CSC165 Week 12

Larry Yueli Zhang, November 25, 2014
Today’s outline

➔ countability
➔ Induction
➔ review for final exam
countability
compare the size of two sets

X = \{1, 2, 3\}

Y = \{“one”, “two”, “three”\}

how do their sizes compare?

| |X| | |Y| |
How about these two?

\[X = \{ \text{natural numbers} \} \quad \# 0, 1, 2, 3, 4, 5, \ldots \]

\[Y = \{ \text{even natural numbers} \} \quad \# 0, 2, 4, 6, \ldots \]

\[|X| < |Y| \quad ? \]

\[|X| > |Y| \quad ? \]

\[|X| = |Y| \quad ? \]
an real-life example

|X|: number of coins

|Y|: number of coin tails

they’re the same, because each coin has one and only one tail, and each tail belongs to one and only one coin

If there is a mapping from X to Y like this, then we have |X| = |Y|
What does $f: X \mapsto Y$ need to satisfy, mathematically?

- f is a **well defined function**, i.e., each x maps to a unique y.

So these don’t happen:

- f is “**1-1**”, i.e., each y mapped to by at most one x.

So this doesn’t happen:

- f is “**onto**”, i.e., every y has some x that maps to it.

So this doesn’t happen:
Given two sets X and Y, if there exists a well defined function $f : X \mapsto Y$ that is 1-1 and onto, then $|X| = |Y|$.

We can use this to compare the sizes of sets with infinitely many elements. Key is: find an $f : X \mapsto Y$
\[X = \{\text{natural numbers}\} \quad \# 0, 1, 2, 3, 4, 5, \ldots \]
\[Y = \{\text{even natural numbers}\} \quad \# 0, 2, 4, 6, \ldots \]

Prove: \(|X| = |Y|\)

Proof:
“countable”

when we **count**, we do: 0, 1, 2, 3, 4, ...
that’s basically **enumerating natural numbers**

so, we say the set \(\mathbb{N} \) is countable

and, any set \(A \) that satisfies \(|A| \leq |\mathbb{N}|\) is countable

\(\mathbb{Z} \) (integers) is countable

\(\mathbb{Q} \) (rational numbers) is countable

\(\mathbb{R} \) (real numbers) is uncountable
countability and computability
How many Python functions could be written?

- the code of each Python function is basically a string of characters
- each (UTF-8) character corresponds a number between 0~255
- if we just concatenate all the numbers corresponding to all characters in the Python function, we get a unique natural number
- that is a 1-1 mapping: **Python functions ↦ N**

```python
def hello(s):
    print(s)
    return
```

```
237624362342346234762346234274262342342344
```
so, we can enumerate all Python functions like:

\[f_0, f_1, f_2, f_3, \ldots \]

so, we can create the **table of function halting behaviours**, i.e., the table of return values of \(Halt(f_i, f_j) \)

<table>
<thead>
<tr>
<th>(f_i)</th>
<th>(H(f_i, f_0))</th>
<th>(H(f_i, f_1))</th>
<th>(H(f_i, f_2))</th>
<th>(H(f_i, f_3))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_0)</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>(f_1)</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>(f_2)</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>(f_3)</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

\[\vdots \]

\[\vdots \]

this row describes the “behaviour” of \(f_3 \)

all functions’ behaviours are enumerated in this table
Now, construct a function f_x with “weird” behaviour

<table>
<thead>
<tr>
<th>f_i</th>
<th>$H(f_i, f_0)$</th>
<th>$H(f_i, f_1)$</th>
<th>$H(f_i, f_2)$</th>
<th>$H(f_i, f_3)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_0</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>f_1</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>f_2</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>f_3</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Take the **diagonal** and flip T/F \[H(f_x, f_i) = \neg H(f_i, f_i) \quad i = 0, 1, 2, \ldots \]

| f_x | F | F | F | T |

This row must be the same as one of the rows in the table, because f_x is just one of Python functions being enumerated.

Which row?

$\forall i \in \mathbb{N}, \text{Entry}(x, i) = \neg \text{Entry}(i, i)$
fx does NOT exist!!

\[f_x : H(f_x, f_i) = \neg H(f_i, f_i) \quad i = 0, 1, 2, \ldots \]

i.e., \(f_x(f_i) \) halts if \(H(f_i, f_i) \) is False

\(f_x(f_i) \) does not halt if \(H(f_i, f_i) \) is True

fx cannot be programmed

if it could be programmed, the code would look like...

```python
def fx(fi):
    while halt(fi, fi):
        pass
    return 42
```
The argument we made has a name, it’s called “diagonalization”.

Given any list of countably many of functions, we can always construct an \(f_x \) that is outside that list.

That means the set of all possible functions is uncountable.

Since we can only program countably many Python functions

there are uncountably many functions that we cannot program in Python, or in any computer language