
CSC263 Week 7
Thursday

http://goo.gl/forms/S9yie3597B

http://goo.gl/forms/S9yie3597B

Announcement

Pre-test office hour today at BA5287

11am~1pm, 2pm~4pm

PS5 out, due next Tuesday

Recap: Amortized analysis

• We do amortized analysis when we are interested
in the total complexity of a sequence of operations.
• Unlike in average-case analysis where we are interested

in a single operation.

• The amortized sequence complexity is the
“average” cost per operation over the sequence.
• But unlike average-case analysis, there is NO probability

or expectation involved.

For a sequence of m operations:

Amortized sequence complexity

worst-case sequence complexity
=

m

The MAXIMUM possible total cost
of among all possible sequences
of m operations

Methods for amortized analysis

• Aggregate method

• Accounting method

• Potential method (skipped, read Chapter 17 if
interested)

Recap: Amortized analysis
• Real-life intuition: Monthly cost of living, a sequence of

12 operations

500 500 500 500

1500

500 500 500

4000

500

1000

2100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly cost of living ($)

Aggregate method

What is the amortized cost per month (operation)?

Just sum up the costs of all months (operations) and
divide by the number of months (operations).

Aggregate method: sum of all months’ spending is

$126,00, divided by 12 months

– the amortized cost is $1,050 per month.

500 500 500 500

1500

500 500 500

4000

500

1000

2100

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Monthly cost of living ($)

Accounting method

Instead of calculating the average spending, we think
about the cost from a different angle, i.e.,

How much money do I need to earn each month in
order to keep living? That is, be able to pay for the
spending every month and never become broke.

Accounting method: if I earn $1,000 per month from Jan to Nov and

earn $1,600 in December, I will never become broke (assuming earnings

are paid at the beginning of month).

So the amortized cost: $1,000 from Jan to Nov and $1,600 in Dec.

Spending

0

1000

2000

3000

4000

Ja
n

Fe
b

M
ar

A
p

r

M
ay

Ju
n

Ju
l

A
u

g

Se
p

O
ct

N
o

v

D
ec

500 500 500 500

1500

500 500 500

4000

500
1000

2100

1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
1600

Monthly cost of living ($)

Spending Earning

Aggregate vs Accounting

• Aggregate method is easy to do when the cost of
each operation in the sequence is concretely
defined.

• Accounting method is more interesting
• It works even when the sequence of operation is not

concretely defined

• It can obtain more refined amortized cost than
aggregate method (different operations can have
different amortized cost)

END OF RECAP

Amortized Analysis on
Dynamic Arrays

Problem description
• Think of an array initialized with a fixed number of

slots, and supports APPEND and DELETE operations.

• When we APPEND too many elements, the array
would be full and we need to expand the array
(make the size larger).

• When we DELETE too many elements, we want to
shrink to the array (make the size smaller).

• Requirement: the array must be using one
contiguous block of memory all the time.

How do we do the expanding and shrinking?

One way to expand

• If the array is full when APPEND is called
• Create a new array of twice the size

• Copy the all the elements from old array to new array

• Append the element

3 7 2 1 APPEND(9)

93 7 2 1

Amortized analysis of expand

Now consider a dynamic array initialized with size 1
and a sequence of m APPEND operations on it.

Analyze the amortized cost per operation

Assumption: only count array assignments, i.e.,
append an element and copy an element

Use the aggregate method

The cost sequence would be like:

1, 2, 3, 1, 5, 1, 1, 1, 9, 1, 1, 1, 1, 1, 1, …

Copy 1
append 1

Copy 2
append 1

Copy 4
append 1

Copy 8
append 1

Cost sequence concretely defined, sum-and-divide
can be done, but we want to do something more
interesting…

𝑐𝑖 =
𝑖 + 1
1

if 𝑖 is power of 2
otherwise

Assume Index
starts from 0

Use the accounting method!

How much money do we need to earn at each operation,
so that all future costs can be paid for?

How much money to earn for each APPEND’ed element ?

$1 ?
$2 ?

$3 ?

$log m ?

$m ?

Earn $1 for each appended element

This $1 (the “append-dollar”) is spent when
appending the element.

But, when we need to copy this element to a new
array (when expanding the array), we don’t any
money to pay for it --

BROKE!

Earn $2 for each appended element

$1 (the “append-dollar”) will be spent when
appending the element

$1 (the “copy-dollar”) will be spent when copying the
element to a new array

What if the element is copied for a second time
(when expanding the array for a second time)?

BROKE!

Earn $3 for each appended element

$1 (the “append-dollar”) will be spent when
appending the element

$1 (the “copy-dollar”) will be spent when copying the
element to a new array

$1 (the “recharge-dollar”) is used to recharge the old
elements that have spent their “copy-dollars”.

NEVER BROKE!

$1 (the “recharge-dollar”) is used to recharge the old
elements that have used their “copy-dollar”.

Old elements who have
used their “copy-dollars”

New elements each of whom
spares $1 for recharging one
old element’s “copy-dollar”.

There will be enough new elements who will spare
enough money for all the old elements, because the
way we expand – TWICE the size

So, in summary
If we earn $3 upon each APPEND it is enough money
to pay for all costs in the sequence of APPEND
operations.

In other words, for a sequence of m APPEND
operations, the amortized cost per operations is 3,
which is in O(1).

In a regular worst-case analysis (non-amortized), what is
the worst-case runtime of an APPEND operation on an
array with m elements?

By performing the amortized analysis, we
showed that “double the size when full” is a
good strategy for expanding a dynamic array,
since it’s amortized cost per operation is in
O(1).

In contrast, “increase size by 100 when full”
would not be a good strategy. Why?

Takeaway

Amortized analysis provides us valuable

insights into what is the proper strategy

of expanding dynamic arrays.

Shrinking dynamic arrays
A bit trickier…

First that comes to mind…

When the array is ½ full after DELETE, create a new
array of half of the size, and copy all the elements.

Consider the following sequence of operations
performed on a full array with n element…

APPEND, DELETE, APPEND, DELETE, APPEND, …

Ɵ(n) amortized cost per operation since every
APPEND or DELETE causes allocation of new array.

NO GOOD!

The right way of shrinking

When the array is ¼ full after DELETE, create a new

array of ½ of the size, and copy all the elements.

Earning $3 per APPEND and $3 per DELETE would be
enough for paying all the cost.

• 1 append/delete-dollar

• 1 copy-dollar

• 1 recharge-dollar

The array, after shrinking…

Array is half-emptyElements who just spent
their copy-dollars

Before the next expansion, we need to fill the empty half, which
will spare enough money for copying the green part.

Before the next shrinking, we need to empty half of the green
part, which will spare enough money for copying what’s left.

So, overall

In a dynamic array, if we expand and shrink the array
as discussed (double on full, halve on ¼ full)…

For any sequence of APPEND or DELETE operations,
earning $3 per operation is enough money to pay for
all costs in the sequence,…

Therefore the amortized cost per operation of any
sequence is upper-bounded by 3, i.e., O(1).

Next week

Graphs!

http://goo.gl/forms/S9yie3597B

http://goo.gl/forms/S9yie3597B

