equal, we want the CSG to be compact – as per Occam’s
principle.

In relational database, there appears to be consensus that
observation (iii) favors the joins in the query to be loss-
less. Previous research on graphical querying of ER dia-
grams [18] indicates thatfunctional treesin such diagrams
correspond to lossless joins. Formally, a functional treeF
containing a set of nodes{v1, v2, ..., vn} is a tree with a
rootu such that all paths fromu are functional. (Such a tree
is formally a Steiner tree: a spanning tree allowed to pass
through additional nodes in order to reach marked nodes.)
The preference for functional trees is motivated by the fact
that functional properties in the CM determine functional
dependencies, and hence the application of theer2rel de-
sign to a functional tree gives rise to a set of relational ta-
bles whose join is lossless. Combining this with observation
(iv), we are led to seekminimal functional treescontaining,
as a subset, the marked nodes inCS (CT). Interestingly,
Wald and Sorenson [17], while considering the problem of
querying ER diagrams, also suggested using minimal-cost
Steiner trees, but in this case passing, if necessary, through
non-functional edges, whose individual cost is greater than
the sum of all the functional edges.

Note also that meaningful queries should not be equiv-
alent tofalse, so we will eliminate CSGs that include an
ISA edge from a class nodeC to its parent and then an ISA−

edge to a nodeD corresponding to a disjoint subclass from
C.

We now begin to present the algorithm, which starts by
finding a CSG on one side and constructs a “semantically
similar” CSG on the other side. For ease of presentation,
we assume that we always start from the target side, and
then try to find a similar CSG in the source. There are two
subcases:
• Case A: The target CSGD2 is known, e.g., it is the s-

tree associated with a single table.

• Case B: The target CSG is to be constructed itself.
For the sake of illustration, the rest of the discussion is in

terms of examples. But it should be noted that the essential
steps of the formal algorithm are presented throughout the
examples.
Case A.We use the following example to illustrate the con-
struction of a similar CSG in the source when the target
CSGD2 is given.
Example 3.1: Consider an example involving
a source schema with tablescontrol(proj,dept) and
manage(dept,mgr), and a target schema with a table
proj(pnum, dept, emp). Suppose the correspondences given
are v1:control.proj!proj.pnum, v2:control.dept!proj.dept,
and v3:manage.mgr!proj.emp. Figure 3 provides the
semantics of target tableproj as the graph, rooted atProj,
while the semantics of the source tables are subgraphs

Project
 Department
 Employee

Proj
 Dept

controlledBy

1..*
 1..1
 0..*
 1..1

1..1

1..1

1..*

0..*

hasManager

hasDept

hasSup

v
1

v
2

v
3

SOURCE:

TARGET:

pid
 did
 eid

pid
 did

Emp

eid

Figure 3. Input to Example 3.1

Project ---controlledBy->-- Department and

Department ---hasManager->-- Employee

In Figure 3, the correspondences are lifted to correspon-
dences between the associated class nodes.

Notice that the target CSG is ananchored s-tree, where
the anchor isProj, and the path from the anchor to every
other node is functional. This leads us to believe that a “sim-
ilar” CSG in the source should be a functional tree with a
root corresponding to the anchor.

Case A.1 Suppose for the anchorProj in the target we
find a corresponding node in the source, in this case
Project. Then, we try to connect it to every other node
that has a correspondence to the target CM, (Department
and Employee in this case) using minimal cost functional
paths. Since observation (ii) above directs us to follow
edges in pre-selected trees as much as possible, the edges
in pre-selected trees do not contribute to the cost of func-
tional paths. At last, we choose the functional tree(s)
satisfying the following conditions as the CSGs in the
source: (1) having the minimal cost and (2) containing
the most number of edges in the pre-selected trees. Each
of such functional trees is rooted at the node correspond-
ing to the anchor of the target tree. In this example, the
tree Project ---controlledBy->-- Department

---hasManager->-- Employee is the CSG in the
source that matches the target CSG.

Case A.2 If a user only specified correspondencesv2 and
v3 (v1 is missing), then we can no longer find a correspond-
ing root in the source; we are nonetheless seeking an CSG
in the source that is a functional tree. In this case, we look
for all functional trees in the source that contain the nodes
in CS . Such trees should be as small as possible, hence,
minimal functional trees.

In this example, we would return the same anchored tree
as above. Note that even if there were another classIntern
in the source graph, and a functional relationshipIntern
---works_on->-- Project , the functional tree rooted
at Intern would not be returned because it is not minimal:
the functional tree rooted atProject already contains the

necessary nodes.
Note that it is this technique that finds the appropriate

answer for Example 1.2.

Suppose that the nodes inCS are not covered by a single
(minimal) functional tree in the source CM graph. Then,
in Case A.1, we connect as many nodes as possible using a
single tree rooted at the node corresponding to the anchor
and leave the rest unconnected. Consequently, the corre-
spondences will be split among the tree and the remaining
unconnected nodes. In Case A.2, we find the collection of
trees covering different subsets of the nodes, and return each
paired with the target CSG. �

Case B. Next, we consider the case where there are sev-
eral pre-selected s-trees in the target and we want to con-
nect them. Once again, we use the idea of minimal-cost
functional trees to connect the marked nodes which belong
to these pre-selected trees. Consequently, we construct a
set of minimal functional trees in the target. Similarly, we
can construct a set of minimal functional trees in the source.
From these two sets we form pairs of CSGs by reverting to
Case A, i.e., following heuristics such as matching the roots
of tree pairs and seeking compatible connections.

3.3 Reified Relationships

In order to represent n-ary relationships (n > 2) in a
CM like UML, one reifies them, introducing a special class
connected to the participants using so-called “roles”. For
example, to represent that stores sell products to persons,
we introduce classSell, with functional properties/roles
seller, buyer, sold pointing to classesStore, Person andProduct

respectively. (See Figure 4.) Such reified relationship nodes
will be indicated in our text by tagging their name with♦,
although formally this can be encoded in the CM by mak-
ing such classes be subclasses of a special top-level class
ReifiedRelationship. Note that classes for reified relationships
may also be used to attach descriptive attributes for rela-
tionships (e.g.,dateOfPurchase). In fact, we need to use
this modeling approach for binary relationships that have
attributes. For ease of algorithm design, we have also cho-
sen to represent many-to-many binary relationships, such as
“person likes food”, in reified form.

In terms of the formulas for table semantics, reified rela-
tionships are used in the standard way. For example, if we
had tablesells(sid,prodid,pid, date) whose semantics is repre-
sented by Figure 4, then the formula is specified as follows:
T :sells(sid, prodid, pid, date) →O:Store(x),

O:Product(y), O:Person(z), O:Sell(s),
O:seller(s, x), O:buyer(s, z), O:sold(s, y),
O:sid(x, sid), O:prodid(y, prodid), O:pid(z, pid),
O:dateOfPurchase(s, date).

Note that cardinality constraints0/1..1 on inverse
roles can be used to indicate those cases where an
object can participate at most once in a relation-

-sid: key

Store

-dateOfPurchase

Sell

-pid: key

Person

-prodid: key

Product

seller

0..*
1..1

1..1

1..1
0..*

0..*

buyer

sold

Figure 4. Reified Relationship Diagram

ship. Thus functional paths, such asProject

---has_manager-->- Employee can still be recog-

nized in reified form as Project -<--what−-->-

Management♦ ---who-->- Employee .
When a reified relationship node appears in a CM graph,

we make several adjustments in the mapping algorithm.
First, a path of length two passing through a reified re-

lationship node should be counted as a path of length 1,
because a reified relationship could have been eliminated,
leaving a single edge.

Second, the semantic category of a target tree rooted at a
reified relationship inducespreferencesfor similarly rooted
(minimal) functional trees in the source. This includes
the anchor being many-to-many, many-to-one or one-to-one
(distinguished by the cardinality restrictions on the rolein-
verses, as in theManagement example above), the number
of roles (exact arity), or subclass relationship to top-level
ontology concept (e.g.,partOf♦).

Third, note that non-functional relationships be-
tween entities in a CM can also be derived as the
composition of edges on non-functional paths. For ex-
ample, traversing the pathPerson ---shopsAt---

Store ---location-->- City yields a many-to-many
relationship between persons and cities where the stores are
located. Thus, in seeking matches in the source for a target
(reified) many-to-many binary relationships betweenA and
B, one must also consider the possibility that they appear
as paths fromA’ to B’ in the source that are not functional
in either direction, whereA’ andB’ are nodes in the source
corresponding toA andB in the target, respectively. Note
that using a single reified relationship as an anchor and
extending this graph by functional paths from the roles,
corresponds to lossless joins with the table representing the
root; therefore such CSGs are preferred. More generally,
we look for CSGs that minimize the number of lossy joins,
by minimizing the number ofdirection reversal changes
along each path.

Example 3.2 [Example 1.1 revisited]:The solution to the
problem in Example 1.1 is then obtained as follows. The
target s-tree in Figure 1 is a many-to-many relationship,
which our algorithm represents as a reified relationship with

anchorhasBookSoldAt♦. To find a matching CSG connect-
ing the nodePerson in the source (corresponding toAuthor
in the target) and the nodeBookstore in the source (corre-
sponding toBookstore in the target), we look for paths con-
necting them that are not functional in either direction. Note
that going from one role filler to another of a reified many-
many binary relationship produces exactly such a path. In
this case, no such single reified node can be found in the
source. So we look for longer paths, obtaining the path from
Person to Bookstore throughwrites♦, Book, andsoldAt♦.

3.4 Obtaining Relational Expressions

The final mapping expression provides a pair of alge-
braic expressions using the tables in the input relational
schemas only. Therefore, we need to translate the discov-
ered CSGs in the CM graphs into algebraic expressions over
the database schemas. Consider a CM as a collection of
primitive relations/predicates for its concepts, attributes and
properties. The semantics of a relational table associated
with the CM is then a LAV expression over these predi-
cates. Translating a discovered subgraph in the CM graph
into expressions over tables associated with the CM graph
becomes a query rewriting problem.

The first step of the translation is to express the CSG
as a query using CM predicates. The encoding algorithm
proposed in [3] can be used for this purpose. The following
example illustrates this.

Person
 Book
 Bookstore
writes
 soldAt

pname
 sid

pname
 sid

Figure 5. A Discovered Tree over a CM Graph

Example 3.3: Figure 5 is a fully specified CSG in the
source CM of Example 1.1, with attribute nodes shown.
(For simplicity of presentation, we revert to unreified bi-
nary relationships.) TakingPerson as the root of the tree,
the encoding algorithm recursively constructs a logic for-
mula using unary predicates for the class nodes and binary
predicates for the edges. An attribute node is encoded as a
fresh variable in the formula and appears in the answer tu-
ple. Assigning a nameans to the query, we obtain

q: ans(v1,v2) :- O:Person(x1), O:pname(x1, v1),
O:writes(x1, x2), O:Book(x2), O:soldAt(x2, x3),
O:Bookstore(x3), O:sid(x3, v2). �

Given the table semantics in terms of logical formulas,
we rewrite the queryq above to a new queryq′ which
only mentions the tables in the relational schema by
taking advantage of the object identifier information in the
table semantics (see [6] for more sophisticated rewriting
algorithm involving recursive query plans). The new query

q′ will be faithful to the original queryq, i.e., maximally-
contained (see [9]) inq, and will mention tables that have
columns linked by the correspondences.

Example 3.4:For the sake of completeness, we now briefly
describe the rewriting process that makes use of the infor-
mation about identifiers in the table semantics. In particular,
we have proposed in [3] an ad-hoc approach to deriving in-
verse rules for each predicate in the CM, in terms of the ta-
bles in the schema. Formally, these are converted to Skolem
functions, giving rise to formulas such as

O:Person(f(pname, age)) :- T :person(pname, age).
when inverting a semantic specification such as

T :person(pname, age) →O :Person(x),
O :hasName(x, pname), O:hasAge(x, age).

However, different tables give rise to different Skolem func-
tions, which cannot then be joined. For this purpose, we use
thekeyinformation about table semantics (see Section 2) in
order to “merge” the various Skolem functions. So if we
knew thathasName is the key of entityPerson, and the for-
mula Φ containsPerson(x)∧ hasName(x, z) then we can in
fact usez instead ofx as the internal identifier, and treat
hasName as the identity relation.

As a result, we can rewrite the queryq in Example 3.3 to
queries that mention tables only. In our case, these include
the following:

q′1: ans(v1,v2) :- T :writes(v1, y), T :soldAT(y, v2).
q′2: ans(v1,v2) :- T :Person(v1), T :writes(v1, y), T :Book(y),

T :soldAT(y, v2), T :Bookstore(v2).
q′3: ans(v1,v2) :- T :Person(v1) T :writes(v1, y),

T :soldAT(y, v2), T :Bookstore(v2).
Since q′

1
does not mention tablesperson(pname) and

bookstore(sid) that are linked by the correspondences, andq′
2

is contained inq′
3
, q′

1
andq′

2
are eliminated. The body of

the queryq′
3
, converted to relational algebra in the standard

way, is returned as the algebraic expression. �

4 Experimental Results

We now report on experimental results that evaluate
the performance of the proposed approach. We show that
this approach works reasonably in a number of cases, and
achieves better results than the RIC-based technique for dis-
covering a complex mapping expression among marked ele-
ments in the schemas. The implementation is in Java and all
experiments were performed on a PC-compatible machine
with a Pentium IV 2.4GH CPU and 512MB memory.
Datasets: We considered a variety of domains. For each,
a pair of relational schemas developed independently was
used for testing. We ensured that the CMs associated with
the pair of schemas were also mutually independent, by us-
ing different domain ontologies or the different ER concep-
tual models used for deriving the independent schemas. We
describe them briefly below. All the schemas and CMs used

in our experiments are available at the project’s website.4

Schema #tables associated #nodes #mappings time

CM in CM tested (sec)

DBLP1 22 Bibliographic 75 6 0.072

DBLP2 9 DBLP2 ER 7

Mondial1 28 factbook 52 5 0.424

Mondial2 26 mondial2 ER 26

Amalgam1 15 amalgam1 ER 8 7 0.14

Amalgam2 27 amalgam2 ER 26

3Sdb1 9 3Sdb1 ER 9 3 0.105

3Sdb2 9 3Sdb2 ER 11

UTCS 8 KA onto. 105 2 0.384

UTDB 13 CS dept. onto. 62

HotelA 6 hotelA onto. 7 5 0.158

HotelB 5 hotelB onto. 7

NetworkA 18 networkA onto. 28 6 0.106

NetworkB 19 networkB onto. 27

Table 1. Characteristics of Test Data

The first three pairs of schemas were obtained from Clio’s
test datasets [15]. DBLP 1&2 are the relational schemas for
the DBLP bibliography. They are associated with the Bib-
liographic ontology and an ER model reverse engineered
from the DBLP2 schema, respectively. Mondial 1&2 are
databases about countries and their various features, where
Mondial1 is associated with the CIA factbook ontology and
Mondial2 is reverse engineered. Amalgam 1&2 are test
schemas developed by students, and used in the Clio evalu-
ations. They are associated with different conceptual mod-
els. The schemas 3Sdb 1&2 are two versions of a repos-
itory of data on biological samples explored during gene
expression analysis [10]. UTCS and UTDB are databases
for the CS department and the DB group at the University
of Toronto. They were used in our previous study of se-
mantics discovery, so their semantics are available now. Fi-
nally, we chose two pairs of ontologies from the I3CON
conference.5 These ontologies were used for the ontology
alignment competition and demonstrate a certain degree of
modeling heterogeneity. We forward engineered them into
relational schemas for testing our techniques. As shown in
Table 1, the test data have a variety of complexities.
Methodology: We compared thesemantic approach, pre-
sented in this paper, with the RIC-based technique illus-
trated in Example 1.1, which creates logical relations by
chasing constraints and derives mappings from pairs of
source-target logical relations covering some correspon-
dences. Since in its raw form, the chase generates maximal

4http://www.cs.toronto.edu/˜yuana/research/maponto/schemaMapping
5http://www.atl.external.lmco.com/projects/ontology/i3con.html

sets of columns, we first applied a heuristic that removed
any unnecessary joins — ones that did not introduce new
attributes not covered by correspondences. (This is one op-
timization also described in [8].)

The comparison tries to focus on the intrinsic abilities of
the methods. Each experiment consists of a manually cre-
ated non-trivial “benchmark” mapping between some pair
of schemas (a trivial mapping is from a single source table
to a single target table), together with correspondences in-
volving column names in it. These manually-created map-
pings are used to compare the mapping performance of the
different methods.
Measures: We useprecision and recall to measure the
performance of the methods. For a given schema pair, letP
be the set of mappings generated by a method for a given set
of correspondences. LetR be the set of manually-created
mappings for the same given set of correspondences. The
two measures are computed as:precision = |P∩R|

|P | and

recall = |P∩R|
|R| . We compute the average precision and

average recall over all tested mapping cases.
We believe it is instructive to give more details about

how we calculate these measures. For each test case,R
contains the manually-created non-trivial benchmark map-
ping expression consisting of a connection in the source
and a connection in the target. In evaluating the gener-
ated mappings for each method, we seek for the same pair
of connections, considering others that do not match the
benchmark completely as “incorrect” mappings. For in-
stance, in Example 1.1, even if there were target tables for
author2, store2, and the RIC-based technique recovered map-
pings〈person,author2〉 and〈store,store2〉, recall and precision
would have been 0 because no non-trivial mappings were
found. (Note that the semantic method can also find trivial
mappings.)

0

20

40

60

80

100

DBLP

M
on

dia
l

Am
alg

am

3S
db

UTCSDB

Hot
el

Net
wor

k

A
ve

ra
ge

 P
re

ci
si

on
 (

%
)

Semantic
 RIC-based

Figure 6. Average Precision

Results: First, the times used by thesemantic approach for
generating the mappings (in algebraic expressions) in the
tested schemas are insignificant. The last column of Table 1

shows that it took less than one second. This is comparable
with the RIC-based technique, which also took less than one
second for mapping generation in our experiments. Next,
in terms of the measures, Figure 6 compares the average
precisions ofsemantic and the RIC-based technique for all
the domains. Figure 7 compares the average recalls.

0

20

40

60

80

100

DBLP

M
on

dia
l

Am
alg

am

3S
db

UTCSDB

Hot
el

Net
wor

k

A
ve

ra
ge

 R
ec

al
l (

%
)

Semantic
 RIC-based

Figure 7. Average Recall

The results show that in general, thesemantic approach
performed at least as well as the RIC-based technique for
the test datasets. The measures of recall show that the se-
mantic approach did not miss any correct mappings that
were predicted by the RIC-based technique (since it gotall
the mappings sought), and made significant improvements
in some cases. Moreover, Figure 6 shows that the seman-
tic approach had significantly improved precision in some
cases.
Discussion: Many of the experimental schemas we have
found do not have complicated semantics, and therefore
would not provide differing results unless somewhat com-
plex correspondences and mappings were sought. Most of
the differences in this particular experimental set were due
to situations such as the one illustrated in Example 1.2 (i.e.,
utilizing the semantics of ISA relationships). And it may be
noteworthy that the schemas in Amalgam, where the seman-
tic technique fared best, were not designed by professionals
but by undergraduate database students.

5 Related Work

The most directly related work is obviously Clio [13,
15], and we have already provided some comparison of the
basic techniques. As mentioned earlier, the work presented
here can be thought of as increasing recall by, among others,
slightly generalizing the use of RICs to repeatedly merging
functional relationships onto the entities in the CM, where
ISA is also treated as a functional relationship. It can also
increase precision by eliminating candidate logical relations
which cannot be consistently satisfied (e.g., because of dis-
jointness constraints) and eliminating mappings that pairre-

lationships with suspiciously different semantics (many-to-
many with many-to-one,partOf with non-partOf).

Conceptual models have been used in developing graph-
ical query interfaces for databases. A central problem is
inferring a query when a user has marked some nodes on
a CM diagram. We have already noted that the solution in
[18] applies the concept of maximal object from relational
database theory to find a default connection among a set
of nodes in a CM diagram. Assuming a user wants only
one object to be used to infer a meaningful connection, the
solution in [17] uses the “minimum cost” object for the con-
nection. The fundamental difference from the above efforts
is that we aim at finding a pair of matched connections in
different CM graphs.

6 Conclusions

We have proposed here an approach to discovering map-
ping expressions between a pair of relational schemas,
which starts from simple table column correspondences,
and also utilizes the semantics of the tables, expressed
through connections to conceptual models. We first showed
several cases where the current solutions to discovering
mappings from correspondences (based on referential in-
tegrity and key constraints) do not produce the best re-
sults. We then developed algorithms for discovering plau-
sible mappings at the conceptual level, and translated them
into sketches of relational level mappings. Intuitively, this
algorithm replaces the use of database constraints by the
notion of ”minimal functional tree” in the CM, which, in-
terestingly, appear to be related through the theory of Uni-
versal Relations and lossless joins. Experimental results
demonstrated that the semantic approach achieved a gener-
ally better performance in recovering complex mapping ex-
pressions on test datasets drawn from a variety of domains.

Given the additional significant work that has gone into
the Clio tool, and that Clio provides an approach for debug-
ging the mapping, it may be best to view the present work
as being complementary and embedded: if the semantics of
the schemas are available or can be reconstructed with low
cost using our own tool [1, 2, 3], then the present technique
could be used inside Clio to provide some better candidate
mappings. The exact details of such a merger remain to be
worked out.

We are currently working on the representation of all
conjunctive queries over the CM, as well as safe negation
in s-trees/s-graphs. As shown in [3], a more careful look
at the tree provides hints about when joins should really be
treated as outer-joins (e.g., when the minimum cardinality
of an edge being traversed is 0, not 1); such information
could be quite useful in computing more accurate mappings,
expressed as nested tuple-generating dependencies.

We also plan to investigate the related problem of finding
complex semantic mappings between two CMs/ontologies,

given a set of element correspondences.

References
[1] Y. An, A. Borgida, and J. Mylopoulos. Constructing Com-

plex Semantic Mappings between XML Data and Ontolo-
gies. InISWC’05, pages 6–20, 2005.

[2] Y. An, A. Borgida, and J. Mylopoulos. Inferring Complex
Semantic Mappings between Relational Tables and Ontolo-
gies from Simple Correspondences. InODBASE’05, pages
1152–1169, 2005.

[3] Y. An, A. Borgida, and J. Mylopoulos. Discovering the Se-
mantics of Relational Tables through Mappings.Journal on
Data Semantics, VII:1–32, 2006.

[4] A. Bonifati, E. Q. Chang, T. Ho, V. S. Lakshmanan, and
R. Pottinger. HePToX: Marrying XML and Heterogeneity in
Your P2P Databases. InVLDB’05, pages 1267–1270, 2005.

[5] D. Calvanese, G. D. Giacomo, M. Lenzerini, D. Nardi, and
R. Rosati. Data Integration in Data Warehousing.J. of Coop.
Info. Sys., 10(3):237–271, 2001.

[6] O. M. Duschka, M. R. Genesereth, and A. Y. Levy. Re-
cursive query plans for data integration.Journal of Logic
Programming, 43(1):49–73, 2000.

[7] R. Fagin, P. Kolaitis, R. J. Miller, and L. Popa. Data Ex-
change: Semantics and Query Answering. InICDT’03,
pages 207–224, 2003.

[8] A. Fuxman, M. Hernandez, H. Ho, R. J. Miller, P. Papotti,
and L. Popa. Nested Mappings: Schema Mapping Reloaded.
In VLDB’06, pages 67–78, 2006.

[9] A. Y. Halevy. Answering queries using views: A survey.
VLDB Journal: Very Large Data Bases, 10(4):270–294,
2001.

[10] L. Jiang, T. Topaloglou, A. Borgida, and J. Mylopoulos.
Incorporating Goal Analysis in Database Design: A Case
Study from Biological Data Management. InRE’06, pages
196–204, 2006.

[11] Z. Kedad and M. Bouzeghoub. Discovering View Ex-
pressions from a Multi-Source Information System. In
CoopIS’99, pages 57–68, 1999.

[12] V. M. Markowitz and A. Shoshani. Representing Extended
Entity-Relationship Structures in Relational Databases: A
Modular Approach.ACM TODS, 17(3):423–464, September
1992.

[13] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema
Mapping as Query Discovery. InVLDB’00, pages 77–88,
2000.

[14] T. Milo and S. Zohar. Using Schema Matching to Simplify
Heterogeneous Data Translation. InVLDB’98, pages 122–
133, 1998.

[15] L. Popa, Y. Velegrakis, R. J. Miller, M. Hernandes, and
R. Fagin. Translating Web Data. InVLDB’02, pages 598–
609, 2002.

[16] E. Rahm and P. A. Bernstein. A Survey of Approaches to
Automatic Schema Matching.VLDB Journal, 10:334–350,
2001.

[17] J. A. Wald and P. G. Sorenson. Resolving the Query Infer-
ence Problem Using Steiner Trees.ACM TODS, 9(3):348–
368, 1984.

[18] Z. Zhang and A. O. Mendelzon. A Graphical Query Lan-
guage for Entity-Relationship Databases. InER’83, pages
441–448, 1983.

