
A Tractability Result for Reasoning with Incomplete First-Order Knowledge Bases

Yongmei Liu andHector J. Levesque
Department of Computer Science

University of Toronto
Toronto, ON, Canada M5S 3G4
{yliu, hector}@cs.toronto.edu

Abstract

In previous work, Levesque proposed an extension
to classical databases that would allow for a certain
form of incomplete first-order knowledge. Since
this extension was sufficient to make full logical de-
duction undecidable, he also proposed an alterna-
tive reasoning scheme with desirable logical prop-
erties. He also claimed (without proof) that this
reasoning could be implemented efficiently using
database techniques such as projections and joins.
In this paper, we substantiate this claim and show
how to adapt a bottom-up database query evalu-
ation algorithm for this purpose, thus obtaining a
tractability result comparable to those that exist for
databases.

1 Introduction
As argued in[Levesque, 1998], there is only one deductive
technique efficient enough to be feasible on knowledge bases
(KBs) of the size seemingly required for common-sense rea-
soning: the deduction underlying classical database query
evaluation. And yet, databases by themselves are too re-
stricted to serve as the representational scheme for common-
sense reasoning, since they require, among other things, com-
plete knowledge of the domain. Levesque proposed a gener-
alization of databases calledproper knowledge bases, which
allow for a limited form of incomplete knowledge. Despite
the limitations, however, the deduction problem for proper
KBs is no longer even decidable. Levesque proposed an al-
ternative reasoning procedureV for proper KBs that was logi-
cally sound and, when the query was in a certain normal form,
logically complete. Moreover, he argued that it should be
possible to implementV for very large KBs using database
techniques. However, no proof was given.

In this paper, we examine proper KBs and theV procedure
more closely, and we prove a tractability result for this type
of logical reasoning that are comparable to those that exist for
classical database query evaluation. In particular, we adapt a
bottom-up database retrieval algorithm to the case of proper
KBs. Thus, what we show here is that in some cases it is
indeed possible to reason efficiently with incomplete knowl-
edge in a logically sound and complete way, or at least as
efficiently as we can with a database.

The rest of the paper is organized as follows. In the next
section, we review proper KBs andV , prove a new property
of V , i.e. locality, and define answers to open queries. In
Section 3, we review the complexity of database query evalu-
ation, and present a polynomial time algorithm for evaluating
k-guarded formulas. In Section 4, we show how to use this al-
gorithm to evaluate queries wrt proper KBs and hence obtain
a tractability result. In Section 5, we illustrate this query eval-
uation method for proper KBs with some example queries.
Finally in Section 6, we describe some future work.

2 Proper KBs andV

2.1 Basic definitions
We use a standard first-order logical languageL with a count-
ably infinite set of constantsC = {c1, c2, . . .}, no other func-
tion symbols, and a distinguished equality predicate. We have
in mind that in any interpretation,= should be understood as
identity, that the constants will be unique names. This can
be captured by a set of axiomsE , consisting of the axioms of
equality and the set of formulas{ci 6= cj | i 6= j}.

In what follows,ρ ranges over atoms (excluding equality)
whose arguments are distinct variables;e ranges overewffs,
i.e. quantifier-free formulas whose only predicate is equal-
ity. ∀α denotes the universal closure of formulaα; αx

d de-
notesα with all free occurrences ofx replaced by constantd.
Thewidthof α is the maximal number of free variables in its
subformulas. Thequantifier rankqr(α) of α is the depth of
nesting of quantifiers inα.
Definition 2.1 A KBΣ is proper ifE ∪Σ is consistent andΣ
is a finite set of formulas of the form∀(e ⊃ ρ) or ∀(e ⊃ ¬ρ).

To illustrate the idea of a proper KB, imagine a scenario in-
volving a robot security guard keeping track of the occupants
of the rooms of a building. The robot can find out that some-
one has entered or left a room, and by going into a room, find
out who the occupants are. We can express what the robot
might know using a proper KB:1

• Alice is alone in Room 1.
∀xy. x = alice∧ y = room1⊃ In(x, y)
∀xy. x = alice∧ y 6= room1⊃ ¬In(x, y)
∀xy. x 6= alice∧ y = room1⊃ ¬In(x, y)

1We think of these as beliefs about some initial state of the world.
It should be possible to generalize the notion of proper KB to deal
with state change. See Section 6 for discussion.

• Bob and possibly others are in Room 2.
∀xy. x = bob∧ y = room2⊃ In(x, y)
∀xy. x = bob∧ y 6= room2⊃ ¬In(x, y)

• Carol is not in the building.
∀xy. x = carol ⊃ ¬In(x, y)

• Only Bob and Carol go into Room 3.
∀xy. x 6= bob∧ x 6= carol∧ y = room3⊃ ¬In(x, y)

Note that this information cannot be expressed in a traditional
database where,e.g. we cannot leave open the occupants of
Room 2. On the other hand, facts requiring disjunction or ex-
istential quantification cannot be expressed as part of a proper
KB, e.g.every room having at most three occupants.

It is not hard to see that the problem of determining
whether a sentence is logically entailed by a proper KB is
undecidable, since when the KB is empty, this reduces to
classical validity.2 Levesque[1998] proposed the reasoning
procedureV instead. Given a proper KB and a query,V re-
turns one of three values 0 (known false), 1 (known true), or
1
2 (unknown) as follows:

1. V [Σ, ρθ] =

1 if there is a∀(e ⊃ ρ) ∈ Σ
such thatV [Σ, eθ] = 1

0 if there is a∀(e ⊃ ¬ρ) ∈ Σ
such thatV [Σ, eθ] = 1

1
2 otherwise

2. V [Σ, t = t′] = 1 if t is identical tot′, and 0 otherwise;

3. V [Σ,¬α] = 1 − V [Σ, α];
4. V [Σ, α ∨ β] = max{V [Σ, α], V [Σ, β]};

5. V [Σ, ∃xα] = max{V [Σ, αx
d] | d ∈ H+(Σ ∪ {α})},

whereH+(S) is the union of the constants inS, and a
constant not inS, say the lexicographically smallest one.

This V procedure always terminates, and is logically sound
(i.e. if it returns 1 (resp. 0), then the query (resp. its negation)
is logically entailed byE ∪Σ). Moreover, Levesque defined a
certain normal form calledNF , and proved that for queries in
NF , theV procedure is also logically complete (so that, for
instance,V returns 1 iff the query is logically entailed). Fi-
nally, Levesque showed that in the propositional case, every
query could be equivalently expressed inNF , and conjec-
tured that this was also true in the first-order case.

2.2 Invariance under renaming
The first difficulty that arises when attempting to reason with
proper KBs is the fact that unlike with databases, we cannot
fix the domain in advance, or even put an upper bound on its
size. For example, ifΣ consists of just∀x(x 6= a ⊃ P (x)),
andαn is the sentence ofL that says that there are at leastn
distinct instances ofP , thenV [Σ, αn] = 1 for all n. However,
we can take advantage of the fact that for thisΣ, all constants
other thana behave the same. This will allow us to define
finite versions of answers to open queries, as shown below.
Notation Let α be a formula andS a set of formulas. Let∗
be a bijection fromC to C. We useα∗ to denoteα with each
c replaced byc∗, and useS∗ to denote{α∗ | α ∈ S}.

2The classical validity problem is undecidable even when there
are no function symbols.

Lemma 2.2 Let e be an ewff, and let∗ be a bijection fromC
to C. ThenE |= e iff E |= e∗.

Theorem 2.3 Let Σ be a proper KB andα a sentence. Let∗
be a bijection fromC to C. ThenV [Σ, α] = V [Σ∗, α∗].
Proof: The proof is by induction on the structure ofα. The
case for atoms uses Lemma 2.2. The cases for equalities,
negations and disjunctions are trivial. Now consider∃xα.
Let d ∈ H+(Σ ∪ {α}). If d appears inΣ or α, by induction,
V [Σ, αx

d] = V [Σ∗, (αx
d)∗] = V [Σ∗, (α∗)x

d∗]. Otherwise,d∗
does not appear inΣ∗ or α∗. Now let c ∈ H+(Σ∗ ∪ {α∗})
such thatc does not appear inΣ∗ orα∗. Let ? be the compo-
sition of ∗ and the bijection that swapsc andd∗ and leaves
the rest constants unchanged. Thend? = c; Σ? = Σ∗,
α? = α∗, since neitherd∗ nor c appears inΣ∗ or α∗.
By induction,V [Σ, αx

d] = V [Σ?, (α?)x
d?] = V [Σ∗, (α∗)x

c].
ThusV [Σ, ∃xα] = max{V [Σ, αx

d] | d ∈ H+(Σ ∪ {α})}=
max{V [Σ∗, (α∗)x

d] |d∈H+(Σ∗∪{α∗})}=V [Σ∗, (∃xα)∗].

Corollary 2.4 LetΣ be a proper KB andα a formula with a
single free variablex. Let c andd be two constants that do
not appear inΣ or α. ThenV [Σ, αx

c] = V [Σ, αx
d].

Proof: Follows from the theorem by taking∗ as the bijection
that swapsc andd and leaves the rest constants unchanged.

2.3 Locality
A nice property ofV is its locality, i.e., for any proper KB
Σ and queryα, the value ofV [Σ, α] only depends on those
sentences ofΣ that mention some predicate inα.

Definition 2.5 Let Σ be a proper KB andα a query. The
restriction ofΣ wrt α, denotedΣ|α, is the set{∀(e ⊃ l) ∈ Σ |
the predicate ofl appears inα}.

Theorem 2.6 V [Σ, α] = V [Σ|α, α].
Proof: The proof is by induction on the structure ofα. Here
we only prove the case for quantifications.V [Σ, ∃xα] =
max{V [Σ, αx

d] | d ∈ H+(Σ ∪ {α})} = (by induction)
max{V [Σ|α, αx

d] | d ∈ H+(Σ ∪ {α})} = (by Corollary 2.4)
max{V [Σ|α, αx

d] | d ∈ H+(Σ|α ∪ {α})} = V [Σ|α, ∃xα].
In fact, we can go further than this: roughly speaking, we

need only consider those sentences∀(e ⊃ l) ∈ Σ such that
after substitutions dictated bye, thel would unify with some
literal in the queryα. For example,∀xy(y = b ⊃ P (x, y))
is not needed to answer the query∃xP (x, a). For KBs that
are large because they have facts about a large number of in-
dividuals, this optimization can reduce significantly the size
of the KB fragment needed to answer the query correctly.

2.4 Answers to open queries
Definition 2.7 Let Σ be a proper KB andα(x̄) a formula
with free variables. The answer toα wrt Σ is the setα(Σ) =
{c̄ | V [Σ, α(c̄)] = 1}.

However,α(Σ) may well be infinite. Fortunately, we can
find a finite representation for it.

Definition 2.8 LetΣ be a proper KB andα a formula. Then
H(Σ, α) is the finite set of constants consisting of those men-
tioned inΣ or α and ther next ones, lexicographically, where
r is the quantifier rank of∀α.

Definition 2.9 Let Σ be a proper KB andα(x̄) a formula
with free variables. The finite answer toα wrt Σ is the set
αf (Σ) = {c̄ ∈ H(Σ|α, α) | V [Σ, α(c̄)] = 1}.

The following theorem justifiesαf (Σ) as a finite represen-
tation forα(Σ).

Theorem 2.10 Let Σ be a proper KB andα(x̄) a formula.
Then for any constants̄c, c̄ ∈ α(Σ) iff c̄ ? ∈ αf (Σ), wherec̄ ?

is like c̄ except that constants not inΣ|α ∪ {α} are replaced
by unique representatives not inΣ|α ∪ {α} fromH(Σ|α, α).

Proof: We can expand? to a bijection∗ from C to C such
that c∗ = c for any c that appears inΣ|α or α. Then
V [Σ, α(c̄)]= (by locality) V [Σ|α, α(c̄)] = (by Theorem 2.3)
V [(Σ|α)∗, (α(c̄))∗], i.e.V [Σ|α, α(c̄ ?)] =V [Σ, α(c̄ ?)].

3 The complexity of database queries
3.1 An overview
The complexity of query evaluation has been one of the main
pursuits of database theory. Traditionally, there are two com-
plexity measures: combined complexity and data complexity
[Vardi, 1982]. Combined complexity is measured in terms
of the combined size of the database and the query. Chan-
dra and Merlin[1977] proved that the combined complexity
of conjunctive queries (queries expressed by first-order for-
mulas that are of the form∃x̄(α1 ∧ . . . ∧ αn) whereαi are
atoms) is NP-complete; Vardi[1982] proved that the com-
bined complexity of first-order queries is PSPACE-complete.
However, the main factor responsible for this high complexity
is the size of the query and not the size of the database. This is
contrary to the situation in practice where we normally eval-
uate small queries against large databases. Data complexity
measures the complexity of query evaluation solely in terms
of the size of the database and treats the size of the query as a
constant. A folk result is that first-order queries can be evalu-
ated in timenO(l), wheren is the size of the database andl is
the size of the query. Thus the data complexity of first-order
queries is in PTIME. However, such a complexity can hardly
qualify as tractable even if the exponent is small, say 5.

Yannakakis[1995] was the first to suggest that parameter-
ized complexity[Downey and Fellows, 1995] might be an
appropriate complexity measure for database query evalua-
tion. Query evaluation is fixed-parameter tractable if there is
a computable functionf : N → N and a constantc such that
the problem can be solved in timef(l) ·nc, wherel andn are
the size of the query and the database, respectively. However,
Papadimitriou and Yannakakis[1999] proved that the param-
eterized complexity of conjunctive queries is W[1]-complete
and thus most likely not fixed-parameter tractable. We re-
fer the reader to[Grohe, 2002] for a survey on parameterized
complexity in database theory.

Therefore database query evaluation in general is hard with
respect to both combined and parameterized complexity. And
yet, database queries do work quite well in practice, even
for very large databases. A careful examination of the hard-
ness results show that they often depend on queries that are
somewhat atypical in applications,e.g. databases represent-
ing graphs and queries asking for the existence of cliques.

Naturally, many research efforts have gone into finding
classes of queries that can be proven tractable, even in the
worst cases. The earliest result of this form, due to Yan-
nakakis[1981], showed that acyclic conjunctive queries can
be evaluated in polynomial time. This result has been ex-
tended in several ways. The first extension, due to Chekuri
and Rajaraman[1997], showed that conjunctive queries
with bounded treewidth are tractable. Later, Gottlobet al.
[1999] introduced the notion of hypertree width and showed
that conjunctive queries with bounded hypertree width are
tractable; bounded hypertree width generalizes the notions
of acyclicity and bounded treewidth. Recently, Flumet al.
[2001] generalized the notions of acyclicity and bounded
treewidth from conjunctive queries to nonrecursive stratified
Datalog (NRSD), which is known to have the same expres-
sive power as all of first-order logic, and showed that acyclic
and bounded treewidth NRSD are tractable. Inspired by their
work, Gottlobet al. [2001] extended the notion of hypertree
width to NRSD, and obtained a nice logical characterization
of hypertree width: they showed that thek-guarded fragment
of first-order logic has the same expressive power as NRSD
of hypertree width at mostk. Thusk-guarded first-order logic
turns out to be the largest tractable class of queries so far.

3.2 An evaluation algorithm
The guarded fragment GF was introduced by Andr´ekaet al.
[1996], and has recently received a lot of attention. The idea
is that any existentially quantified subformulaφ must be con-
joined with a guard,i.e. an atom containing all free variables
of φ. Gottlobet al. [2001] extended GF to thek-guarded frag-
ment GFk where up tok atoms may jointly act as a guard, and
proved that GFk-formulas can be evaluated in timeO(l2nk)
wherel andn are as before. The proof is by transforming
GFk-formulas intok-guarded NRSD programs.

In this section, we introduce thek-guarded fragment ofL,
and explicitly present a polynomial algorithm for evaluating
k-guarded formulas against databases and analyze its com-
plexity. We will use this algorithm to evaluatek-guarded for-
mulas with respect to proper KBs.

Definition 3.1 The k-guarded fragment GFk of L is the
smallest set of formulas such that

1. GFk contains atoms and equalities;

2. GFk is closed under Boolean operations;

3. GFk contains∃x̄(G1 ∧ . . .∧Gm ∧φ), provided that the
Gi are atoms or equalities,m ≤ k, φ ∈ GFk, and the
free variables ofφ appear among theGi.

Definition 3.2 The strictlyk-guarded fragment SGFk are the
formulas in GFk of the form∃x̄(G1∧. . .∧Gm∧φ). We allow
the degenerate cases wherex̄ is empty orm = 0 or φ is TRUE.

Note that anyk-guarded sentence is strictlyk-guarded.
The evaluation algorithm below will take a strictlyk-

guarded formula as the query. It turns out that any formula
φ can be transformed in linear time into an equivalent SGFk-
formula for somek, using guards of the formx = x, if neces-
sary. For example, note thatR(x, y, z)∧S(z, u, v) can be for-
mulated in SGF2, but¬R(x, y, z)∧¬S(z, u, v) only in SGF5.

The evaluation algorithm will have worst-case time com-
plexity that is exponential only in thek. For fixedk, the algo-
rithm is polynomial, but perhaps impractical whenk is large.
An upper bound onk is the width ofφ. Obviously, ifφ has at
mostk distinct variables, the width ofφ is no more thank.

Before presenting the evaluation algorithm, we first recall
some basic notions of relational database theory. A database
instance is simply a logical structure (or interpretation) with
a finite domain. LetA be such a structure with domainA.
LetX andY be sets of variables. AnX-relationR overA, is
a finite set of mappingsγ fromX intoA, which we write as
{γ : [X → A]}. If Y ⊆ X , theY -projection of anX-relation
R, which we writeπY (R), is the set{γ|Y | γ ∈ R}, where
γ|Y is the mapping restricted toY . LetR be anX-relation
andS aY -relation. The join ofR andS is theX∪Y -relation

R 1 S = {γ : [X ∪ Y → A] | γ|X ∈ R, γ|Y ∈ S}.
The join ofR with the complement ofS is theX∪Y -relation
R 1c S = {γ : [X ∪ Y → A] | γ|X ∈ R, γ|Y 6∈ S}.
Let φ be a formula with free variablesX = {x1, . . . , xn}.

Theanswerto φ wrt A is theX-relation
φ(A) = {γ : [X → A] | A |= φ(γ(x1), . . . , γ(xn))}.

Here is the algorithm for computing answers:

ProcedureEval(A, φ)
Input : A structureA such that the domain and all relations
are sorted, and a formulaφ ∈ SGFk

Output : φ(A)
supposeφ(x̄) = ∃ȳ(G1 ∧ . . . ∧Gm ∧ ψ)
returnπx̄{Eval(A, G1(A) 1 . . . 1 Gm(A), ψ′)}
whereψ′ is the result of pushing¬s in ψ so that
they are in front of atoms, equalities, or existentials.

ProcedureEval(A, R, φ) is defined recursively by:
1. If φ is an atom or an equality,

then Eval(A, R, φ) = R 1 φ(A);
2. If φ is negation of an atom or an equality,

then Eval(A, R, φ) = R 1c φ(A);
3. Eval(A, R, (φ ∧ ψ)) = Eval(A, R, φ) ∩ Eval(A, R, ψ);
4. Eval(A, R, (φ ∨ ψ)) = Eval(A, R, φ) ∪ Eval(A, R, ψ);
5. Eval(A, R, ∃ȳφ) = R 1 Eval(A, ∃ȳφ);
6. Eval(A, R,¬∃ȳφ) = R 1c Eval(A, ∃ȳφ).

Theorem 3.3 Given a sorted structureA and a formulaφ ∈
SGFk, φ(A) can be computed in timeO(lnk), wherel is the
size ofφ, andn is the size of the database.
Proof: For each of thel literals and logical operators in the
query, we perform either a join, a join with complement, an
intersection, or a union. Note that when we perform a join or
a join with complement within Eval(A, R, φ), the attributes
of the second argument is always a subset of those of the first,
since for guarded formulas, the free variables inφ are a subset
of those inR. By induction, Eval(A, R, φ) always returns a
relation that is a subset ofR. Moreover, theR is obtained
from joins of at mostk guards, and so has size at mostnk.
Assuming all relations start in sorted form, the results of all
operations can be kept in sorted form, and computed in time
O(nk). Thus, the time overall isO(lnk).

4 The complexity ofV
In this section, we consider how hard it is to computeV . Not
surprisingly,V is no easier than database query evaluation.
What is more significant is that under reasonable assump-
tions, it is not much harder either.

4.1 Intractability results
Theorem 4.1 The combined complexity of V is NP-hard
for conjunctive queries, and PSPACE-hard for first-order
queries. The parameterized complexity of V is W[1]-hard for
conjunctive queries.

Proof: The proof is essentially the same as that for database
query evaluation. For conjunctive queries, the reduction is
from the clique problem. For first-order queries, the reduction
is from QBF (Quantified Boolean Formula).

4.2 A tractability result
We now present a tractability result forV . The basic idea is to
reduceV to database query evaluation and use the algorithm
Eval from Section 3. To do this efficiently, we would like to
use database operations as much as possible, and only reason
with the formulase in ∀(e ⊃ l) when necessary. For each
predicateP appearing in a queryα, we will consider storing
two relationsP+ andP− depending on the form ofΣ.
Definition 4.2 The ewff defining a predicateP denotedeP ,
is the disjunction of alle such that∀x̄(e(x̄) ⊃ P (x̄)) ∈ Σ.
The ewff defining¬P denotede¬P is analogous.

Definition 4.3 We distinguish among three cases for an ewff:

1. e is relational if it is of the form
x̄ = c̄1 ∨ . . . ∨ x̄ = c̄n wheren ≥ 0.

2. e is co-relational if it is of the form
x̄ 6= c̄1 ∧ . . . ∧ x̄ 6= c̄n wheren > 0.

3. e is unrestricted otherwise.

Definition 4.4 The e-size ofΣ is the maximum size of an un-
restrictedeP or e¬P in Σ.

For each predicateP , we storeP+ as a sorted relation when
eP is relational or co-relational, and analogously forP− us-
ing e¬P . We letDB(Σ, C) (whereC is a set of constants that
includes all those inΣ) denote the database whose domain is
C and whose relations areP+ andP− as above.

Note that in the case of a predicateP in Σ corresponding
to a normal database-style relation,eP will be relational and
e¬P will be co-relational and the two relationsP+ andP−
will be identical. A simple optimization would merge them.

Next, given a formulaα we construct a database query by
replacing every occurrence of a predicateP as follows: a pos-
itive3 occurrence ofP is replaced byP+ wheneP is rela-
tional,¬P+ when co-relational, and byeP itself otherwise;
a negative occurrence ofP is replaced by¬P− whene¬P

is relational,P− when co-relational, and by¬e¬P itself oth-
erwise. We letQ(Σ, α) denote the resulting database query
with double negation removed.

We present examples of this transformation in the next sec-
tion. Here we note the following correctness result:

3A positive (resp. negative) occurrence ofP in α is one within
the scope of an even (resp. odd) number of negations.

Theorem 4.5 Let Σ be a proper KB andα a formula ofL.
LetC = H(Σ|α, α), A = DB(Σ|α,C), andφ = Q(Σ, α).
Thenαf (Σ) = φ(A).

This theorem says that the (finite version of) answers to
open queries inL correspond exactly to the answers we get
for the database constructed as above. This is a consequence
of locality and the following lemma:

Lemma 4.6 LetΣ be a proper KB andα a sentence ofL. Let
C be any finite set of constants consisting of those inΣ∪{α}
andk extra ones for somek ≥ qr(α). LetA = DB(Σ|α,C).
ThenV [Σ, α] = 1 iff A |= Q(Σ, α), andV [Σ, α] = 0 iff
A |= Q(Σ,¬α).

Proof: The proof is by induction on the structure ofα. Here
we choose to prove the case forV [Σ, α] = 0 which is trickier
than the case forV [Σ, α] = 1.

V [Σ, P (c̄)] = 0 iff E |= e¬P (c̄) iff A |= Q(Σ,¬P (c̄)) since

E |= e¬P (c̄) iff

A |= P−(c̄) if e¬P is relational
A |= ¬P−(c̄) if e¬P is co-relational
A |= e¬P (c̄) otherwise

The case fort = t′ is trivial. V [Σ,¬α] = 0 iff V [Σ, α] = 1
iff (by induction)A |= Q(Σ, α), i.e. Q(Σ,¬¬α).

Considerα ∨ β. Let Q(Σ,¬α) = ¬φ andQ(Σ,¬β) = ¬ψ.
Then Q(Σ,¬(α ∨ β)) = ¬(φ ∨ ψ). V [Σ, α ∨ β] = 0
iff V [Σ, α] = 0 and V [Σ, β] = 0 iff (by induction)
A |= Q(Σ,¬α) andA |= Q(Σ,¬β) iff A |= ¬φ ∧ ¬ψ
iff A |=¬(φ ∨ ψ), i.e. Q(Σ,¬(α ∨ β)).

Consider∃xα. Let Q(Σ,¬α) = ¬φ. ThenQ(Σ,¬∃xα) =
¬∃xφ. V [Σ, ∃xα] = 0 iff V [Σ, αx

d] = 0 for any d ∈
H+(Σ ∪ {α}) iff (by Corollary 2.4 sinceC contains at least
one constant not inΣ ∪ {α}) V [Σ, αx

d] = 0 for anyd ∈ C iff
(by induction sinceC consists of those constants inΣ∪{αx

d}
and j extra ones for somej ≥ qr(α)) A |= Q(Σ,¬αx

d),
i.e. ¬φx

d for anyd ∈ C iff A |= ∀x¬φ iff A |= ¬∃xφ, i.e.
Q(Σ,¬∃xα).

To obtain a tractability result for open queries over proper
KBs, we need only ensure that the database queries we con-
struct arek-guarded then use the Eval procedure.

Definition 4.7 LetΣ be a proper KB. The strictlyk-guarded
fragment SGk(Σ) ofL for Σ is the same as SGFk except that
when∃x̄(G1 ∧ . . . ∧ Gm ∧ φ) is within the scope of an even
(resp. odd) number of¬s, theGi must be equalities or atoms
P (t̄) s.t. eP is relational (resp.e¬P is co-relational) or liter-
als¬P (t̄) s.t. e¬P is relational (resp.eP is co-relational).

Clearly, for anyα, if α ∈ SGk(Σ), thenQ(Σ, α) ∈ SGFk.
Note that every formulaα with widthm can be transformed
into an equivalent SGk(Σ)-formula for somek ≤ m, using
equalities as guards if necessary.

Now we get our main complexity result:

Theorem 4.8 Let Σ be a proper KB andα ∈ SGk(Σ). Then
αf (Σ) can be computed in timeO(lwnk), wherel is the size
ofα, n is the size ofΣ|α, andw is the e-size ofΣ|α.

Proof: Let C = H(Σ|α, α), A = DB(Σ|α,C), andφ =
Q(Σ, α). We sortC. By Theorem 4.5,αf (Σ) = Eval(A, φ).

The size ofA is O(n), and the length ofφ is O(lw). By
Theorem 3.3,αf (Σ) can be computed in timeO(lwnk).

As a special case of the theorem, we have:

Corollary 4.9 Let Σ be a proper KB andα a sentence in
SGk(Σ). Then whetherV [Σ, α] = 1 can be decided in time
O(lwnk), wherel, w andn are as above.

Corollary 4.10 Let Σ be a proper KB andα ∈ NF ∩
SGk(Σ). Then whetherE ∪ Σ |= α can be decided in time
O(lwnk), wherel, w andn are as above.

Proof: Follows from previous corollary and the fact thatV is
logically sound and complete for queries inNF .

Note that these bounds are identical to their database coun-
terparts modulo thew factor. In most cases of interest, the
w will be small since even in a large KB, we only expect to
see a largeeP or e¬P in database-like cases, where thee is
relational or co-relational. In the case where none of thee are
relational or co-relational, we get the following:

Corollary 4.11 Let Σ be a proper KB andα a formula of
widthk with all literals defined by an unrestricted ewff. Then
αf (Σ) can be evaluated in timeO((lw)k+1), wherel is the
size ofα, andw is the e-size ofΣ|α.

Proof: We transformα into an equivalent SGk(Σ)-formula,
using equalities as guards. The size ofΣ|α isO(lw).

5 An example
To illustrate how query evaluation would work with proper
KBs, we return to the example robotic scenario mentioned
in the first section, involving the predicateIn(person, room).
We can see from the example thateIn is given in relational
form, while e¬In is given in unrestricted form. To make
things interesting, we assume two more predicates: One is
Mgr(person1, person2) saying that the first person is a man-
ager and that the second is one of his or her employees; we
assume thatMgr is given as a closed database predicate. The
other isCmp(person1, person2) saying that the two persons
are compatible. We assume that the robot knows that any two
people are compatible exceptm(> 2) pairs; among thesem
pairs, the robot only knows that two pairs are not compatible.
HenceeCmp is given in co-relational form, ande¬Cmp is given
in relational form. Thus the corresponding database has the
following relations: In+, Mgr+, Mgr−, Cmp+, andCmp−,
whereMgr+ = Mgr−, andCmp− ⊆ Cmp+.

Here are some example queries,with the guards underlined.

1. What rooms are unoccupied?
r = r ∧ ¬∃x(x = x ∧ r = r ∧ In(x, r))

2. Are there rooms with more than one manager in them?
∃r∃m∃m′(In(m, r) ∧ In(m′, r) ∧m 6= m′ ∧

∃xMgr(m,x) ∧ ∃x′Mgr(m′, x′))
3. Are there any managers whose employees are all in the

same room?
∃m∃r(m = m ∧ r = r ∧

¬∃x(Mgr(m,x) ∧ r = r ∧ ¬In(x, r)))
4. Is it true that any two people who are not compatible are

in different rooms?
¬∃x∃x′(¬Cmp(x, x′) ∧

¬∃r∃r′(In(x, r) ∧ In(x, r′) ∧ r 6= r′))

Observe that in all cases, the queries are strictly2-guarded
wrt the proper KB. Also, because no query contains a lit-
eral and a unifiable literal of opposite polarity, from results
in [Levesque, 1998], all the queries are inNF .

The corresponding database queries are as follows:

1. r = r ∧ ¬∃x(x = x ∧ r = r ∧ ¬e¬In(x, r))

2.
∃r∃m∃m′(In+(m, r) ∧ In+(m′, r) ∧m 6= m′ ∧

∃xMgr+(m,x) ∧ ∃x′Mgr+(m′, x′))

3.
∃m∃r(m = m ∧ r = r ∧

¬∃x(Mgr−(m,x) ∧ r = r ∧ ¬In+(x, r)))

4.
¬∃x∃x′(Cmp+(x, x′) ∧

¬∃r∃r′(In+(x, r) ∧ In+(x, r′) ∧ r 6= r′))

6 Conclusions
In this paper, we have shown how a bottom-up query evalua-
tion procedure for databases can be used to answer queries for
KBs with a certain form of incomplete knowledge. Although
this procedure can be impractical fork-guarded queries
wherek is large, they would be impractical for databases too.

A number of questions remain to be addressed. First of all,
Lakemeyer and Levesque[2002] have proposed an extension
to proper KBs that allow disjunctions in the KB. It would be
interesting to see how much of the database retrieval mech-
anism could be preserved in this case. We can also imagine
other extensions to proper KBs, such as relaxing the unique
name assumption over constants, or allowing a limited use
of function symbols. Also, as suggested in the first section,
we can imagine a dynamic scenario where at any given point
what a robot or agent knows about the current situation is ex-
pressible as a proper KB. It would then be useful to amalga-
mate regression-based techniques for reasoning about change
from [Reiter, 2001] with the database techniques considered
here. Among other things, this would require determining
those cases where the successor state axioms guarantee that
a proper KB remains proper after an action has been per-
formed, perhaps along the lines of[Petrick and Levesque,
2002]. It would also be interesting to investigate the relation-
ship between proper KBs and other subsets of logic to see if
the complexity results presented here can be further gener-
alized. Two immediate candidates are datalog programs and
stratified logic programs that include some form of classical
negation. Finally, we note that additional optimizations can
be made to our query evaluation procedure that do not change
the worst-case performance, but would improve its behaviour
in practice.

Acknowledgments
We would like to thank Leonid Libkin for pointing us to the
relevant database literature. Financial support was gratefully
received from the Natural Sciences and Engineering Research
Council of Canada.

References
[Andrékaet al., 1996] H. Andréka, I. Hodkinson, and I.

Németi. Modal languages and bounded fragments of pred-
icate logic. ILLC Research Report ML-96-03, University
of Amsterdam, 1996.

[Chandra and Merlin, 1977] A.K. Chandra and P.M. Merlin.
Optimal implementation of conjunctive queries in rela-
tional data bases. InConference record of the 9th annual
ACM Symp. on Theory of Computing, pages 77–90, 1977.

[Chekuri and Rajaraman, 1997] C. Chekuri and A. Rajara-
man. Conjunctive query containment revisited. InProc.
6th Int. Conf. on Database Theory, pages 56–70, 1997.

[Downey and Fellows, 1995] R.G. Downey and M.R. Fel-
lows. Fixed-parameter tractability and completeness I: Ba-
sic results.SIAM Journal on Computing, 24(4):873–921,
1995.

[Flumet al., 2001] J. Flum, M. Frick, and M. Grohe. Query
evaluation via tree-decompositions. InProc. of the 8th Int.
Conf. on Database Theory, pages 22–38, 2001.

[Gottlobet al., 1999] G. Gottlob, N. Leone, and F. Scarcello.
Hypertree decompositions and tractable queries. InProc.
18th ACM Symp. on Principles of Database Systems, 1999.

[Gottlobet al., 2001] G. Gottlob, N. Leone, and F. Scarcello.
Robbers, marshals, and guards: Game theoretic and logi-
cal characterizations of hypertree width. InProc. of the
20th ACM Symp. on Principles of Database Systems, 2001.

[Grohe, 2002] M. Grohe. Parameterized complexity for the
database theorist.SIGMOD Record, 31(4), 2002.

[Lakemeyer and Levesque, 2002] G. Lakemeyer and H.J.
Levesque. Evaluation-based reasoning with disjunctive in-
formation in first-order knowledge bases. InProc. of KR-
02, pages 73–81, 2002.

[Levesque, 1998] H.J. Levesque. A completeness result for
reasoning with incomplete first-order knowledge bases. In
Proc. of KR-98, pages 14–23, 1998.

[Papadimitriou and Yannakakis, 1999] C.H. Papadimitriou
and M. Yannakakis. On the complexity of database
queries. Journal of Computer and System Sciences,
58(3):407–427, 1999.

[Petrick and Levesque, 2002] R. Petrick and H.J. Levesque.
Knowledge equivalence in combined action theories. In
Proc. of KR-02, pages 303–314, 2002.

[Reiter, 2001] R. Reiter. Knowledge in Action: Logical
Foundations for Specifying and Implementing Dynamical
Systems. MIT Press, 2001.

[Vardi, 1982] M.Y. Vardi. The complexity of relational query
languages. InProc. of the 14th Annual ACM Symp. on
Theory of Computing, pages 137–146, 1982.

[Yannakakis, 1981] M. Yannakakis. Algorithms for acyclic
database schemes. InProc. of the 7th Int. Conf. on Very
Large Data Bases, pages 82–94, 1981.

[Yannakakis, 1995] M. Yannakakis. Perspectives on
database theory. InProc. of the 36th Annual Symp. on
Foundations of Computer Science, pages 224–246, 1995.

