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Announcement

Pre-test office hour today at BA5287

11am~1pm, 2pm~4pm

PS5 out, due next Tuesday



Recap: Amortized analysis

• We do amortized analysis when we are interested 
in the total complexity of a sequence of operations.
• Unlike in average-case analysis where we are interested 

in a single operation.

• The amortized sequence complexity is the 
“average” cost per operation over the sequence.
• But unlike average-case analysis, there is NO probability 

or expectation involved.



For a sequence of m operations:

Amortized sequence complexity 

worst-case sequence complexity
=

m        

The MAXIMUM possible total cost 
of among all possible sequences 
of m operations



Methods for amortized analysis

• Aggregate method

• Accounting method

• Potential method (skipped, read Chapter 17 if 
interested)



Recap: Amortized analysis
• Real-life intuition: Monthly cost of living, a sequence of 

12 operations
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Aggregate method

What is the amortized cost per month (operation)?

Just sum up the costs of all months (operations) and 
divide by the number of months (operations).



Aggregate method: sum of all months’ spending is 

$126,00, divided by 12 months 

– the amortized cost is $1,050 per month.
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Accounting method

Instead of calculating the average spending, we think 
about the cost from a different angle, i.e., 

How much money do I need to earn each month in 
order to keep living? That is, be able to pay for the 
spending every month and never become broke.



Accounting method: if I earn $1,000 per month from Jan to Nov and 

earn $1,600 in December, I will never become broke (assuming earnings 

are paid at the beginning of month).

So the amortized cost: $1,000 from Jan to Nov and $1,600 in Dec.
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Aggregate vs Accounting

• Aggregate method is easy to do when the cost of 
each operation in the sequence is concretely 
defined.

• Accounting method is more interesting
• It works even when the sequence of operation is not 

concretely defined

• It can obtain more refined amortized cost than 
aggregate method (different operations can have 
different amortized cost)

END OF RECAP



Amortized Analysis on 
Dynamic Arrays



Problem description
• Think of an array initialized with a fixed number of 

slots, and supports APPEND and DELETE operations.

• When we APPEND too many elements, the array 
would be full and we need to expand the array 
(make the size larger).

• When we DELETE too many elements, we want to 
shrink to the array (make the size smaller).

• Requirement: the array must be using one
contiguous block of memory all the time.

How do we do the expanding and shrinking?



One way to expand

• If the array is full when APPEND is called
• Create a new array of twice the size

• Copy the all the elements from old array to new array

• Append the element

3 7 2 1 APPEND(9)

93 7 2 1



Amortized analysis of expand

Now consider a dynamic array initialized with size 1 
and a sequence of m APPEND operations on it.

Analyze the amortized cost per operation

Assumption: only count array assignments, i.e., 
append an element and copy an element



Use the aggregate method

The cost sequence would be like:

1,  2,  3,  1,  5,  1,  1,  1,  9,  1,  1,  1,  1,  1,  1, …

Copy 1 
append 1

Copy 2 
append 1

Copy 4 
append 1

Copy 8 
append 1

Cost sequence concretely defined, sum-and-divide 
can be done, but we want to do something more 
interesting…

𝑐𝑖 =  
𝑖 + 1
1

if 𝑖 is power of 2
otherwise

Assume Index 
starts from 0



Use the accounting method!

How much money do we need to earn at each operation, 
so that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

$1 ?
$2 ?

$3 ?

$log m ?

$m ?



Earn $1 for each appended element

This $1 (the “append-dollar”) is spent when 
appending the element.

But, when we need to copy this element to a new 
array (when expanding the array), we don’t any 
money to pay for it --

BROKE!



Earn $2 for each appended element

$1 (the “append-dollar”) will be spent when 
appending the element

$1 (the “copy-dollar”) will be spent when copying the 
element to a new array

What if the element is copied for a second time 
(when expanding the array for a second time)?

BROKE!



Earn $3 for each appended element

$1 (the “append-dollar”) will be spent when 
appending the element

$1 (the “copy-dollar”) will be spent when copying the 
element to a new array

$1 (the “recharge-dollar”) is used to recharge the old 
elements that have spent their “copy-dollars”.

NEVER BROKE!



$1 (the “recharge-dollar”) is used to recharge the old 
elements that have used their “copy-dollar”.

Old elements who have 
used their “copy-dollars”

New elements each of whom 
spares $1 for recharging one 
old element’s “copy-dollar”.

There will be enough new elements who will spare 
enough money for all the old elements, because the 
way we expand – TWICE the size



So, in summary
If we earn $3 upon each APPEND it is enough money 
to pay for all costs in the sequence of APPEND 
operations.

In other words, for a sequence of m APPEND 
operations, the amortized cost per operations is 3, 
which is in O(1).

In a regular worst-case analysis (non-amortized), what is 
the worst-case runtime of an APPEND operation on an 
array with m elements?



By performing the amortized analysis, we 
showed that “double the size when full” is a 
good strategy for expanding a dynamic array, 
since it’s amortized cost per operation is in 
O(1).

In contrast, “increase size by 100 when full” 
would not be a good strategy. Why?



Takeaway

Amortized analysis provides us valuable 

insights into what is the proper strategy 

of expanding dynamic arrays.



Shrinking dynamic arrays
A bit trickier…



First that comes to mind…

When the array is ½ full after DELETE, create a new 
array of half of the size, and copy all the elements.

Consider the following sequence of operations 
performed on a full array with n element…

APPEND, DELETE, APPEND, DELETE, APPEND, …

Ɵ(n) amortized cost per operation since every 
APPEND or DELETE causes allocation of new array.

NO GOOD!



The right way of shrinking

When the array is ¼ full after DELETE, create a new 

array of ½ of the size, and copy all the elements.

Earning $3 per APPEND and $3 per DELETE would be 
enough for paying all the cost.

• 1 append/delete-dollar

• 1 copy-dollar

• 1 recharge-dollar



The array, after shrinking… 

Array is half-emptyElements who just spent 
their copy-dollars

Before the next expansion, we need to fill the empty half, which 
will spare enough money for copying the green part.

Before the next shrinking, we need to empty half of the green
part, which will spare enough money for copying what’s left. 



So, overall

In a dynamic array, if we expand and shrink the array 
as discussed (double on full, halve on ¼ full)…

For any sequence of APPEND or DELETE operations, 
earning $3 per operation is enough money to pay for 
all costs in the sequence,…

Therefore the amortized cost per operation of any 
sequence is upper-bounded by 3, i.e., O(1).



Next week

Graphs!
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