an informal, anonymous **survey** of your learning experience so far

http://goo.gl/forms/AyC01bEk7g

Exclusive for Tuesday evening section!
today’s outline

➔ proof by cases
➔ review of proofs
➔ algorithms
proof by cases
proof by cases

➔ **split** your argument into differences cases

➔ prove the conclusion **for each** case
\[\forall n \in \mathbb{N}, n^2 + n \text{ is even} \]

thoughts

\[n^2 + n = n(n + 1) \]
Proof: \(\forall n \in \mathbb{N}, n^2 + n \) is even
one more practice
Define predicate $T(n)$ by

$$\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, n = 7i + 1$$

Prove:

$$S1 : \forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2)$$

Disprove:

$$S2 : \forall n \in \mathbb{N}, T(n^2) \Rightarrow T(n)$$
\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, n = 7i + 1

thoughts

Prove: \(S1 : \forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2) \)

\[
n = 7i + 1
\]

\[
n^2 = 7k + 1
\]
Proof:

\[\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, n = 7i + 1 \]

Prove: \(S1: \forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2) \)
Define predicate $T(n)$ by

$$\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, n = 7i + 1$$

Prove:

$$S_1 : \forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2)$$

Disprove:

$$S_2 : \forall n \in \mathbb{N}, T(n^2) \not\Rightarrow T(n)$$
uniqueness (math prerequisite)

if \(m \) and \(n \) are natural numbers, with \(n \neq 0 \), then there is exactly one pair natural numbers \((q, r)\) such that:

\[
m = qn + r, \quad n > r \geq 0
\]

divide \(m \) by \(n \), the quotient and remainder are unique
\[\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, \ n = 7i + 1 \]

thoughts

Disprove: \(S_2 : \forall n \in \mathbb{N}, T(n^2) \Rightarrow T(n) \)

\(\neg S_2 : \)
\[\forall n \in \mathbb{N}, \quad T(n) \iff \exists i \in \mathbb{N}, \quad n = 7i + 1 \]

Disproof: Disprove: \(S2 : \forall n \in \mathbb{N}, T(n^2) \Rightarrow T(n) \)
a review of proof patterns
patterns of inference

what’s known

what can be inferred

Two categories of inference rules

→ introduction: smaller statement => larger statement

→ elimination: larger statement => smaller statement
negation introduction

assume A

...

contradiction
conjunction introduction

A

B

\[\text{c is red} \]
\[\text{c is fast} \]

\[\text{c is red and fast} \]
disjunction introduction

A

\[\text{c is red} \]

\[\text{c is red or fast} \]

\[\text{c is fast or red} \]

\[\text{(nothing here)} \]

\[\text{(nothing)} \]

\[\text{it's a boy or a girl} \]

\[\text{(nothing)} \]
implication introduction

assume A

assume \(\neg B \)

\(\neg A \)
equivalence introduction

A => B
B => A

n odd => n² odd
n² odd => n odd
universal introduction

\begin{align*}
\text{assume } a &\in D \\
\text{...} \\
P(a) \quad &\Rightarrow \\
\text{all cars are red}
\end{align*}

assume a generic car c

\begin{align*}
\text{...} \\
c \text{ is red} \\
\text{all cars are red}
\end{align*}
existential introduction

\[P(a) \]
\[a \in D \]

\[\text{c is red} \]
\[\text{c is a car} \]

\[\text{there exists a car that is red} \]
negation elimination

\neg A

\neg \neg A

“the car is not red” is false

the car is red
negation elimination

\[A \]
\[\neg A \]
\[\neg A \]

there are 51 balls

there are not 51 balls

contradiction!
conjunction elimination

\[A \land B \]

the car is red and fast

the car is red

the car is fast
disjunction elimination

\[A \lor B \]

\[\neg A \]

\[\text{it’s not a boy} \]

\[\text{it’s a girl} \]
implication elimination

\[A \implies B \]

\[A \]

\[\text{If you work hard, you get A+} \]

\[\text{You work hard} \]

\[\text{You get A+} \]
If you work hard, you get A+

You don’t get A+

You don’t work hard
equivalence elimination

A ⇔ B

n odd <=> n² odd
n odd => n² odd
n² odd => n odd
universal elimination

\[\forall x \in D, P(x) \]

all cars are red

X is a car

\hline

\[a \in D \]

X is red
existential elimination

\[\exists x \in D, P(x) \]

\[\exists n \in N, n \text{ divides } 32 \]

Let \(m \in N \) such that \(m \) divides 32
how to be good at proofs

➔ become familiar with these patterns, by lots of practice.

➔ recognize these patterns in your proof, use the manipulation rules to get closer to your target
Chapter 4

Algorithm Analysis and Asymptotic Notation
Computer scientists talk like...

“The worst-case runtime of bubble-sort is $O(n^2)$.”

“I can sort it in $O(n \log n)$.”

“That’s too slow, make it linear-time.”

“That problem cannot be solved in polynomial time.”
compare two sorting algorithms

bubble sort
merge sort
demo at http://www.sorting-algorithms.com/

Observations
“running time”: what do we really mean?

- It does **NOT** mean how many **seconds** are spent in running the algorithm.
- It means **the number of steps** that are taken by the algorithm.
- So, the running time is **independent of the hardware** on which you run the algorithm.
- It only depends on the algorithm itself.
but, sometimes we don’t really care about the number of steps...

→ what we really care: how the number of steps grows as the size of input grows

→ we don’t care about the absolute number of steps

→ we care about: “when input size doubles, the running time quadruples”

→ so, $0.5n^2$ and $700n^2$ are no different!

→ constant factors do NOT matter!
constant factor does not matter, when it comes to growth

\[T_1(n) = 0.5n^2 \quad \quad \quad \quad T_2(n) = 700n^2 \]

\[\frac{T_1(2n)}{T_1(n)} = \frac{0.5(2n)^2}{0.5n^2} = \frac{2n^2}{0.5n^2} = 4 \]

\[\frac{T_2(2n)}{T_2(n)} = \frac{700(2n)^2}{700n^2} = \frac{2800n^2}{700n^2} = 4 \]
we care about large input sizes

→ we don’t need to study algorithms in order to sort two elements, because different algorithms make no difference

→ we care about algorithm design when the input size \(n \) is very large

→ so, \(n^2 \) and \(n^2+n+2 \) are no different, because when \(n \) is really large, \(n+2 \) is negligible compared to \(n^2 \)

→ only the highest-order term matters
low-order terms don’t matter

\[T_1(n) = n^2 \quad \text{and} \quad T_2(n) = n^2 + n + 2 \]

\[T_1(10000) = 100,000,000 \]
\[T_2(10000) = 100,010,002 \]

difference \approx 0.01\%
summary of running time

→ we count the number of steps
→ constant factors don’t matter
→ only the highest-order term matters

so, the followings are no different...

\[n^2 \quad 2n^2 + 3n \quad \frac{n^2}{165} + 1130n + 3.14159 \]

so we can say, they are all \(O(n^2) \)
$O(n^2)$ is called asymptotic notation

$O(n^2)$ is called asymptotic upper-bound

“growing no faster than n^2”

$\Omega(n^2)$ is called asymptotic lower-bound

“growing no slower than n^2”

will be discussed in more detail later
asymptotic notation

It is a simplification of the “real” running time

→ it does not tell the whole story about how fast a program runs in real life.

◆ in real world applications, constant factor matters! hardware matters! implementation matters!

→ this simplification makes possible the development of the whole theory of computational complexity.

◆ HUGE idea!
a quick note

In CSC165, sometimes we use asymptotic notations such as $O(n^2)$, and sometimes, when we want to be more accurate, we use the exact forms, such as $3n^2 + 2n$

It depends on what the question asks.
analyse the time complexity of a program
linear search

```python
def LS(A, x):
    """ Return index i, x == A[i]. Otherwise, return -1 """
    i = 0
    while i < len(A):
        if A[i] == x:
            return i
        i = i + 1
    return -1
```

What’s the running time of this program?
linear search

def LS(A, x):
 """ Return index i, x == A[i].
 Otherwise, return -1 """
 i = 0
 while i < len(A):
 if A[i] == x:
 return i
 i = i + 1
 return -1

Count time complexity
LS([2, 4, 6, 8], 4)
linear search

```python
def LS(A, x):
    """ Return index i, x == A[i]. Otherwise, return -1 """
    i = 0
    while i < len(A):
        if A[i] == x:
            return i
        i = i + 1
    return -1
```

Count time complexity

\[\text{LS}([2, 4, 6, 8], 6) \]
linear search

def LS(A, x):
 """Return index i, x == A[i].
 Otherwise, return -1 """
 1. i = 0
 2. while i < len(A):
 3. if A[i] == x:
 4. return i
 5. i = i + 1
 6. return -1

what is the running time of \textbf{LS}(A, x)
if the first index where \(x \) is
found is \(k \)
i.e., \(A[k] == x \)
linear search

def LS(A, x):
 """ Return index i, x == A[i]. Otherwise, return -1 """
 i = 0
1. i = 0
2. while i < len(A):
3. if A[i] == x:
4. return i
5. i = i + 1
6. return -1

Count time complexity
LS([[2, 4, 6, 8], 99])
linear search

```python
def LS(A, x):
    ''' Return index $i$, $x == A[i]$. Otherwise, return -1 '''
    i = 0
    while i < len(A):
        if A[i] == x:
            return i
        i = i + 1
    return -1
```

what is the running time of \(\text{LS}(A, x) \)

if \(x \) is not in \(A \) at all

let \(n \) be the size of \(A \)
takeaway

➔ program running time varies with inputs

➔ there is a worst case in which the running time is the longest
worst-case time complexity

t_P(x): running time of program P with input x

the worst-case time complexity of P
with input \(x \in I \) of size \(n \)

\[
W_P(n) = \max\{ t_P(x) \mid x \in I \land \text{size}(x) = n \}
\]
worst-case: performance in the worst situation, what we typically do in CSC165

best-case: performance in the best situation, not very interesting, rarely studied

average-case: the expected performance under random inputs following certain probability distribution, will study in CSC263
next week

➔ more on asymptotic notations
➔ more algorithm analyses