The Two-Variable Situation Calculus

Yilan GUa, Mikhail SOUTCHANSKI b,1

a Department of Computer Science, University of Toronto, email: yilan@cs.toronto.edu
b Department of Computer Science, Ryerson University, email: mes@scs.ryerson.ca

\textbf{Abstract.} We consider a modified version of the situation calculus built using a two-variable fragment of the first-order logic extended with counting quantifiers. We mention several additional groups of axioms that need to be introduced to capture taxonomic reasoning. We show that the regression operator in this framework can be defined similarly to regression in the Reiter’s version of the situation calculus. Using this new regression operator, we show that the projection problem (that is the main reasoning task in the situation calculus) is decidable in the modified version. We mention possible applications of this result to formalization of Semantic Web services.

\textbf{Keywords.} situation calculus, description logic, decidable reasoning about actions

1. Introduction

The Semantic Web community makes significant efforts toward integration of Semantic Web technology with the ongoing work on web services. These efforts include use of semantics in the discovery, composition, and other aspects of web services. Web service \textit{composition} is related to the task of designing a suitable combination of available component services into a composite service to satisfy a client request when there is no single service that can satisfy this request [15]. This problem attracted significant attention of researchers both in academia and in industry. A major step in this direction is creation of ontologies for web services, in particular, OWL-S that models web services as atomic or complex actions with preconditions and effects. An emerging industry standard BPEL4WS (Business Process Execution Language for Web Services) provides the basis for manually specifying composite web services using a procedural language. However, in comparison to error-prone manual service compositions, (semi)automated service composition promises significant flexibility in dealing with available services and also accommodates naturally the dynamics and openness of service-oriented architectures. The problem of the automated composition of web services is often formulated in terms similar to a planning problem in AI: given a description of a client goal and a set of component services (that can be atomic or complex), find a composition of services that achieves the goal [19,20,25,23]. Despite that several approaches to solving this problem have already been proposed, many issues remain to be resolved, e.g., how to give well-defined and general characterizations of service compositions, how to compute all effects and side-effects on the world of every action included in composite service, and other issues. Other reasoning problems, well-known in AI, that can be relevant to service composition and discovery are executability and projection problems. Executability problem requires determining whether preconditions of all actions included in a composite service can be satisfied given incomplete information about the world. Projection problem requires determining whether a certain goal condition is satisfied after the execution of all component services given an incomplete information about the current state. In this paper we would like to concentrate on the last problem because it is an important prerequisite for planning and execution monitoring tasks, and for simplicity we start with sequential compositions of the atomic actions (services) only (we mention complex actions in the last section). More specifically, following several previous approaches [19,20,5,25,15], we choose the situation calculus as an expressive formal language for specification of actions. However, we acknowledge openness of the world and represent incomplete information about an initial state of the world by assuming that it is characterized by a predicate logic theory in the general syntactic form.

The situation calculus is a popular and well understood predicate logic language for reasoning about actions and their effects [24]. It serves as a foundation for the Process Specification Language (PSL) that axiomatizes a set of primitives adequate for describing the fundamental concepts of manufacturing processes (PSL has been accepted as an international standard) [13,12]. It is used to provide a well-defined semantics for Web services and a foundation for a high-level programming language Golog [5,19,20]. However, because the situation calculus is formulated in a general predicate logic, reasoning about effects of sequences of actions is undecidable (unless some restrictions are imposed on the theory that axiomatizes the initial state of the world). The first motivation for our paper is intention to overcome this difficulty. We propose to use a two-variable fragment \textit{FO}2 of the first-order logic (FOL) as a foundation

1Correspondence to: Mikhail Soutchanski, Department of Computer Science, Ryerson University, The Centre for Computing and Engineering, 245 Church Street, ENG281, Toronto, Ontario, M5B 2K3, Canada Tel.: +1 416 979 5000, ext 7954; Fax: +1 (416) 979-5064; E-mail: mes@scs.ryerson.ca
for a modified situation calculus. Because the satisfiability problem in this fragment is known to be decidable (it is in \textsc{NEXPTIME}), we demonstrate that by reducing reasoning about effects of actions to reasoning in this fragment, one can guarantee decidability no matter what is the syntactic form of the theory representing the initial state of the world.

The second motivation for our paper comes from description logics. Description Logics (DLs) \cite{BaaderF03} are a well-known family of knowledge representation formalisms, which play an important role in providing the formal foundations of several widely used Web ontology languages including OWL \cite{BeckerBBK07} in the area of the Semantic Web \cite{Bizer2011}. DLs may be viewed as syntactic fragments of FOL and offer considerable expressive power going far beyond propositional logic, while ensuring that reasoning is decidable \cite{Dung}. DLs have been mostly used to describe static knowledge-base systems.

Moreover, several research groups consider formalization of actions using DLs or extensions of DLs. Following the key idea of \cite{DeGiacomoHWW12}, that reasoning about complex actions can be carried in a fragment of the propositional situation calculus, De Giacomo et al. \cite{DeGiacomoFW05} give an epistemic extension of DLs to provide a framework for the representation of dynamic systems. However, the representation and reasoning about actions in this framework are strictly propositional, which reduces the representation power of this framework. In \cite{BaaderBook}, Baader et al. provide another proposal for integrating description logics and action formalisms. They take as foundation the well known description logic \textsc{ALCQIO} (and its sub-languages) and show that the complexity of executability and projection problems coincides with the complexity of standard DL reasoning. However, actions (services) are represented in their paper meta-theoretically, not as first-order (FO) terms. This can potentially lead to some complications when specifications of other reasoning tasks (e.g., planning) will be considered because it is not possible to quantify over actions in their framework. In our paper, we take a different approach and represent actions as FO terms, but achieve integration of taxonomic reasoning and reasoning about actions by restricting the syntax of the situation calculus. Our paper can be considered as a direct extension of the well-known result of Borgida \cite{Borgida82} who proves that many expressive description logics can be translated to two-variable fragment \textsc{FO}^2 of FOL. However, to the best of our knowledge, nobody proposed this extension before.

The main contribution of our paper to the area of service composition and discovery is the following. We show that by using services that are composed from atomic services with no more than two parameters and by using only those properties of the world which have no more than two parameters (to express a goal condition), one can guarantee that the executability and projection problems for these services can always be solved even if information about the current state of the world is incomplete.

Our paper is structured as follows. In Section 2, we briefly review the Reiter’s situation calculus. In Section 3 we review a few popular description logics. In the following section 4 we discuss details of our proposal: a modified situation calculus. In Section 5 we consider an extension of regression (the main reasoning mechanism in the situation calculus). Finally, in Section 6 we provide a simple example and in Section 7 we discuss briefly other related approaches to reasoning about actions.

2. The Situation Calculus

The situation calculus (SC) \textit{L}_{sc} is a FO language for axiomatizing dynamic systems. In recent years, it has been extended to include procedures, concurrency, time, stochastic actions, etc \cite{DeGiacomoFW05}. Nevertheless, all dialects of the SC \textit{L}_{sc} include three disjoint sorts: actions, situations and objects. Actions are FO terms consisting of an action function symbol and its arguments. Actions change the world. Situations are FO terms which denote possible world histories. A distinguished constant \textit{S}_0 is used to denote the initial situation, and function \textit{do}(a, \textit{s}) denotes the situation that results from performing action \textit{a} in situation \textit{s}. Every situation corresponds uniquely to a sequence of actions. Moreover, notation \textit{s'} \sqsubseteq \textit{s} means that either situation \textit{s'} is a subsequence of situation \textit{s} or \textit{s} = \textit{s}'. Objects are FO terms other than actions and situations that depend on the domain of application. Fluents are relations or functions whose values may vary from one situation to the next. Normally, a fluent is denoted by a predicate or function symbol whose last argument has the sort situation. For example, \textit{F}(\bar{x}, \textit{do}(\alpha_1, \cdots, \alpha_n), \textit{S}_0) represents a relational fluent in the situation \textit{do}(\alpha_n, \textit{do}(\cdots, \textit{do}(\alpha_1, \textit{S}_0) \cdots) resulting from execution of ground action terms \alpha_1, \cdots, \alpha_n in \textit{S}_0.\footnote{Reiter \cite{Reiter82} uses the notation \textit{s'} \subseteq \textit{s}, but we use \textit{s'} \sqsubseteq \textit{s} to avoid confusion with the inclusion relation \sqsubseteq that is commonly used in description logic literature. In this paper, we use \sqsubseteq to denote the inclusion relation between concepts or roles.}

The SC includes the distinguished predicate \textit{Poss}(a, \textit{s}) to characterize actions \textit{a} that are possible to execute in \textit{s}. For any SC formula \phi and a term \textit{s} of sort situation, we say \phi is a formula uniform in \textit{s} if it does not mention the predicates \textit{Poss} or \textit{\sim}, it does not quantify over variables of sort situation, it does not mention equality on situations, and whenever it mentions a term of sort situation in the situation argument position of a fluent, then that term is \textit{s} (see \cite{Reiter82}). If \phi(\textit{s}) is a uniform formula and the situation argument is clear from the context, sometimes we suppress the situation argument and write this formula simply as \phi. Moreover, for any predicate with the situation argument, such as a fluent \textit{F} or \textit{Poss}, we introduce an operation of restoring a situation argument \textit{s} back to the corresponding atomic

\footnote{We do not consider functional fluents in this paper.}
formula without situation argument, i.e., $F(\bar{x})[s] =_{df} F(\bar{x}, s)$ and $Poss(A)[s] =_{df} Poss(A, s)$ for any action term A and object vector \bar{x}. By the recursive definition, such notation can be easily extended to $\phi[s]$ for any FO formula ϕ, in which the situation arguments of all fluents and $Poss$ predicates are left out, to represent the SC formula obtained by restoring situation s back to all the fluents and/or $Poss$ predicates (if any) in ϕ. It is obvious that $\phi[s]$ is uniform in s.

A basic action theory (BAT) D in the SC is a set of axioms written in L_{sc} with the following five classes of axioms to model actions and their effects [24].

Action precondition axioms D_{ap}: For each action function $A(\bar{x})$, there is an axiom of the form $Poss(A(\bar{x}), s) \equiv \Pi_A(\bar{x}, s)$. $\Pi_A(\bar{x}, s)$ is a formula uniform in s with free variables among \bar{x} and s, which characterizes the preconditions of action A.

Successor state axioms D_{ss}: For each relational fluent $F(\bar{x}, s)$, there is an axiom of the form $F(\bar{x}, do(a, s)) \equiv \Phi_F(\bar{x}, a, s)$, where $\Phi_F(\bar{x}, a, s)$ is a formula uniform in s with free variables among \bar{x}, a and s. The successor state axiom (SSA) for $F(\bar{x})$ completely characterizes the value of $F(\bar{x})$ in the next situation $do(a, s)$ in terms of the current situation s. The syntactic form of $\Phi_F(\bar{x}, a, s)$ is as follows:

$$F(\bar{x}, do(a, s)) \equiv \bigwedge_{i=1}^{m}(3\exists y_i)(a = PosAct_i(\bar{y}_i)) \land \phi_i^+(\bar{x}, \bar{y}_i, s) \lor F(\bar{x}, s) \land \bigwedge_{j=1}^{k}(3\exists z_j)(a = NegAct_j(\bar{y}_j) \land \phi_j^-(\bar{x}, \bar{z}_j, s)),$$

where for $i = 1..m$ (j = 1..k, respectively), each \bar{y}_i (\bar{y}_j, respectively) is vector of terms including variables among \bar{x} and quantified new variables \bar{y}_i (\bar{z}_j), respectively) if there are any, each $\phi_i^+(\bar{x}, \bar{y}_i, s)$ ($\phi_j^-(\bar{x}, \bar{z}_j, s)$, respectively) is a SC formula uniform in s who has free variables among \bar{x} and \bar{y}_i (\bar{z}_j, respectively) if there are any, and each $\text{PosAct}_i(\bar{y}_i)$ ($\text{NegAct}_j(\bar{y}_j)$, respectively) is an action term that makes $F(\bar{x}, do(a, s))$ true (false, respectively) if the condition $\phi_i^+(\bar{x}, \bar{y}_i, s)$ ($\phi_j^-(\bar{x}, \bar{z}_j, s)$, respectively) is satisfied.

Initial theory D_{in}: It is a set of FO formulas whose only situation term is S_0. It specifies the values of all fluents in the initial state. It also describes all the facts that are not changeable by any actions in the domain.

Unique name axioms for actions D_{una}: Includes axioms specifying that two actions are different if their names are different, and identical actions have identical axioms.

Fundamental axioms for situations G: The axioms for situations which characterize the basic properties of situations. These axioms are domain independent. They are included in the axiomatization of any dynamic systems in the SC (see [24] for details).

Suppose that $D = D_{una} \cup D_{in} \cup D_{ap} \cup D_{ss} \cup G$ is a BAT, $\alpha_1, \ldots, \alpha_n$ is a sequence of ground action terms, and $G(s)$ is a uniform formula with one free variable s. One of the most important reasoning tasks in the SC is the projection problem, that is, to determine whether $D \models G(do([\alpha_1, \ldots, \alpha_n], S_0))$. Another basic reasoning task is the executability problem. Let $\text{executable}(do([\alpha_1, \ldots, \alpha_n], S_0))$ be an abbreviation of the formula $Poss(\alpha_1, S_0) \land \bigwedge_{i=2}^{n} Poss(\alpha_i, do([\alpha_1, \ldots, \alpha_{i-1}], S_0))$. Then, the executability problem is to determine whether $D \models \text{executable}(do([\alpha_1, \ldots, \alpha_n], S_0))$. Planning and high-level program execution are two important settings where the executability and projection problems arise naturally. Regression is a central computational mechanism that forms the basis for automated solution to the executability and projection tasks in the SC [22,24]. A recursive definition of the regression operator R on any regressable formula ϕ is given in [24]; we use notation $R[\phi]$ to denote the formula that results from eliminating $Poss$ atoms in favor of their definitions as given by action precondition axioms and replacing fluent atoms about $do(a, s)$ by logically equivalent expressions about s as given by SSAs of sort situation in W is starting from S_0 and has the syntactic form $do([\alpha_1, \ldots, \alpha_n], S_0)|s|$, where each α_i is of sort action; (2) for every atom of the form $Poss(\alpha, \sigma)$ in W, α has the syntactic form $A(t_1, \ldots, t_n)$ for some n-ary function symbol A of L_{sc}; and (3) W does not quantify over situations, and does not mention the relation symbols “$\&$” or “\Box” between terms of situation sort. The formula $G(do([\alpha_1, \ldots, \alpha_n], S_0))$ is a particularly simple example of a regressable formula because it is uniform in $do([\alpha_1, \ldots, \alpha_n], S_0))$, but in the general case, regressable formulas can mention several different ground situation terms. Roughly speaking, the regression of a regressable formula ϕ through an action a is a formula ϕ' that holds prior to a being performed iff ϕ holds after a. Both precondition and SSAs support regression in a natural way and are no longer needed when regression terminates. The regression theorem proved in [22] shows that one can reduce the evaluation of a regressable formula W to a FO theorem proving task in the initial theory together with unique names axioms for actions:

$$D \models W \text{ iff } D_{in} \cup D_{una} \models R[W].$$

This fact is the key result for our paper. It demonstrates that an executability or a projection task can be reduced to a theorem proving task that does not use precondition, successor state, and foundational axioms. This is one of the reasons why the SC provides a natural and easy way to representation and reasoning about dynamical systems. However, because D_{in} is an arbitrary FO theory, this type of reasoning in the SC is undecidable. One of the common ways to
overcome this difficulty is to introduce the closed world assumption that amounts to assuming that D_{S_0} is a relational theory (i.e., it has no occurrences of the formulas having the syntactic form $F_1(x_1, S_0) \lor F_2(x_2, S_0)$ or $\exists x F(x, S_0)$, etc) and all statements that are not known to be true explicitly, are assumed to be false. However, in many application domains this assumption is unrealistic. Therefore, we consider a version of the SC formulated in FO², a syntactic fragment of the FO logic that is known to be decidable, or in C^2 an extension of FO² (see below), where the satisfiability problem is still decidable. If all SC formulas are written in this syntactically restricted language, it is guaranteed by the regression theorem that both the executability and the projection problems for ground situations are decidable.

3. Description Logics and Two-variable First-order Logics

In this section we review a few popular expressive description logics and related fragments of the FO logic. We start with logic ALCHQI. Let $N_C = \{C_1, C_2, \ldots\}$ be a set of atomic concept names and $N_R = \{R_1, R_2, \ldots\}$ be a set of atomic role names. A ALCHQI role is either some $R \in N_R$ or an inverse role R^- for $R \in N_R$. A ALCHQI role hierarchy (RBox) \mathcal{R}^H is a finite set of role inclusion axioms $R_1 \sqsubseteq R_2$, where R_1, R_2 are ALCHQI roles. For $R \in N_R$, we define $\text{Inv}(R) = R^{-}$ and $\text{Inv}(R^{-}) = R$, and assume that $R_1 \sqsubseteq R_2 \in \mathcal{R}^H$ implies $\text{Inv}(R_1) \sqsubseteq \text{Inv}(R_2) \in \mathcal{R}^H$.

The set of ALCHQI concepts is the minimal set built inductively from N_C and ALCHQI roles using the following rules: all $A \in N_C$ are concepts, and, if $C, C_1,$ and C_2 are ALCHQI concepts, R is a simple role and $n \in \mathbb{N}$, then also $\lnot C$, $C_1 \sqcap C_2$, and $(\exists^n R.C)$ are ALCHQI concepts. We use also the following abbreviations for concepts:

\[
\begin{align*}
C_1 \sqcup C_2 & \equiv \lnot (C_1 \sqcap \lnot C_2) \\
C_1 \sqcap C_2 & \equiv \lnot (C_1 \sqcup \lnot C_2) \\
\exists R.C & \equiv (\exists^1 R.C) \\
\forall R.C & \equiv (\forall^1 R.C) \\
\tau_a & \equiv (A \sqsubseteq x) \\
\tau_{a,w} & \equiv (x \sqsubseteq y) \\
\tau_{a,\neg} & \equiv (\neg A \sqsubseteq x) \\
\tau_{a,\neg w} & \equiv (\neg x \sqsubseteq y)
\end{align*}
\]

Concepts that are not concept names are called complex. A literal concept is a possibly negated concept name. A TBox T is a finite set of equality axioms $C_1 \equiv C_2$ (sometimes, general inclusion axioms of the form $C_1 \subseteq C_2$ are also allowed, where C_1, C_2 are complex concepts). An equality with an atomic concept in the left-hand side is a concept definition. In the sequel, we always consider TBox axioms set T that is a terminology, a finite set of concept definition formulas with unique left-hand side, i.e., no atomic concept occurs more than once as a left-hand side. We say that a defined concept name C_1 directly uses a concept name C_2 with respect to T if C_1 is defined by a concept definition axiom in T with C_2 occurring in the right-hand side of the concept definition. Let uses be the transitive closure of directly uses, and a TBox axioms set T is acyclic if no concept name uses itself with respect to T. An ABox A is a finite set of axioms $C(a), R(a, b)$, and (in)equalities $a \approx b$ and $a \neq b$.

The logic ALCHQI is obtained by disallowing RBox. A more expressive logic $\text{ALCHQI} \sqcup \{\sqcup, \sqcap, \lnot, |, \id\}$ is obtained from ALCHQI by introducing identity role \id (relating each individual with itself) and allowing complex role expressions: if R_1, R_2 are ALCHQI (disjoint) sets of roles and C is a concept, then $R_1 \sqcup R_2, R_1 \sqcap R_2, \lnot R_1, R_1 | C$, and $R_1 \sqcap C$ are $\text{ALCHQI} \sqcup \{\sqcup, \sqcap, \lnot, |, \id\}$ roles too. These complex roles can be used in TBox (in the right-hand sides of definitions). Subsequently, we call a role R primitive if it is either $R \in N_R$ or it is an inverse role R^{-} for $R \in N_R$.

Two-variable FO logic FO² is the fragment of ordinary FO logic (with equality), whose formulas only use no more than two variable symbols x and y (free or bound). Two-variable FO logic with counting C^2 extends FO² by allowing FO counting quantifiers $\exists^{m} x$ and $\exists^{m} y$ for all $m \geq 1$. Borgida in [6] defines an expressive description logic C^2 and shows that each sentence in the language C^2 without transitive roles and role-composition operator can be translated to a sentence in C^2 with the same meaning, and vice versa, i.e., these two languages are equally expressive. A knowledge base KB is a triple (\mathcal{R}, T, A). The semantics of KB is given by translating it into FO logic with counting C^2 by the operator τ (see the table above, in which $\triangleright \in \{\triangleright, \leq\}$ and x/y means replace x with y).

All these standard roles constructors and their semantics can be found in [3].
all concept and role constructors in $\mathcal{ALCQI}(\lor, \land, \neg, |, \text{id})$ and, in addition, it includes a special purpose constructor product that allows to build the role $C_1 \times C_2$ from two concepts C_1 and C_2. This construct has a simple semantics \(\tau_\text{product}(C_1 \times C_2) = \tau_1(C_1) \land \tau_2(C_2) \), and makes the translation from C^2 into B rather straightforward. Although constructor product is not a standard role constructor, we can use restriction constructor | in addition with \lor, \land, \neg and inverse role to represent it. That is, for any concepts C_1 and C_2,

$$C_1 \times C_2 = (R \lor \neg R)|_{C_2} \land (R \lor \neg R)|_{C_1}^{-},$$

where R can be any role name. Consequently, product can be eliminated. Therefore, the following statement is a direct consequence of the theorems proved in [6].

Theorem 1 The description logic $\mathcal{ALCQI}(\lor, \land, \neg, |, \text{id})$ and C^2 are equally expressive (i.e., each sentence in language $\mathcal{ALCQI}(\lor, \land, \neg, |, \text{id})$ can be translated to a sentence in C^2, and vice versa). In addition, translation in both directions leads to no more than linear increase of the size of the translated formula.

This statement has an important consequence. Gradel et. al.[11] and Pacholski et al [21] show that satisfiability problem for C^2 is decidable. Therefore, the satisfiability and/or subsumption problems of concepts w.r.t. an acyclic or empty TBox in description logic $\mathcal{ALCQI}(\lor, \land, \neg, |, \text{id})$ is also decidable. In Section 4, we are going to take advantage of this and use C^2 as a foundation for a modified SC.

4. **Modeling Dynamic Systems in a Modified Situation Calculus**

In this section, we consider dynamic systems formulated in a minor modification of the language of the SC so that it can be considered as an extension to C^2 language (with situation argument for unary and binary fluents). The key idea is to consider a syntactic modification of the SC such that the executability and projection problems are guaranteed to be decidable as a consequence of the C^2 property of being decidable. Moreover, since the modified SC has a very strong connections with description logics, which will be explained in detail below, we will denote this language as \mathcal{L}_{sc}^{DL}.

First of all, the three sorts in \mathcal{L}_{sc}^{DL} (i.e., actions, situations and objects) are the same as those in \mathcal{L}_{sc}, except that they obey the following restrictions: (1) all terms of sort object are variables (x and y) or constants, i.e., functional symbols are not allowed; (2) all action functions include no more than two arguments. Each argument of any term of sort action is either a constant or an object variable (x or y); (3) variable symbol a of sort action and variable symbol s of sort situation are the only additional variable symbols being allowed in \mathcal{L}_{sc}^{DL} in addition to variable symbols x and y.

Second, any fluent in \mathcal{L}_{sc}^{DL} is a predicate either with two or with three arguments including the one of sort situation. We call fluents with two arguments, one is of sort object and the other is of sort situation, (dynamic) concepts, and call fluents with three arguments, first two of sort object and the last of sort situation, (dynamic) roles. Intuitively, each (dynamic) concept in \mathcal{L}_{sc}^{DL}, say $F(x, s)$ with variables x and s only, can be considered as a changeable concept F in a dynamic system specified in \mathcal{L}_{sc}^{DL}; the truth value of $F(x, s)$ could vary from one situation to another. Similarly, each (dynamic) role in \mathcal{L}_{sc}^{DL}, say $R(x, y, s)$ with variables x, y and s, can be considered as a changeable role R in a dynamic system specified in \mathcal{L}_{sc}^{DL}; the truth value of $R(x, y, s)$ could vary from one situation to another. In \mathcal{L}_{sc}^{DL}, (static) concepts (i.e., unary predicates with no situation argument) and (static) roles (i.e., binary predicates with no situation argument), if any, are considered as eternal facts and their truth values never change. If they are present, they represent unchangeable taxonomic properties and unchangeable classes of an application domain. Moreover, each concept (static or dynamic) can be either primitive or defined. For each primitive dynamic concept, a SSA must be provided in the basic action theory formalized for the given system. Because defined dynamic concepts are expressed in terms of primitive concepts by axioms similar to TBox, SSAs for them are not provided. In addition, SSAs are provided for dynamic primitive roles.

Third, apart from standard FO logical symbols \land, \lor, \neg and \exists, with the usual definition of a full set of connectives and quantifiers, \mathcal{L}_{sc}^{DL} also includes counting quantifiers $\exists^{\geq m}$ and $\exists^{\leq m}$ for all $m \geq 1$.

The dynamic systems we are dealing with here satisfy the open world assumption (OWA): what is not stated explicitly is currently unknown rather than false. In this paper, the dynamic systems we are interested in can

5In [3] it is shown that the satisfiability problems of concepts and subsumption problems of concepts can be reduced to each other; moreover, if a TBox T is acyclic, the reasoning problems w.r.t. T can always be reduced to problems w.r.t. the empty TBox.

6The reason that we call it a "modified" SC rather than a "restricted" SC is that we not only restrict the number of variables that can be mentioned in the SC during the formalizations of dynamic systems, but we also extend the SC with other features, such as introducing counting quantifiers and adding acyclic TBox axioms to basic action theories.
be formalized as a basic action theory (BAT) \mathcal{D} using the following seven groups of axioms in \mathcal{L}_{sc}^{DL}:
$\mathcal{D} = \Sigma \cup \mathcal{D}_{ap} \cup \mathcal{D}_{ss} \cup \mathcal{D}_T \cup \mathcal{D}_R \cup \mathcal{D}_{ana} \cup \mathcal{D}_{so}$. Five of them ($\Sigma, \mathcal{D}_{ap}, \mathcal{D}_{ana}, \mathcal{D}_{so}$) are similar to those groups in a BAT in \mathcal{L}_{sc}, and the other two ($\mathcal{D}_T, \mathcal{D}_R$) are introduced to axiomatize description logic related facts and properties (see below). However, because \mathcal{L}_{sc}^{DL} allows only two object variables, all axioms must conform to the following additional requirements.

Action precondition axioms \mathcal{D}_{ap}: For each action A in \mathcal{L}_{sc}^{DL}, there is one axiom of the form $\text{Poss}(A, x) \equiv \Pi_A[x]$ (or $\text{Poss}(A(x), y) \equiv \Pi_A(x, y)[y]$, respectively), if A is an action constant (or unary, or binary action term, respectively), where Π_A (or $\Pi_A(x)$, or $\Pi_A(x, y)$, respectively) is a C^2 formula with no free variables (or with at most x, or with at most x, y as the only free variables, respectively). This set of axioms characterize the preconditions of all actions.

Successor state axioms \mathcal{D}_{ss}: For each primitive dynamic concept $F(x, s)$ in \mathcal{L}_{sc}^{DL}, a SSA is specified for $F(x, do(a, s))$. According to the general syntactic form of the SSAs provided in [24], without loss of generality, we can assume that the axiom has the form

$$F(x, do(a, s)) \equiv \psi_F(x, a, s),$$

where the general structure of $\psi_F(x, a, s)$ is as follows.

$$\psi_F(x, a, s) \equiv \left(\bigvee_{i=1}^{m_1} \exists x \exists y \left[a = A^i_1(x, j, 0, +1) \land \phi^i_1(x, j, 1, +1)[s] \right] \lor \right.$$
$$\left. \bigvee_{j=1}^{m_2} \exists y \exists x \left[a = A^j_2(x, i, 0, +1) \land \phi^j_2(x, i, 1, +1)[s] \right] \right) \lor$$

$$\left(\bigvee_{g=1}^{m_3} \exists y \exists x \exists z \exists w \left[a = A^g_3(x, j, 0, +1) \land \phi^g_3(x, j, 1, +1)[s] \right] \lor \right.$$
$$\left. \bigvee_{h=1}^{m_4} \exists x \exists y \exists z \exists w \left[a = A^h_4(x, i, 0, +1) \land \phi^h_4(x, i, 1, +1)[s] \right] \right) \lor$$

where each variable vector x, y, z, w (or x, y respectively) i, j, m_0, m_1, m_2, m_3, m_4 represents that the $\exists x \exists y$ represents a vector of object variables, which can be empty, $x, y, \{x, y\}$ or $\{y, x\}$. Moreover, $[x]$ or $[y]$ represents that the quantifier included in $[]$ is optional; and each $\phi^i_1(x, j, 1, +1), \phi^j_2(x, i, 1, +1), \phi^g_3(x, j, 1, +1), \phi^h_4(x, i, 1, +1)$, respectively, is a C^2 formula with variables (both free and quantified) among x and y.

Similarly, a SSA for a dynamic primitive role $R(x, y, s)$ is provided as a formula of the form

$$R(x, y, do(a, s)) \equiv \psi_R(x, y, a, s),$$

Moreover, without loss of generality, the general structure of $\psi_R(x, y, a, s)$ is as follows.

$$\psi_R(x, y, a, s) \equiv \left(\bigvee_{i=1}^{m_1} \exists x \exists y \exists z \left[a = A^i_1(x, j, 0, +1) \land \phi^i_1(x, j, 1, +1)[s] \right] \lor \right.$$
$$\left. \bigvee_{j=1}^{m_2} \exists y \exists x \exists z \left[a = A^j_2(x, i, 0, +1) \land \phi^j_2(x, i, 1, +1)[s] \right] \right) \lor$$

$$\left(\bigvee_{g=1}^{m_3} \exists y \exists x \exists z \exists w \left[a = A^g_3(x, j, 0, +1) \land \phi^g_3(x, j, 1, +1)[s] \right] \lor \right.$$
$$\left. \bigvee_{h=1}^{m_4} \exists x \exists y \exists z \exists w \left[a = A^h_4(x, i, 0, +1) \land \phi^h_4(x, i, 1, +1)[s] \right] \right) \lor$$

where each variable vector x, y, z, w (or x, y, z, w respectively) i, j, m_0, m_1, m_2, m_3, m_4 represents that the $\exists x \exists y \exists z \exists w$ represents a vector of free variables, which can be empty, $x, y, \{x, y\}$ or $\{y, x\}$. Moreover, $[x]$ or $[y]$ represents that the quantifier included in $[]$ is optional; and each $\phi^i_1(x, j, 1, +1), \phi^j_2(x, i, 1, +1), \phi^g_3(x, j, 1, +1), \phi^h_4(x, i, 1, +1)$, respectively, is a C^2 formula with variables (both free and quantified) among x and y.

Acyclic TBox axioms \mathcal{D}_T: Similar to the TBox axioms in DL, we may also introduce a group of axioms \mathcal{D}_T to define new concepts, which are later called TBox axioms. Any group of TBox axioms \mathcal{D}_T may include two sub-classes: static TBox $\mathcal{D}_{T, st}$ and dynamic TBox $\mathcal{D}_{T, dyn}$. Every formula in static TBox is a concept definition formula of the form

$$G(x) \equiv \phi_G(x),$$

where G is a unary predicate symbol and $\phi_G(x)$ is a C^2 formula in the domain with free variable x, and there is no dynamic concept or dynamic role in it. Every formula in dynamic TBox is a concept definition formula of the form

$$G(x, s) \equiv \phi_G(x)[s],$$

where $\phi_G(x)$ is a C^2 formula with free variable x, and there is at least one dynamic concept or dynamic role in it. All the concepts appeared in the left-hand side of TBox axioms are called defined concepts. During reasoning, we use lazy unfolding technique (see [2]) to expand a given sentence whenever we regress defined dynamic concepts. In this paper, we require that the set of TBox axioms must be acyclic to ensure the lazy unfolding approach terminates in the finite number of steps (acyclicity in \mathcal{D}_T is defined exactly as it is defined for TBox).

RBox axioms \mathcal{D}_R: Similar to the idea of RBox in DL, we may also specify a group of axioms, called RBox axioms below, to support a role taxonomy. Each role inclusion axiom $R_1 \subseteq R_2$, if any, where R_1 and R_2 are primitive roles (either static or dynamic) is represented as $R_1(x, y)[s] \supseteq R_2(x, y)[s]$. If these axioms and included in the BAT \mathcal{D}, then it is assumed that \mathcal{D} is specified correctly in the sense that the meaning of any RBox axiom included in the theory is correctly compiled into SSAs. This means that one can prove by induction that $\mathcal{D} \models \forall s. R_1(x, y)[s] \supseteq R_2(x, y)[s]$. Although RBox axioms are not used by the regression operator, they are used for taxonomic reasoning in the initial theory.

Initial theory \mathcal{D}_{st}: It is a finite set of C^2 sentences (assuming that we suppress the only situation term S_0 in all fluents). It specifies the incomplete information about the initial problem state and also describes all the facts that are

\[\text{Notice that when } m_0 \text{ or } m_1, m_2, m_3, \text{ respectively, are 0, the corresponding disjunctive subformula is equivalent to } false.\]
not changeable over time in the domain of an application. In particular, it includes static TBox axioms $D_{T, st}$ as well as RBox axioms in the initial situation S_0 (if any).

The remaining two classes (Σ and D_{una}) are the same as those in the usual SC.

5. Extending Regression with Lazy Unfolding

After giving the definition of what the BAT in L_{sc}^{DL} is, we turn our attention to the reasoning tasks. There are various kinds of reasoning problems we could think of. For example, if we are considering a planning problem, we are looking for a ground situation starting from the initial situation such that it is executable and a given goal (formalized as a logic formula with respect to this situation) can be entailed by D. However, below we focus on two sub-problems of the planning problem (executability and projection), because they are the most essential for solving the planning (composition) problem.

Consider a BAT D of L_{sc}^{DL} specified as in the previous section for some dynamic system with OWA. Given a formula W of L_{sc}^{DL} in the domain D, the definition of W being regressable (called L_{sc}^{DL} regressive below) is slightly different from the definition of W being regressable in L_{sc} (see Section 2) by adding the following additional conditions:

(4) any variable (free or bounded) in W is either x or y;
(5) every term of sort situation in W is ground. Moreover, in L_{sc}^{DL} we have to be more careful with the definition of the regression operator R for two main reasons. First, to deal with TBox we have to extend regression. For a L_{sc}^{DL} regressive formula W, we extend below the regression operator defined in [24] with the lazy unfolding technique and still denote such operator as R. Second, L_{sc}^{DL} uses only two object variables and we have to make sure that after regressing a fluent atom we still get a L_{sc}^{DL} formula, i.e., that we never need to introduce new (free or bound) object variables. To deal with the two-variable restriction, we modify our regression operator R in comparison to the conventional operator defined in [24]. For example, when replacing Poss atom or fluent atoms about $do(\alpha, \sigma)$, the definition of the conventional regression operator in [24] has the assumption that the quantified variables in the right-hand side of the corresponding axioms should be renamed in advance to new variables different from the free variables in the atoms that to be replaced. This assumption of using new variables for renaming assures equivalence of original formula and the formula after regression. However, by modifying the conventional regression operator, we can obtain a new regression operator for L_{sc}^{DL} regressive formulas (which assures the correctness of the replacement without using new variables), when renaming of the quantified variables is carried by means of renaming them (the details are given in items b, c and d below). Possibility of renaming variables is guaranteed by the general format of the SSAs given in the previous section and the additional condition (5) in the definition of the L_{sc}^{DL} regressive formula. The complete formal definition of our R is as follows, where σ denotes the term of sort situation, and α denotes the term of sort action.

- If W is not atomic, i.e., W is of the form $W_1 \lor W_2$, $W_1 \land W_2$, $\neg W'$, $Q v W'$ where Q represents a quantifier (including counting quantifiers) and v represents a variable symbol, then

 $\begin{align*}
 R[W_1 \lor W_2] &= R[W_1] \lor R[W_2], \\
 R[\neg W'] &= \neg R[W'], \\
 R[W_1 \land W_2] &= R[W_1] \land R[W_2].
 \end{align*}$

- Otherwise, W is atom. There are several cases.

 a. If W is situation independent (including equality), or W is a concept or role uniform in S_0, then $R[W] = W$.

 b. If W is a regressive Poss atom, so it has the form Poss$(A(\overline{t}), \sigma)$, for terms of sort action and situation respectively in L_{sc}^{DL}. Then there must be an action precondition axiom for A of the form Poss$(A(\overline{x}), \sigma) \equiv \Pi_A(\overline{x}, \sigma)$, where the argument \overline{x} of sort object can either be empty (i.e., A is an action constant), a single variable x or two-variable vector $\langle x, y \rangle$. Because of the syntactic restrictions of L_{sc}^{DL}, each term in \overline{t} can only be a variable x, y or a constant C. Then,

 $\begin{align*}
 R[W] &= \begin{cases}
 R[(\exists y)(x = y \land \Pi_A(x, y, \sigma))] & \text{if } \overline{t} = \langle x, x \rangle, \\
 R[(\exists x)(y = x \land \Pi_A(x, y, \sigma))] & \text{else if } \overline{t} = \langle y, y \rangle, \\
 R[\Pi_A(\overline{t}, \sigma)] & \text{else if } \overline{t} = \langle x, y \rangle \text{ or } \overline{t} = \langle x, C \rangle, \\
 R[\Pi_A(\overline{t}, \sigma)] & \text{otherwise,}
 \end{cases}
 \end{align*}$

 where C represents a constant and $\tilde{\phi}$ denotes a dual formula for formula ϕ obtained by replacing every variable symbol x (free or quantified) with variable symbol y and replacing every variable symbol y (free or quantified) with variable symbol x in ϕ, i.e., $\tilde{\phi} = \phi[y/x, y/x]$.

 c. If W is a defined dynamic concept, so it has the form $G(t, \sigma)$ for some object term \overline{t} and situation term σ, and there must be a TBox axiom for G of the form $G(\overline{x}, \sigma) \equiv \phi_G(\overline{x}, \sigma)$. Because of the restrictions of the language L_{sc}^{DL}, term \overline{t} can only be a variable x, y or a constant. Then, we use lazy unfolding technique as follows:
\[\mathcal{R}[W] = \begin{cases} \mathcal{R}[\phi_C(t, \sigma)] & \text{if } t \text{ is not variable } y, \\ \mathcal{R}[\phi_C(y, \sigma)] & \text{otherwise.} \end{cases} \]

d. If \(W \) is a primitive concept (a primitive role, respectively), so it has the form \(F(t_1, do(\alpha, \sigma)) \) (the form \(R(t_1, t_2, do(\alpha, \sigma)) \), respectively) for some terms \(t_1 \) (and \(t_2 \)) of sort object, term \(\alpha \) of sort action and term \(\sigma \) of sort situation. There must be a SSA for \(F \) (for \(R \), respectively) such as Eq. (1) (Eq. (2), respectively). Because of the restriction of the language \(\mathcal{L}_{sc}^{DL} \), the term \(t_1 \) and \(t_2 \) can only be a variable \(x, y \) or a constant \(C \) and \(\alpha \) can only an action function with no more than two arguments of sort object. Then, when \(W \) is a concept,

\[\mathcal{R}[W] = \begin{cases} \mathcal{R}[\psi_F(t_1, \alpha, \sigma)] & \text{if } t_1 \text{ is not variable } y, \\ \mathcal{R}[\psi_F(y, \alpha, \sigma)] & \text{otherwise, i.e., if } t_1 = y; \end{cases} \]

and, when \(W \) is a role,

\[\mathcal{R}[W] = \begin{cases} \mathcal{R}[\exists y(x = y \land \psi_R(x, y, \alpha, \sigma))] & \text{if } t_1 = x, t_2 = x; \\ \mathcal{R}[\exists y(x = y \land \psi_R(x, y, \alpha, \sigma))] & \text{if } t_1 = y, t_2 = y; \\ \mathcal{R}[\psi_R(t_1, t_2, \alpha, \sigma)] & \text{if } t_1 = y, t_2 = x \text{ or } t_1 = y, t_2 = C; \\ \mathcal{R}[\psi_R(t_1, t_2, \alpha, \sigma)] & \text{otherwise.} \end{cases} \]

Based on the above definition, we are able to prove the following theorems.

Theorem 2 Suppose \(W \) is a \(\mathcal{L}_{sc}^{DL} \) regressable formula, then the regression \(\mathcal{R}[W] \) defined above terminates in a finite number of steps.

Proof: Immediately follows from acyclicity of the TBox axioms, and from the assumption that \(RBox \) axioms are compiled into the SSAs and consequently do not participate in regression. Note also that each time the application of \(\mathcal{R} \) either goes from formula to a sub-formula, or expands a \(Poss \) or a fluent atom using a corresponding precondition axiom or a SSA, but only finitely many expansions are possible because \(W \) mentions only finitely many situation terms. \(\square \)

Moreover, it is easy to see that any \(\mathcal{L}_{sc}^{DL} \) regressable formula has no more than two variables (\(x \) and \(y \)), and the following theorem holds.

Theorem 3 Suppose \(W \) is a \(\mathcal{L}_{sc}^{DL} \) regressable formula with the background basic action theory \(\mathcal{D} \). Then, \(\mathcal{R}[W] \) is a \(\mathcal{L}_{sc}^{DL} \) formula uniform in \(S_0 \) with no more than two variables (\(x \) and \(y \)). Moreover, \(\mathcal{D} \models W \equiv \mathcal{R}[W] \).

Proof: Induction over the structure of \(W \) and possible syntactic forms of the right-hand side of the SSAs for primitive concepts and/or roles. \(\square \)

Theorem 4 Suppose \(W \) is a \(\mathcal{L}_{sc}^{DL} \) regressable formula with the background basic action theory \(\mathcal{D} \). Then,

\[\mathcal{D} \models W \iff \mathcal{D}_{S_0} \cup \mathcal{D}_{una} \models \mathcal{R}[W]. \]

Theorem 4 is obtained similar to the regression theorem given in [24]. Moreover, we can also obtain the following corollary about decidability of the projection problem for \(\mathcal{L}_{sc}^{DL} \) regressable formula \(W \) (particularly, when \(W \) is of form executable\((S)\) for some ground situation \(S \), it becomes the executability problem).

Corollary 1 Suppose \(W \) is a \(\mathcal{L}_{sc}^{DL} \) regressable formula with the background basic action theory \(\mathcal{D} \). Then, the problem whether \(\mathcal{D} \models W \) is decidable.

Proof: Let \(D_0 \) (\(W_0 \), respectively) be the theory (formula, respectively) obtained by suppressing situation term \(S_0 \) in \(\mathcal{D}_{S_0} \) (\(\mathcal{R}[W] \), respectively). Therefore, \(D_0 \) and \(W_0 \) are in \(C^2 \). According to Theorem 4, \(\mathcal{D} \models W \iff \mathcal{D}_{S_0} \cup \mathcal{D}_{una} \models \mathcal{R}[W] \), iff \(\mathcal{D}_0 \cup \mathcal{D}_{una} \models W_0 \), where \(W_0 \) is a \(C^2 \) formula by Theorem 3. Therefore the problem whether \(\mathcal{D} \models W \) is equivalent to whether \(\mathcal{D}_0 \land \mathcal{D}_{una} \land \neg W_0 \) is unsatisfiable or not. According to the fact that the satisfiability problem in \(C^2 \) is decidable, the theorem is proved. \(\square \)
6. An Example

In this section, we give an example to illustrate the basic ideas described above.

Example 1 Consider some university that provides on the Web student administration and management services, such as admitting students, paying tuition fees, enrolling or dropping courses and entering grades.

Although the number of object arguments in the predicates can be at most two, sometimes, we are still able to handle those features of the systems that require more than two arguments. For example, the grade of a student x in a course y may be represented as a predicate $grade(x, y, z)$ in the general FOL (i.e., with three object arguments). Because the number of distinct grades is finite and they can be easily enumerated as "A", "B", "C" or "D", we can handle $grade(x, y, z)$ by replacing it with a finite number of extra predicates, say $gradeA(x, y)$, $gradeB(x, y)$, $gradeC(x, y)$ and $gradeD(x, y)$ such that they all have two variables only. However, the restriction on the number of variables limits the expressive power of the language if more than two arguments vary over infinite domains (such as energy, weight, time, etc). Despite this limitation, we conjecture that many web services still can be represented with at most two variables either by introducing extra predicates (just like we did for the predicate $grade$) or by grounding some of the arguments if their domains are finite and relatively small. Intuitively, it seems that most of the dynamic systems can be specified by using properties and actions with small arities, hence the techniques for arity reductions mentioned above and below require no more than polynomial increase in the number of axioms. The high-level features of our example are specified as the following concepts and roles.

- Static primitive concepts: $person(x)$ (x is a person); $course(x)$ (x is a course provided by the university).
- Dynamic primitive concepts: $incoming(x, s)$ (x is an incoming student in the situation s, it is true when x was admitted); $student(x, s)$ (x is an eligible student in the situation s, it is true when an incoming student x pays the tuition fee).
- Dynamic defined concepts: $eligFull(x, s)$ (x is eligible to be a full-time student by paying more than 5000 dollars tuition fee); $eligPart(x, s)$ (x is eligible to be a part-time student by paying no more than 5000 dollars tuition); $qualFull(x, s)$ (x is a qualified full-time student if he or she pays full time tuition fee and takes at least 4 courses); $qualPart(x, s)$ (x is a part-time student if he or she pays part-time tuition and takes 2 or 3 courses).
- Static role: $preReq(x, y)$ (course x is a prerequisite of course y).
- Dynamic roles: $tuitPaid(x, y, s)$ (x pays tuition fee y in the situation s); $enrolled(x, y, s)$ (x is enrolled in course y in the situation s); $completed(x, y, s)$ (x completes course y in the situation s); $hadGrade(x, y, s)$ (x had a grade for course y in the situation s); $gradeA(x, y, s)$; $gradeB(x, y, s)$; $gradeC(x, y, s)$; $gradeD(x, y, s)$.

Web services are specified as actions: $reset$ (at the beginning of each academic year, the system is being reset so that students need to pay tuition fee again to become eligible); $admit(x)$ (the university admits student x); $payTuit(x, y)$ (x pays tuition fee y in the situation s); $enroll(x, y)$ (x enrolls in course y); $drop(x, y)$ (x drops course y); $enterA(x, y)$ (enter grade "A" for student x in course y); $enterB(x, y)$; $enterC(x, y)$; $enterD(x, y)$. The basic action theory is as follows (most of the axioms are self-explanatory).

Precondition Axioms:

$Poss(reset, s) \equiv true$, $Poss(admit(x, s)) \equiv person(x) \land \neg incoming(x, s)$,
$Poss(payTuit(x, y, s)) \equiv incoming(x, s) \land \neg student(x, s)$,
$Poss(drop(x, y, s)) \equiv enrolled(x, y, s) \land \neg completed(x, y, s)$,
$Poss(enterA(x, y, s)) \equiv enrolled(x, y, s) \land \neg completed(x, y, s)$,

and similar to $enterA(x, y)$, the precondition for $enterB(x, y)$ ($enterC(x, y)$ and $enterD(x, y)$ respectively) at any situation s is also $enrolled(x, y, s)$. Moreover, in the traditional SC, the precondition for action $enroll(x, y)$ would be equivalent to

$(\forall z)(preReq(z, y) \land completed(x, z, s) \land \neg gradeD(x, z, s)) \land student(x) \land course(y)$.

However, in the modified SC, we only allow at most two variables (including free or quantified) other than the situation variable s and action variable a. Fortunately, the number of the courses offered in a university is limited (finite and relatively small) and relatively stable over years (if we manage the students in a college-wise range or department-wise range, the number of courses may be even smaller). Therefore, we can specify the precondition for the action $enroll(x, y)$ for each instance of y. That is, assume that the set of courses is $\{CS_1, \ldots, CS_n\}$, the precondition axiom for each CS_i ($i = 1..n$) is $Poss(enroll(x, CS_i), s) \equiv student(x) \land (\forall y)(preReq(y, CS_i) \land completed(x, y, s) \land \neg gradeD(x, y, s))$.

On the other hand, when we do this transformation, we can omit the statements $course(x)$ for each course available at the university in the initial theory.

Successor State Axioms: The SSAs for the fluents $gradeB(x, y, s)$, $gradeC(x, y, s)$ and $gradeD(x, y, s)$ are very similar to the one for fluent $gradeA(x, y, s)$ (therefore are not repeated here), which ensures that for each student and each course there is no more than one grade assigned.
incoming(x, do(a, s)) ≡ a = admit(x) ∨ incoming(x, s),
student(x, do(a, s)) ≡ (3y)(a = payTuit(y, x)) ∧ student(x) ∧ a ≠ reset,
tuitPaid(x, y, do(a, s)) ≡ a = payTuit(x, y) ∨ tuitPaid(x, y, s) ∧ a ≠ reset,
enrolled(x, y, do(a, s)) ≡ a = enroll(x, y) ∨ enrolled(x, y, s) ∧ ¬(a = drop(x, y) ∨ a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y)),
completed(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y) ∨ completed(x, y, s) ∧ a ≠ enroll(x, y),
hadGrade(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y) ∨ hadGrade(x, y, s),
gradeA(x, y, do(a, s)) ≡ a = enterA(x, y) ∨ gradeA(x, y, s) ∧ ¬(a = enterB(x, y) ∨ a = enterC(x, y) ∨ a = enterD(x, y)).

Acyclic TBox Axioms: (no static TBox axioms in this example)
eligFull(x, s) ≡ (3y)(tuitPaid(x, y, s) ∧ y > 5000),
eligPart(x, s) ≡ (3y)(tuitPaid(x, y, s) ∧ y ≤ 5000),
qualFull(x, s) ≡ eligFull(x, s) ∧ (3≤4y)enrolled(x, y, s),
qualPart(x, s) ≡ eligPart(x, s) ∧ (3≤2y)enrolled(x, y, s) ∧ (3≤3-enrolled(x, y, s)).

An example of the initial theory D_{S_0} could be the conjunctions of the following sentences:
person(PSN_1), person(PSN_2), · · · , person(PSN_m), preReq(CS_1, CS_2) ∨ preReq(CS_3, CS_4),
(∀x) incoming(x, s_0) ⊃ x = PSN_2 ∨ x = PSN_3, (∀x, y) ¬ enrolled(x, y, s_0),
(∀x) x ≠ CS_1 ⊃ ¬(3y)preReq(y, x), (∀x) ¬ student(x, s_0).

Suppose we denote the above basic action theory as D. Given goal G, for example ∃x. qualFull(x), and a
compositional web service starting from the initial situation, for example do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0]), we denote the corresponding resulting situation as S_r), we can check if the goal is satisfied after the execution of this compositional web service by solving the projection problem whether D |= G[S_r]. In our example, this corresponds to solving whether D |= ∃x. qualFull(x, S_r). We may also check if a given (ground) compositional web service A_1; A_2; · · · ; A_n is possible to execute starting from the initial state by solving the executability problem whether D |= executable(do([A_1, A_2, · · · , A_n],[S_0])). For example, we can check if the compositional web service admit(PSN_1); payTuit(PSN_1, 6000) is possible to be executed from the starting state by solving whether D |= executable(S_0).

Finally, we give an example of a query of a regressive formula. For instance,
\[R([∃x). qualFull(x, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0])]) = R([∃x). eligFull(x, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0]) ∧
(3≤2y)enrolled(x, y, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0])]) = (3x).R[eligFull(x, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0]) ∧
(3≤2y)R[enrolled(x, y, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0])]) = \cdots = (3x).((3y)tuitPaid(x, y, do([admit(PSN_1), payTuit(PSN_1, 6000)],[S_0]) ∧ y > 5000)) ∧ (3≤4y)enrolled(x, y, S_0) = \cdots = (3x).((3y)tuitPaid(x, y, S_0) ∧ y > 5000 ∨ (x = PSN_1 ∧ y = 6000 ∧ y > 5000)) ∧ (3≤4y)enrolled(x, y, S_0),
which is false given the above initial theory.

We also may introduce some RBox axioms as follows: gradeA ⊆ hadGrade, gradeB ⊆ hadGrade, gradeC ⊆ hadGrade, gradeD ⊆ hadGrade. The RBox axioms are not used in the regression steps of reasoning about executability problems and projection problems. However, they are useful for terminological justifications when necessary.

7. Discussion and Future Work

The major consequence of the results proved above for the problem of service composition is the following. If both atomic services and properties of the world that can be affected by these services have no more than two parameters, then we are guaranteed that even in the state of incomplete information about the world, one can always determine whether a sequentially composed service is executable and whether this composite service will achieve a desired effect. The previously proposed approaches made different assumptions: [19] assumes that the complete information is available about the world when effects of a composite service are computed, and [5] considers the propositional fragment of the SC.
As we mentioned in Introduction, [19,20] propose to use Golog for composition of Semantic Web services. Because our primitive actions correspond to elementary services, it is desirable to define Golog in our modified SC too. It is surprisingly straightforward to define almost all Golog operators starting from our \(C^2 \) based SC. The only restriction in comparison with the original Golog [17,24] is that we cannot define the operator \(\pi(x)\delta(x) \), non-deterministic choice of an action argument, because \(L_{DL}^{sc} \) regresable formulas cannot have occurrences of non-ground action terms in situation terms. In the original Golog this is allowed, because the regression operator is defined for a larger class of regresable formulas. However, everything else from the original Golog specifications remain in force, no modifications are required. In addition to providing a well-defined semantics for Web services, our approach also guarantees that evaluation of tests in Golog programs is decidable (with respect to arbitrary theory \(D_{sc} \)) that is missing in other approaches (unless one can make the closed world assumption or impose another restriction to regain decidability).

The most important direction for future research is an efficient implementation of a decision procedure for solving the executability and projection problems. This procedure should handle the modified \(L_{DL}^{sc} \) regression and do efficient reasoning in \(D_{sc} \). It should be straightforward to modify existing implementations of the regression operator for our purposes, but it is less obvious which reasoner will work efficiently on practical problems. There are several different directions that we are going to explore. First, according to [6] and Theorem 2, there exists an efficient algorithm for translating \(C^2 \) formulas to \(\mathcal{ALCQI} \) formulas. Consequently, we can use any resolution-based description logic reasoners that can handle \(\mathcal{ALCQI} \) formulas (e.g., MSPASS [16]). Alternatively, we can try to use appropriately adapted tableau-based description logic reasoners, such as FaCT++, for (un)satisfiability checking in \(\mathcal{ALCQI} \). Second, we can try to avoid any translation from \(C^2 \) to \(\mathcal{ALCQI} \) and adopt resolution-based automated theorem provers for our purposes [7].

The recent paper by Baader et al [4] proposes integration of description logics \(\mathcal{ALCQIO} \) (and its sub-languages) with an action formalism for reasoning about Web services. This paper starts with a description logic and then defines services (actions) meta-theoretically: an atomic service is defined as the triple of sets of description logic formulas. To solve the executability and projection problems this paper introduces an approach similar to regression, and reduces this problem to description logic reasoning. The main aim is to show how executability of sequences of actions and solution of the executability and projection problems can be computed, and how complexity of these problems depend on the chosen description logic. In the full version of [4], there is a detailed embedding of the proposed framework into the syntactic fragment of the Reiter’s SC. It is shown that solutions of their executability and projection problems correspond to solutions of these problems with respect to the Reiter’s basic action theories in this fragment for appropriately translated formulas (see Theorem 12 in Section 2.4). To achieve this correspondence, one needs to eliminate TBox by unfolding (this operation can result potentially in exponential blow-up of the theory). Despite that our paper and [4] have common goals, our developments start differently and proceed in the different directions. We start from the syntactically restricted FO language (that is significantly more expressive than \(\mathcal{ALCQIO} \)), use it to construct the modified SC (where actions are terms), define basic action theories in this language and show that by augmenting (appropriately modified) regression with lazy unfolding one can reduce the executability and projection problems to the satisfiability problem in \(C^2 \) that is decidable. Furthermore, \(C^2 \) formulas can be translated to \(\mathcal{ALCQIO} \) and adapt resolution-based automated theorem provers for our purposes [7].

An interesting paper [18] aims to achieve computational tractability of solving projection and progression problems by following an alternative direction to the approach chosen here. The theory of the initial state is assumed to be in the so-called proper form and the query used in the projection problem is expected to be in a certain normal form. In addition, [18] considers a general SC and impose no restriction on arity of fluents. Because of these significant differences in our approaches, it is not possible to compare them.

There are several other proposals to capture the dynamics of the world in the framework of description logics and/or its slight extensions. Instead of dealing with actions and the changes caused by actions, some of the approaches turned to extensions of description logic with temporal logics to capture the changes of the world over time [1,2], and some others combined planning techniques with description logics to reason about tasks, plans and goals and exploit descriptions of actions, plans, and goals during plan generation, plan recognition, or plan evaluation [10]. Both [1] and [10] review several other related papers. In [5], Berardi et al. specify all the actions of e-services as constants, all the fluents of the system have only situation argument, and translate the basic action theory under such assumption into
description logic framework. It has a limited expressive power without using arguments of objects for actions and/or fluents: this may cause a blow-up of the knowledge base.

Acknowledgments

Thanks to the Natural Sciences and Engineering Research Council of Canada (NSERC) and to the Department of Computer Science of the University of Toronto for providing partial financial support for this research.

References