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Aschenbrenner, 2024. “Situational Awareness”

GPT-2 GPT-3 GPT-4 GPT-N-Equivalent

Write coherent story Write simple code Write complex code & proof
Power AI assistants & agents
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Do complex downstream (e.g., agentic) capabilities scale predictably?
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Non-smooth, emergent behaviour
✘ unpredictability

✘ safety concerns 
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Do our proposed algorithmic interventions stand the test of future scale?

Wei et al., 2022. “Chain-of-Thought Prompting 

Elicits Reasoning in Large Language Models”

Wang et al., 2023. “Self-Consistency Improves 

Chain of Thought Reasoning in Language Models”
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Scaling laws demonstrate a predictable power-law relationship between 
LM’s performance (e.g., pretraining loss) and compute measures 

Kaplan et al., 2020. “Scaling Laws for Neural Language Models” OpenAI, 2023. “GPT-4 Technical Report”
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Compute scaling laws have been used in a broad range of applications

Capability prediction Resource allocation Hyperparameter tuning

OpenAI, 2023. “GPT-4 Technical Report” Hoffmann et al., 2022. “Training Compute-

Optimal Large Language Models”

Bi et al., 2024. “DeepSeek LLM: Scaling Open-

Source Language Models with Longtermism”



But compute scaling analyses remain uncommon 
in benchmarking or algorithmic studies… 

  
Why?
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What if we use existing, public models?

Zhao et al., 2023. “A Survey of Large Language Models”
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Restricted Coverage
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Different model families (trained with heterogenous recipes) demonstrate 
varying compute efficiencies
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Compute scaling laws need to be established with a carefully controlled 
training recipe (e.g., model arch., data dist.)

Bi et al., 2024. “DeepSeek LLM Scaling Open-Source Language Models with Longtermism”
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There are a lot of standard, unified evaluation benchmarks that measure 
various base capabilities of LMs
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- Code: CodeLlama, StarCoder, …

- Multilingual: BLOOM, XGLM, …

- Synthetic: Phi 

- MoE: Mixtral, DeepSeek-V2, …

- Mamba-Hybrid: Jamba

100+ Public, Heterogenous 
Pretrained Models

- Aggregated: MMLU

- Commonsense: ARC-C, HellaSwag, 

Winogrande

- Math: GSM8K

- Code: HumanEval

- Truthfulness: TruthfulQA

- Multilinguality: XWinograd

Diverse Metrics from  
Standardized Benchmarks
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PC measures are low-dimensional and interpretable (to some extent)
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PC measures linearly correlate with log-compute within each model family
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PC measures provide a smooth and unified capability measure for models 
from heterogeneous sources
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Observational scaling laws are applicable to many types of scaling analyses

✔ Complex model capabilities (e.g., agentic or “emergent” behaviours)
✔ Post-training techniques
✘ Pretraining algorithmic dev

Validation: measure how well fitted scaling laws extrapolate from smaller-
scale, weaker models to larger-scale, stronger models

Preregistration: test on newly released models after the paper release (05/2024)
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Wei et al., 2022. “Emergent Abilities of Large Language Models”

There have been ongoing debates about whether “emergent” capabilities are 
truly discontinuous or inherently smooth
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Wei et al., 2022. “Emergent Abilities of Large Language Models”

There have been ongoing debates about whether “emergent” capabilities are 
truly discontinuous or inherently smooth

“Emergence” could be an artifact of low-resolution data points?
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Emergent capabilities can be accurately predicted with obs. scaling laws
Llama-3.1-405B
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Compute scaling laws provide poor extrapolations
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There has been lots of excitement about developing autonomous agent

How do LMs’ agentic capabilities scale?
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Agentic capabilities can be predicted with LMs’ simple benchmark metrics

AgentBench [Liu et al., 2023] AgentBoard [Ma et al., 2024]
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Programming capabilities are essential

AgentBench

AgentBoard
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Effective post-training techniques should persist gains across scales
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LMs’ performance with post-training methods are predictable



Predicting the Impact of Post-Training Techniques
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Different techniques demonstrate different scaling properties



Takeaways
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• LM capabilities are highly correlated and low-dimensional


• Observational scaling laws offer a lower-cost, higher-resolution, broader-coverage 
alternative for complex capability and post-training analyses


• Many downstream LM capabilities—including seemingly emergent ones—may be 
smoothly predictable



Future Directions
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• Reasoning models


• Are obs. scaling laws still applicable?


• Can we predict the gains of RL training from various base LMs with obs. scaling?


• Complex downstream capability analyses


• More reliable capability forecasts with obs. scaling (e.g., Pimpale et al., 2025)?


• Simpler optimization surrogate from fitted obs. scaling predictions?



Thank you!
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