
Software refactoring guided by multiple soft-goals

Yijun Yu John Mylopoulos Eric Yu
Julio Cesar Leite Linda Lin Liu Erik D’Hollander*

CS Department, University of Toronto, M5S 2E4 Canada
∗ELIS Department, University of Ghent, B9000, Belgium

Abstract

Software refactoring is intended to enhance the
quality of a software by improving its understandabil-
ity, performance, as well as other quality attributes.
We adopt the modelling framework of [14] in order
to analyze software qualities, to determine which soft-
ware refactoring transformations are most appropri-
ate. In addition, we use software metrics to evaluate
software quality quantitatively. Our framework adopts
and extends work reported in [15].

1 Introduction

Fowler et al [7] define software refactoring as “the
process of changing a software system in such a way
that it does not alter the external behavior of the code
yet improves its internal structure”. “Improvements
to its internal structure” amount to improvements to
the quality of the software system (also known as non-
functional requirements). Examples of such improve-
ments are “making the code easier to understand and
cheaper to modify”. Their refactoring framework was
proposed mainly for improving understandability and
modifiability. However, the idea can also be applied
to other qualities [14], such as performance, security,
usability and more.

In this study, we adopt the process-oriented frame-
work proposed in [3] for modelling software qualities.
In this framework, qualities and the factors that affect
them are modelled as soft-goals, while functionalities
are modelled as goals. Specifically, they can be opera-
tionalized into tasks and resources. The dependencies
among goals, soft-goals, tasks and resources are rep-
resented in a soft-goal interdependence graph (SIG).

Besides the functionality goals, we focus on perfor-
mance and code complexity soft goals that are asso-
ciated with a set of software metrics [6]. Constrained
by conflicting resources, multiple soft-goals have to be

traded off, in situations such as “apply transforma-
tions to speedup the program 20 times without sac-
rificing the code complexity 4 times and introducing
new expense on hardware”; or “adding functionalities
to the program until the performance is getting slow
(e.g., longer than one hour) or the code becomes too
complex to understand and maintain (e.g., more than
10 classes in one header file)”.

In a case study, we will show how SIG guides the
refactoring towards high performance and code sim-
plicity while keeping implementing more functional-
ities. We have applied this approach in our header
refactoring project [18] observing the progress (func-
tionality), health (code complexity) and quality (per-
formance) evolutions in the software development [4].

2 Software refactoring process

The refactoring process [7] is a sequence of small
transformation steps: “while each refactoring step is
simple, yet the cumulative effect of these small changes
can radically improve the design”. To achieve this suc-
cess, our approach is an iterative process that meets
the soft-goals gradually, as illustrated in Figure 1. The
process is subdivided into four consecutive steps:

1. Setting up the goal-reasoning model as a SIG [3],
quantifying the satisfy or denial attributes of each
soft-goal in a [0,1] metric [8];

2. Quantitatively measuring software metrics so as
to claim which alternative soft-goal should be ap-
plied first;

3. Picking an effective refactoring among various
transformations that contribute to the claimed
soft-goal;

4. Applying the selected refactoring technique,
which leads to iterative evaluations back in step 2,



Figure 1: The overview of the soft-goal directed soft-
ware refactoring process.

until every top-level soft-goals are met to release
the software product.

3 A case study

In this section, we report on a case study for per-
formance and complexity soft-goals on a fixed func-
tionality – consider the following Fortran program for
multiplying two matrices A ∈ Rm×l and B ∈ Rl×n

into a matrix C ∈ Rm×n.

real*8 A(512,512),B(512,512),C(512,512)

M = L = N = 512

do i = 1,M

do j = 1, L

do k = 1, N

C(i,k) = C(i,k) + A(i,j) * B(j,k)

3.1 Goal Modelling

Software development aims to improve the speed of
software (performance) and to reduce the code com-
plexity. Achieving the performance soft-goal reduces
the operational cost while achieving the code sim-
plicity soft-goal reduces the develop and maintenance
cost [10].

Here we establish a soft-goal interdependence graph
for the possibly conflicting higher performance and
lower code complexity soft-goals and show how much
the operationalized soft-goals contribute to them.

Less code complexity Code complexity has effects
on how difficult to test and to maintain, while good

Figure 2: A SIG model for code complexity

testability and maintainability lead to less defect rate.
In literature [10], code complexity can be measured
in lines of code (LOC), McCabe’s cyclomatic number
V (G) = e − n + 2 [12] or in Halstead’s information
science metrics [9] as (N1 + N2)log2(n1 + n2) where
n1 is the number of unique operators, N1 is the to-
tal number of operators, n2 is the number of unique
operands and N2 is the total number of operands N2.
Their SIG are shown in Figure 2.

Higher time performance In order to achieve
a higher time performance system “Perf[System]”,
both hardware (“Perf[Architecture]”) and software
(“Perf[Algorithm]” and “Perf[Coding]”) improve-
ments are useful. For software refactoring, we consider
mostly on the codings that fit programs on the given
architecture. The “Perf[architecture]” soft-goal is de-
composed into “Perf[Processor]” and “Perf[Storage]”,
and “Perf[Processor]” is decomposed into “Faster
CPU frequency[Processor]”, “More CPU[Processor]”
and “Deeper pipeline[Processor]”; “Perf[Storage]” is
decomposed into “Perf[Main Memory]”, “Perf[Cache]”
subgoals, where ”Perf[Cache]” can be further decom-
posed into “Larger cache size[Cache]”, “Larger cache
line[Cache]” and “More set associativity[Cache]”
soft-goals. Soft-goals for coding have correspond-
ing hardware constraints. For example, “More
CPU[Processor]” soft-goal is required to implement
parallelism, which can be improved by “Loop parti-
tioning[coding]” [1, 5, 19] to achieve “More loop paral-
lelism[coding]” soft-goal; “Larger cache[Cache]” soft-
goal to resolve capacity cache misses; “Loop tiling
and fusion[coding]” shortening the stack reuse dis-
tances [2] so as to avoid capacity misses for a given
cache size [16, 13, 2]. A detailed decomposition of
time performance soft-goal is shown in Figure 3.



Figure 3: A SIG decomposed for time performance. The thinner cloud nodes are soft-goals while the heavier
cloud nodes are operationalized (measurable or implementable) soft-goals. The solid arrows reflect top-down
decomposition of the soft-goal into “And”, “Or” or supporting soft subgoals such as “Make(++)” and “Help (+)”.
The dashed arrows reflect correlational links between soft-goals on different decomposition paths to represent both
positive and negative (“Hurt(−)/Break(−−)”) contributions.

3.2 Claiming bottlenecks soft-goals

In the SIG, transformations are the operational-
ized soft-goals. Depending on the the problem and
the resources, different transformations contribute dif-
ferently to the parent soft-goals. In our case study,
for instance, we don’t welcome algorithm or architec-
ture changes because they are claimed less return of
investment (expensive in human creativity or in ma-
chine availability). Thus we consider the children of
the “Perf[coding]” soft-goal. Which of them should
be addressed? According to Intel VTune white pa-
per, hardware counter metrics help programmer to de-
cide whether the execution time is intensive in mem-
ory, I/O, communication or computation. One of
the decision point is the ratio of the L2 cache misses
over the number of load instructions: whenever the
L2 cache miss ratio is higher than 20%, memory is
the bottleneck of performance. In our case study,
this ratio is over 79.45%, which indicates that “Fewer
cache misses[coding]” is the soft-goal to address1. Us-
ing a cache visualizing tool [17], we found that the
dominate cache misses are capacity misses as well

1All experiments are performed on an Intel P4 1.2GHz CPU

with 512KB cache and 128MB main memory

as conflict misses, which narrows us down to the
“Fewer Capacity Misses[coding]” and the “Fewer Con-
flict Misses[coding]” categories. Now just a few trans-
formation techniques are suited.

3.3 Selecting refactoring transformations

Bottleneck measurement is still not enough to de-
cide which refactoring should be made. Another fac-
tor is meeting multiple soft-goals as the general aim
of the refactoring. For example, the aim can be ex-
pressed as “apply transformations to speedup the pro-
gram 20 times without sacrificing the code complexity
4 times”. One needs to see which transformation is
most effective.

In the first step of refactoring process, we con-
sider what operational soft-goals are applicable. Fixed
hardware platform and algorithm already narrowed
our search to the “Perf[coding]” subcategory in Fig-
ure 3. Initially we considered five applicable transfor-
mations to this program. Besides the above transfor-
mations we also investigated the impact of different
optimization techniques such as dynamic memory al-
location, dot-product.

Using the experiment data, the log scale view of



Figure 4: For the example programs, the quality space
with time performance and code complexity indices
are shown at log scale. Each program in table 1 is
projected to a point in the space, each transformation
produces an arrow from the program to another. It
is clear that array padding, loop permutation, tiling
and unrolling are effective optimizations when used
properly, however, the last two increase complexity.

the quality space of time and complexity indices are
shown in Figure 4.

Some techniques improve one soft-goal but harm
severely to the other, while others provide net im-
provement to both soft-goals. The decision maker
can choose the one suited for the intention. Figure 5
shows five major transformations as decision making
alternatives. It is based on the initial soft-goals as
“apply transformations to speedup the program 20
times without sacrificing the code complexity 4 times”,
which is indicated in Figure 4 as a shadowed region.

4 Application

By laws of software evolution, a software is nat-
urally subjected to continuing change (law 1), in-
creasing complexity (law 2) and declining quality (law
7) [11]. We applied the proposed refactoring process to
an on-going joint project with IBM Toronto lab [18].
This project aims at delivering a restructuring tool
that speeds up the build processes within a reason-
able time budget. We monitored the growth of the
tool from scratch and plotted the metrics of changing
functionality, performance and complexity in Figure 6,
as it evolves from a code dependency graph partition-
ing algorithm (version 1 to 3), to 269 KLOC VIM 6.2

Figure 5: Two steps of refactoring are shown. Each
step identifies the applicable tasks (operational soft-
goals) for the given program (context), then decides
on appropriate tasks for performance and complexity.
The weights given to a branch result from multiplying
the distribution weight through measurement with the
soft-goal dependence weight in the quantified SIG.

in C (version 4 to 9) and to a 1580 KLOC commer-
cial software package in C++ (version 10 to 13). The
functionality is measured as the number of program
units being correctly preprocessed. Here we use the
number in version 13 as unit to normalize those at
earlier versions. Performance and complexity metrics
are also normalized as ratios against the largest data
point and observed the versions where performance
tuning and complexity refactoring taken places.

5 Related work and summary

Ladan Tahvildari et al [15] first applied the NFR
framework for comparing performance and maintain-
ability of OO software with/without design patterns.
Her work emphasizes on comparing design patterns
on maintainability issue, while this paper focuses on
the performance tuning issues along with refactoring
in the develop process. In order to make the trade-off
between the two issues clear, we plot the metrics in
an quality space so that the refactoring process can
be traced as one of the paths leading to the satisfiable
region by the soft-goals.

Functionalities of a software system are concerned
with changes to the state of data, while non-functional
requirements are with the changes to the state of
the program without touching the state of the data.



Figure 6: Goal guided refactoring on the software de-
velopment for C/C++ header restructuring project.

In this perspective, Zou et al [20] consider software
migration practice as a state transition system of
the quality attributes. The assumption is that a
legacy procedural program as a given product can
be migrated to leverage qualities promised by object-
oriented paradigm.

A case study in our work has shown that refactoring
can be measured as the transformation on the state of
program in the quality space. By further monitoring
the process developing a new software from scratch,
we suggest measuring the quality space along with
the progress so that the refactoring goal is balanced
with the productivity goal on demand. The satisfi-
able region in the quality space should be adjusted
dynamically during the software evolution, i.e., devel-
opment can be centric with a different top-priority at a
different development phase. Because the refactoring
changes are non-functional, they are invertible if no
functionality change happens. Mixing with the func-
tionality changes, however, the invertibility does not
hold. Therefore the steps of refactoring must be small
enough so that neither the productivity nor the invert-
ibility would endanger the development goals.

References

[1] U. Banerjee, R. Eigenmann, A. Nicolau, and D. A.
Padua. Automatic program parallelization. Proceed-
ings of the IEEE, 81(2):211–243, feb 1993.

[2] K. Beyls and E. H. D’Hollander. Reuse distance-
based cache hint selection. Lecture Notes in Com-
puter Science, 2400:265–274, 2002.

[3] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos.
Non-functional requirements in software engineering.
Kluwer Academic Publishers, 2000.

[4] H. Dayani-Fard. Quality-based software release man-
agement. PhD thesis, Queen’s University, 2003.

[5] E. H. D’Hollander. Partitioning and labeling of loops
by unimodular transformations. IEEE Transactions
on Parallel and Distributed Systems, 3(4):465–476, jul
1992.

[6] N. Fenton and S. L. Pfleeger. Software Metrics -
A Rigorous and Practical Approach. International
Thomson Computer Press, London, 2 edition, 1996.

[7] M. Fowler, K. Beck, J. Brant, W. Opdyke, and
D. Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

[8] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Se-
bastiani. Reasoning with goal models. Lecture Notes
in Computer Science, 2503:167–??, 2002.

[9] M. H. Halstead. Elements of Software Science. Else-
vier North-Holland, New York, 1 edition, 1977.

[10] D. L. Lanning and T. M. Khoshgoftaar. Modeling
the relationship between source code complexity and
maintenance difficulty. Computer, 27(9):35–40, Sept.
1994.

[11] M. M. Lehman. Laws of software evolution revis-
ited. Lecture Notes in Computer Science, 1149:108–
120, 1996.

[12] T. J. McCabe. A complexity measure. IEEE Trans-
actions on Software Engineering, 2(4):308–320, Dec.
1976.

[13] K. McKinley, S. Carr, and C. Tseng. Improv-
ing data locality with loop transformations. ACM
Transactions on Programming Languages and Sys-
tems, 18(4):424–453, Jul 1996.

[14] J. Mylopoulos, L. Chung, and B. Nixon. Represent-
ing and using nonfunctional requirements: A process-
oriented approach. IEEE Transactions on Software
Engineering, 18(6):483–497, Jun 1992. Special Issue
on Knowledge Representation and Reasoning in Soft-
ware Engineering.

[15] L. Tahvildari and K. Kontogiannis. Requirements-
driven software re-engineering framework. In WCRE
2001, pages 71–80, 2001.

[16] M. E. Wolf and M. S. Lam. A data locality optimizing
algorithm. SIGPLAN Notices, 26(6):30–44, 1991.

[17] Y. Yu, K. Beyls, and E. D’Hollander. Visualizing the
impact of the cache on program execution. In 5th
International Conference on Information Visualiza-
tion (IV ’01), pages 336–341, Washington - Brussels
- Tokyo, July 2001. IEEE.

[18] Y. Yu, H. Dayani-Fard, and J. Mylopoulos. Removing
false code dependencies to speedup software develop-
ment processes. In Proceedings of the 13th CASCON
conference, pages 288–297, Oct. 2003.

[19] Y. Yu and E. D’Hollander. Partitioning loops with
variable dependence distances. In Proceedings of
29th International Conference on Parallel Processing,
Toronto, Canada, Aug. 2000. Ohio State Univ.

[20] Y. Zou and K. Kontogiannis. Migration to object
oriented platforms: A state transformation approach.
In International Conference on Software Maintenance
(ICSM’02), pages 530–539, Oct. 2002.


