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Abstract

In previous work, Levesque proposed an extension
to classical databases that would allow for a certain
form of incomplete first-order knowledge. Since
this extension was sulfficient to make full logical de-
duction undecidable, he also proposed an alterna-
tive reasoning scheme with desirable logical prop-
erties. He also claimed (without proof) that this
reasoning could be implemented efficiently using

database techniques such as projections and joins.

In this paper, we substantiate this claim and show
how to adapt a bottom-up database query evalu-
ation algorithm for this purpose, thus obtaining a

tractability result comparable to those that exist for

databases.

Introduction

The rest of the paper is organized as follows. In the next
section, we review proper KBs and, prove a new property
of V, i.e. locality, and define answers to open queries. In
Section 3, we review the complexity of database query evalu-
ation, and present a polynomial time algorithm for evaluating
k-guarded formulas. In Section 4, we show how to use this al-
gorithm to evaluate queries wrt proper KBs and hence obtain
a tractability result. In Section 5, we illustrate this query eval-
uation method for proper KBs with some example queries.
Finally in Section 6, we describe some future work.

2 Proper KBsandV

2.1 Basic definitions

We use a standard first-order logical langu&geith a count-
ably infinite set of constantd = {c¢1, ¢2, . . .}, no other func-
tion symbols, and a distinguished equality predicate. We have
in mind that in any interpretatios; should be understood as
identity, that the constants will be unique names. This can

As argued in[Levesque, 1998 there is only one deductive pe captured by a set of axiorfis consisting of the axioms of
technique efficient enough to be feasible on knowledge basegyyality and the set of formulds; # ¢; | i # j}.

(KBs) of the size seemingly required for common-sense rea- |n what follows, p ranges over atoms (excluding equality)
soning: the deduction underlying classical database queRyhose arguments are distinct variablesanges oveewffs
evaluation. And yet, databases by themselves are t00 r¢w quantifier-free formulas whose only predicate is equal-

stricted to serve as the representational scheme for commo

Ry. Vo denotes the universal closure of formulaa? de-

sense reasoning, since they require, among other things, Cojotesy with all free occurrences af replaced by constant

plete knowledge of the domain. Levesque proposed a genefhewidth of « is the maximal number of free variables in its
alization of databases callguoper knowledge basgwhich

allow for a limited form of incomplete knowledge. Despite nesting of quantifiers in.

the limitations, however, the deduction problem for prop
KBs is no longer even decidable. Levesque proposed an
ternative reasoning procedureor proper KBs that was logi-

subformulas. Theuantifier rankgr(a) of « is the depth of

ear]Pefinition 2.1 AKBX is proper if€ U X is consistent an&

s a finite set of formulas of the fori{e D p) or V(e D —p).

cally sound and, when the query was in a certain normal form, To illustrate the idea of a proper KB, imagine a scenario in-

logically complete. Moreover, he argued that it should b
possible to implement” for very large KBs using database

technigues. However, no proof was given.

In this paper, we examine proper KBs and therocedure
more closely, and we prove a tractability result for this type

evolving a robot security guard keeping track of the occupants

of the rooms of a building. The robot can find out that some-
one has entered or left a room, and by going into a room, find
out who the occupants are. We can express what the robot
might know using a proper KB:

of logical reasoning that are comparable to those that exist for ® Alice is alone in Room 1.

classical database query evaluation. In particular, we adapt a
bottom-up database retrieval algorithm to the case of proper
KBs. Thus, what we show here is that in some cases it is

indeed possible to reason efficiently with incomplete knowl-

Vay. z = alice Ay = room1D In(z, y)
Vzy. x = alice A y # room1D —In(z,y)
Vxy. x # alice A y = room1D —In(z,y)

\We think of these as beliefs about some initial state of the world.

edge in a logically sound and complete way, or at least ag should be possible to generalize the notion of proper KB to deal
efficiently as we can with a database.

with state change. See Section 6 for discussion.



e Bob and possibly others are in Room 2. Lemma 2.2 Lete be an ewff, and let be a bijection fronC
Vzy. z = bobA y =room2> In(z,y) toC. Thenf E eliff £  e*.

Vay. x =bobAy # room2> —in(z, y) Theorem 2.3 Let ¥ be a proper KB and: a sentence. Let

e Carol is not in the building. be a bijection fronC to C. ThenV[Z, a] = V[E*, a*].
Vay. x = carol 5 —In(z, y) Proof: The proof is by induction on the structure of The

e Only Bob and Carol go into Room 3. case for atoms uses Lemma 2.2. The cases for equalities,
Vay. x # bobA z # carol A y = room3D —In(x, y) negations and disjunctions are trivial. Now considery.

Note that this information cannot be expressed in a traditionaﬁtzd EI]H +(§ [g joé})z-)!kf] d ap%/l_a[%irs( in’;)gr]al()bt)r/](iar;\cxjvl#gg,?igl
, Qg = , (g = y O ) g ]

database where,.g. we cannot leave open the occupants of ANy . N *
Room 2. On the other hand, facts requiring disjunction or ex0€S not appear iB* or a”. Now |etc € H* (X" U{a™})
istential quantification cannot be expressed as part of a prop&Hch that does not appear ™ or a”. Let « be the compo-
KB, e.g.every room having at most three occupants. sition of x and the bijection that swapsandd a*nd Iea\ies
It is not hard to see that the problem of determiningtn€ rest constants unchanged. Thén= ¢ X* = 7,
whether a sentence is logically entailed by a proper KB ig?” = o', Since neitherd” nor c appears inx* or a”.
undecidable, since when the KB is empty, this reduces tY induction, V(¥ aj] = V[ ;E(O‘ )i-] :+V[E (@)l
classical validity’ Levesqud1999 proposed the reasoning hUSV[E;EkEO*z] ey maX{JrV[%’ ag] l d € H *(2 U {f‘})}—
proceduré/ instead. Given a proper KB and a que¥yre- max{V[Z" (a*)z][de HT (5" U{a"})}=V[E" (Bra)*]. =
turns one of three values 0 (known false), 1 (known true), Ofcorollary 2.4 Let. be a proper KB and a formula with a

3 (unknown) as follows: single free variabler. Letc andd be two constants that do
1 ifthereisav(e D p) € not appear in¥ or a. ThenV[3, of] = V[, of].
such that/ [, ef)] = 1 Proof: Follows from the theorem by takingas the bijection
1. V[Z,p0] = ¢ 0 ifthereisav(e D> —p) € X that swaps andd and leaves the rest constants unchanmged.
such thal/ [, ef] = 1
+ otherwise 2.3 Locality
V[, t =t'] = 1if tisidentical tot’, and O otherwise; A nice property ofV is its locality, i.e., for any proper KB

[
VIS, —a] =1 - VIS, a]; ¥ and queryq, the value ofV[X, o] only depends on those
: ’ o T sentences af that mention some predicatedn

- VIE v ] = max{V[3, o, VX, A} Definition 2.5 Let X be a proper KB andy a query. The
L VIE 3za] = max{V[E,aj] | d € HF(Z U {a})},  restriction ofs wrt o, denotedt|a, isthe se{V(e D 1) € 3 |
where HT(S) is the union of the constants i#, and a  the predicate of appears ino}.

constant notirb, say the lexicographically smallest one. Theorem 2.6 VIS, a] = V[S|a, a].

This_V_ procedure always terminates, and is Iog_ically So-unjzroof' The proof is by induction on the structure @f Here
(i.e.ifitreturns 1 (resp. 0), then the query (resp. its negation e only prove the case for quantifications/[s, Iza] =

is logically entailed by UX2). Moreover, Levesque defined a - . .
certain normal form called/F, and proved that for queries in maX{V[Eﬂdu d € [fr(z U {a})} = (by induction)
NF, theV procedure is also logically complete (so that, for X1V [X]a, O‘g] |de H+(E U{a})} = (by Corollary 2.4)
instanceV returns 1 iff the query is logically entailed). Fi- max{V[E|a, aj] | d € H(ElaU{a})} = V[E|a, Jzal. =
nally, Levesque showed that in the propositional case, every In fact, we can go further than this: roughly speaking, we
query could be equivalently expressedN@F, and conjec- need only consider those sententgs O 1) € ¥ such that

oW

tured that this was also true in the first-order case. after substitutions dictated ky thel would unify with some
literal in the queryn. For exampleyay(y = b D P(z,y))
2.2 Invariance under renaming is not needed to answer the quétyP(z,a). For KBs that

The first difficulty that arises when attempting to reason with@'€ large because they have facts about a large number of in-
proper KBs is the fact that unlike with databases, we canndiividuals, this optimization can reduce significantly the size
fix the domain in advance, or even put an upper bound on it8f the KB fragment needed to answer the query correctly.
size. For example, iE consists of justz(x # a D P(x)), :

anda,, is the sentence of that says that there are at least 2'4_ .Answers to open queries B
distinctinstances aP, thenV[S, a,,] = 1 forall n. However, ~Definition 2.7 Let X be a proper KB andx(z) a formula

we can take advantage of the fact that for thisall constants ~ With free variables. The answer towrt X is the setx(X) =
other thana behave the same. This will allow us to define {¢ | V[E, a(¢)] = 1}.

finite versions of answers to open queries, as shown below.  However,a(X) may well be infinite. Fortunately, we can
Notation Let o be a formula and' a set of formulas. Let  find a finite representation for it.

he a bijection Irom’,’ toC. ,}’Ve usex” to Senoten with each Definition 2.8 LetY be a proper KB andv a formula. Then

c replaced by, and useS™ to denote{a” | o € 5} H (%, o) is the finite set of constants consisting of those men-

2The classical validity problem is undecidable even when therdioned in¥ or o« and ther next ones, lexicographically, where
are no function symbols. r is the quantifier rank of «.



Definition 2.9 Let 3 be a proper KB andx(z) a formula Naturally, many research efforts have gone into finding
with free variables. The finite answer towrt ¥ is the set  classes of queries that can be proven tractable, even in the
ap(X)={ce HX|w,a) | V[E,ac)] = 1}. worst cases. The earliest result of this form, due to Yan-
nakakis[1981], showed that acyclic conjunctive queries can
be evaluated in polynomial time. This result has been ex-
tended in several ways. The first extension, due to Chekuri
Theorem 2.10 Let & be a proper KB andx(z) a formula.  and Rajaramar{1997, showed that conjunctive queries
Then for any constants ¢ € a() iff ¢* € a¢(X), wherec*  with bounded treewidth are tractable. Later, Gottibal.

is like ¢ except that constants not lja U {a} are replaced  [1999 introduced the notion of hypertree width and showed
by unique representatives notitja U {a} from H(XZ|a, «). that conjunctive queries with bounded hypertree width are
tractable; bounded hypertree width generalizes the notions
of acyclicity and bounded treewidth. Recently, Flatnal.
[2001] generalized the notions of acyclicity and bounded
treewidth from conjunctive queries to nonrecursive stratified

The following theorem justifiea s (X) as a finite represen-
tation fora(X%).

Proof: We can expaneé to a bijectionx from C to C such
that ¢* = ¢ for any ¢ that appears ir|a or «. Then
VI[E, a(¢)]= (by locality) V[E|«a, a(¢)] = (by Theorem 2.3)

VIEla)", (a(e))"], i.eV[E|a, ale?)] =V[E, a(er)]. ®  Datalog (NRSD), which is known to have the same expres-

sive power as all of first-order logic, and showed that acyclic

3 The complexity of database queries and bounded treewidth NRSD are tractable. Inspired by their
i work, Gottlobet al. [2001] extended the notion of hypertree

3.1 Anoverview width to NRSD, and obtained a nice logical characterization

The complexity of query evaluation has been one of the maiof hypertree width: they showed that theguarded fragment
pursuits of database theory. Traditionally, there are two comef first-order logic has the same expressive power as NRSD
plexity measures: combined complexity and data complexityf hypertree width at mogt. Thusk-guarded first-order logic
[Vardi, 1983. Combined complexity is measured in terms turns out to be the largest tractable class of queries so far.

of the combined size of the database and the query. Chan- ) )

dra and Merlin[1977 proved that the combined complexity 3-2 An evaluation algorithm

of conjunctive queries (queries expressed by first-order forThe guarded fragment GF was introduced by Atdrét al.

mulas that are of the formz(ai A ... A oy,) Wherea; are  [1996, and has recently received a lot of attention. The idea

atoms) is NP-complete; VardiL983 proved that the com- s that any existentially quantified subformiglanust be con-

bined complexity of first-order queries is PSPACE-completejpined with a guardi.e. an atom containing all free variables

However, the main factor responsible for this high complexityof ¢. Gottlobet al. [2001] extended GF to the-guarded frag-

is the size of the query and not the size of the database. This jient GF, where up ta: atoms may jointly act as a guard, and

contrary to the situation in practice where we normally eval-proved that GE-formulas can be evaluated in ting&/2n*)

uate small queries against large databases. Data complexifyhere! andn are as before. The proof is by transforming

measures the complexity of query evaluation solely in termssF, -formulas intok-guarded NRSD programs.

of the size of the database and treats the size of the query as g, this section, we introduce theguarded fragment of,

constant. A folk result is that first-order queries can be evaluang explicitly present a polynomial algorithm for evaluating

ated in timen®("), wheren is the size of the database and  k-guarded formulas against databases and analyze its com-

the size of the query. Thus the data complexity of first-ordeplexity. We will use this algorithm to evaluateguarded for-

queries is in PTIME. However, such a complexity can hardlymulas with respect to proper KBs.

qualify as tractable even if the exponent is small, say 5. L .
Yannakakid 1999 was the first to suggest that parameter-DP&finition 3.1 The k-guarded fragment GF of L is the

ized complexity[Downey and Fellows, 1995might be an  Smallest set of formulas such that

appropriate complexity measure for database query evalua-1. GF, contains atoms and equalities;

tion. Query evaluation is fixed-parameter tractable if there is 2. GF, is closed under Boolean operations;

a computable functiorf : N — N and a constant such that ’ P '

the problem can be solved in tinfél) - n<, wherel andn are 3. GF; contains3z(G1 A ... AG, A @), provided that the

the size of the query and the database, respectively. However, G, are atoms or equalitiesn < k, ¢ € GF, and the

Papadimitriou and YannakaKi$999 proved that the param- free variables ofp appear among thé&’;.

eterized complexity of conjunctive queries is W[l]—completeD - :
: o efinition 3.2 The strictlyk-guarded fragment SGFare the
and thus most likely not fixed-parameter tractable. We retormulas in GF, of the formaz (G A. . .AGy A). We allow

fer the re'ad.er tdGrohe, 2002for a survey on parameterized the degenerate cases wheris empty otm — 0 or ¢ is TRUE.

complexity in database theory.
Therefore database query evaluation in general is hard withlote that anyc-guarded sentence is stricttyguarded.

respect to both combined and parameterized complexity. And The evaluation algorithm below will take a strictly-

yet, database queries do work quite well in practice, evelguarded formula as the query. It turns out that any formula

for very large databases. A careful examination of the harde can be transformed in linear time into an equivalent 3GF

ness results show that they often depend on queries that af@mula for somek, using guards of the form = z, if neces-

somewhat atypical in applications,g. databases represent- sary. For example, note th&(z, y, z)A S(z, u, v) can be for-

ing graphs and queries asking for the existence of cliques. mulated in SGE, but—=R(z, y, 2)A—S(z, u, v) only in SGF.



The evaluation algorithm will have worst-case time com-4 The complexity of

plexity that is exponential only in thie For fixedk, the algo-
rithm is polynomial, but perhaps impractical whiers large.
An upper bound ot is the width of¢p. Obviously, if¢ has at
mostk distinct variables, the width of is no more thark.

In this section, we consider how hard it is to computeNot
surprisingly,V is no easier than database query evaluation.
What is more significant is that under reasonable assump-
tions, it is not much harder either.

Before presenting the evaluation algorithm, we first recall

some basic notions of relational database theory. A databagel

Intractability results

instance is simply a logical structure (or interpretation) withTheorem 4.1 The combined complexity of V is NP-hard

a finite domain. Let4 be such a structure with domait

Let X andY be sets of variables. AN -relationR over A4, is

a finite set of mappings from X into A, which we write as
{7v:[X — A]}. If Y C X, theY -projection of anX -relation
R, which we writerry (R), is the se{~|Y | v € R}, where
~|Y is the mapping restricted f6. Let R be anX-relation
andsS aY -relation. The join ofR andS is the X UY -relation

RXS={y:[XUY — 4] | 7|X € R, 1[Y € S}.
The join of R with the complement of is the X UY -relation
RX¢S={~v:[XUY - A] | v|X € R, 7|Y ¢ S}.

Let ¢ be a formula with free variableX = {z1,...,z,}.
Theanswerto ¢ wrt A is the X -relation
o(A) ={y:[X = Al | A o(v(21), ..., v(@n))}-

Here is the algorithm for computing answers:
ProcedureEval( A, ¢)

for conjunctive queries, and PSPACE-hard for first-order
queries. The parameterized complexity of V is W[1]-hard for
conjunctive queries.

Proof: The proof is essentially the same as that for database
query evaluation. For conjunctive queries, the reduction is

from the clique problem. For first-order queries, the reduction

is from QBF (Quantified Boolean Formula). [ |

4.2 A tractability result

We now present a tractability result for. The basic ideais to
reducel’ to database query evaluation and use the algorithm
Eval from Section 3. To do this efficiently, we would like to
use database operations as much as possible, and only reason
with the formulase in V(e D [) when necessary. For each
predicateP appearing in a query, we will consider storing
two relationsP+ and P~ depending on the form df.

Input: A structure.A such that the domain and all relations pefinition 4.2 The ewff defining a predicate denotede p,

are sorted, and a formulae SGF,

Output: ¢(A)
supposed(z) = IG(G1 A ... A Gy AY)
returnmz {Eval(A, G1(A) X ... X G,,(A),¢")}
where)’ is the result of pushings in ¢ so that
they are in front of atoms, equalities, or existentials.

ProcedureEval( A, R, ¢) is defined recursively by:

1. If ¢ is an atom or an equality,

then EvalA, R, ¢) = R X ¢(A);

2. If ¢ is negation of an atom or an equality,
then EvalA, R, ¢) = R X¢ ¢(A);
EvalA, R, (¢ A1) = Eval(A, R, ¢) N Eval(A, R, );
EvalA, R, (¢ V) = Eval(A, R, ¢) UEval(A, R, );
Eval A, R, 3y¢) = R X Eval(A, 3g¢);

6. Eval A, R, —~3y¢) = R X Eval(A, Jy¢).
Theorem 3.3 Given a sorted structurel and a formulap €

SGF,, ¢(.A) can be computed in tim@(In*), wherel is the
size ofp, andn is the size of the database.

ok~ w

Proof: For each of thé literals and logical operators in the

is the disjunction of alk such thatvz(e(z) D P(z)) € .
The ewff defining:P denotect_ p is analogous.

Definition 4.3 We distinguish among three cases for an ewff:

1. eis relational if it is of the form
T=¢c¢ V...VT=c¢, wheren > 0.

2. eis co-relational if it is of the form
T#CN...\NT F# ¢, Wheren > 0.

3. eis unrestricted otherwise.

Definition 4.4 The e-size of is the maximum size of an un-
restrictedep or e_,p in 2.

For each predicat®, we storeP* as a sorted relation when
ep is relational or co-relational, and analogously fér us-
inge_p. We letDB(X, C) (whereC'is a set of constants that
includes all those ifX) denote the database whose domain is
C and whose relations ae™ and P~ as above.
Note that in the case of a predicdtein X corresponding
to a normal database-style relatiem, will be relational and
e_p Will be co-relational and the two relatiod3* and P~
will be identical. A simple optimization would merge them.
Next, given a formulax we construct a database query by

query, we perform either a join, a join with complement, anreplacing every occurrence of a predic&tas follows: a pos-
intersection, or a union. Note that when we perform a join ofitive3 occurrence ofP is replaced byPt whenep is rela-

a join with complement within Eva4, R, ¢), the attributes

tional, ~P* when co-relational, and byp itself otherwise;

of the second argument is always a subset of those of the firs§, negative occurrence @t is replaced by-P~ whene_p

since for guarded formulas, the free variableg are a subset

is relational,P~ when co-relational, and bye_ p itself oth-

of those inR. By induction, EvalA, R, ¢) always returns a  erwise. We lefQ(X, a) denote the resulting database query

relation that is a subset d?. Moreover, theR is obtained
from joins of at mostk guards, and so has size at ma&t

with double negation removed.
We present examples of this transformation in the next sec-

Assuming all relations start in sorted form, the results of alltion. Here we note the following correctness resuilt:

operations can be kept in sorted form, and computed in tim

O(nk). Thus, the time overall i©(In*).

3A positive (resp. negative) occurrence Bfin o is one within

the scope of an even (resp. odd) number of negations.



Theorem 4.5 Let X be a proper KB andy a formula of L.
LetC = H(E|a,a), A = DB(Z|e, C), and¢ = Q(Z, o).
Thenay(X) = ¢(A).

The size ofA is O(n), and the length of is O(lw). By
Theorem 3.3¢ (%) can be computed in tim@(lwn*). =

As a special case of the theorem, we have:

This theorem says that the (finite version of) answers taCorollary 4.9 Let X be a proper KB andy a sentence in
open queries irC correspond exactly to the answers we getSG,(X). Then whethe¥ [X, o] = 1 can be decided in time
for the database constructed as above. This is a consequern@élwn”), wherel, w andn are as above.

of locality and the following lemma:

Lemma 4.6 LetX be a proper KB and a sentence of. Let
C be any finite set of constants consisting of those in{ .}
andk extra ones for some > ¢r(«). Let A = DB(X|«, C).
ThenV[X,a] = 1iff A E Q(X, ), andV[E,a] = 0 iff
A ': Q(Ea _'a)'

Proof: The proof is by induction on the structure @f Here
we choose to prove the case 16[%, o] = 0 which is trickier
than the case foV [, o] = 1.

VIE, P(e)] =0iff £ Ee.p(e)iff A= Q(X,~P(¢)) since

AE P~ (¢) if e.pisrelational
€ = e.p(o)iff ¢ AE-P(¢) Iife.pisco-relational
AEe_p(c) otherwise

The case for = ¢’ is trivial. V[X,—a] = 0iff V[2,a] =1
iff (by induction) A = Q(X, o), i.e. QX, =—av).

Considera vV 8. Let Q(X,~«a) = —¢ andQ(X,-0) = —.

Then Q(X, ~(a vV B)) = =(¢ V). V[E,aV g =0
iff V[X,a] = 0andV[X,5] = 0 iff (by induction)
AE QE,~a)andA £ Q(S,-) iff A - A~

iff A (V1) ie QS ~(aVpB)).

Consider3za. Let Q(X,—«a) = —¢. ThenQ(X,—~3za) =
—Jz¢g. VI[E,3za] = 0iff V[E,a%] = 0 foranyd €
H* (XU {a}) iff (by Corollary 2.4 sinceC contains at least
one constant not i U {a}) VX, o] = 0 foranyd € C iff
(by induction since” consists of those constantsinJ {a%}
and j extra ones for som¢ > ¢r(a)) A = Q(X,-a%),
i.e. =¢7 foranyd € Ciff A |= Vz—¢ iff A = -3z, i.e.
Q(X, ~Jza). [ |

To obtain a tractability result for open queries over prope
KBs, we need only ensure that the database queries we co
struct arek-guarded then use the Eval procedure.

Definition 4.7 LetX be a proper KB. The strictli-guarded
fragment S@(X) of £ for X is the same as SGFexcept that
when3z(Gy A ... A Gy, A @) is within the scope of an even
(resp. odd) number ofs, theGG; must be equalities or atoms
P(t) s.t.ep is relational (respe-p is co-relational) or liter-
als—P(t) s.t.e_p is relational (respep is co-relational).

Clearly, for anya, if a € SG,(X), thenQ(%, o) € SGF,.
Note that every formula with width m can be transformed
into an equivalent SE¥X)-formula for somek < m, using
equalities as guards if necessary.

Now we get our main complexity result:

Theorem 4.8 Let X be a proper KB andv € SG,(2). Then
af(¥) can be computed in tim@(lwn*), wherel is the size
of a, n is the size o&|«, andw is the e-size oE|«.

Proof: Let C = H(¥|o, o), A = DB(Z|e, C), and¢ =
Q(%, ). We sortC. By Theorem 4.5¢;(X) = Eval(A, ¢).

Corollary 4.10 Let ¥ be a proper KB and €¢ NF N
SG;(X). Then whethe€ U ¥ = « can be decided in time
O(lwn*), wherel, w andn are as above.

Proof: Follows from previous corollary and the fact tHatis
logically sound and complete for queriesAf. [ |

Note that these bounds are identical to their database coun-
terparts modulo they factor. In most cases of interest, the
w Wwill be small since even in a large KB, we only expect to
see a largep or e_p in database-like cases, where this
relational or co-relational. In the case where none obthee
relational or co-relational, we get the following:

Corollary 4.11 Let X be a proper KB andv a formula of
width & with all literals defined by an unrestricted ewff. Then
as(¥) can be evaluated in tim@((lw)**1), wherel is the
size ofe, andw is the e-size of|a.

Proof: We transformu into an equivalent S¢X3)-formula,
using equalities as guards. The sizeXd is O(lw). [ |

5 Anexample

To illustrate how query evaluation would work with proper
KBs, we return to the example robotic scenario mentioned
in the first section, involving the predicaltgperson room).

We can see from the example that is given in relational
form, while e, is given in unrestricted form. To make
things interesting, we assume two more predicates: One is
Mgr(person, person) saying that the first person is a man-
ager and that the second is one of his or her employees; we
assume tha¥igr is given as a closed database predicate. The
other isCmp(person, person) saying that the two persons

;are compatible. We assume that the robot knows that any two

people are compatible except(> 2) pairs; among these
pairs, the robot only knows that two pairs are not compatible.
Henceecmpis given in co-relational form, anel.cmpis given
in relational form. Thus the corresponding database has the
following relations: In™, Mgr™, Mgr—, Cmp", andCmp",
whereMgrt = Mgr—, andCmp C Cmp'.
Here are some example queries,with the guards underlined.
1. What rooms are unoccupied?
r=rA-3dzx(z=xAr=rAln(z,r))
2. Are there rooms with more than one manager in them?
IrdmIm/ (In(m,r) Aln(m/,r) Am #m' A
JzMgr(m, z) A J2’Mgr(m’, z"))
3. Are there any managers whose employees are all in the

same room?
ImIr(m=mAr=rA
—Jz(Mar(m,z) Ar =r A =lIn(z,r)))

4. Is it true that any two people who are not compatible are
in different rooms?

—Jz3z’ (=Cmpz, ') A

=33 (In(z,7) Aln(z,r’) Ar £1'))
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