
Localizing XML documents through XSLT

Yijun Yu

Electrical Engineering Department

Gent University, Belgium

yijun@elis.rug.ac.be

Jianguo Lu

School of Computer Scinece

University of Windsor, Canada

jlu@cs.uwindsor.ca

Jinghao Xue

Muller Institute for Biomechanics

University of Bern, Switzerland

jxue@memot.unibe.ch

Yi Zhang

Information Technology Department

Gent University, Belgium

yi.zhang@intec.rug.ac.be

Weiwei Sun

Computer Science Department

Fudan University, China

wwsun@online.sh.cn

Abstract

Existing efforts on XML internationalization and lo-
calization have been focusing on the contents of XML
documents instead of on the meta presentations such
as tags and attributes. Although XML standard allows
the use of unicode throughout a document including
the meta level presentations, most tags and attributes
of XML documents are still defined in English, which
makes it difficult for native people to use.

This paper presents a pure XSLT stylesheet to
completely translate and localize XML documents into
different natural languages. Furthermore, we also de-
scribe how this technique can be applied to translation
problems in programming (e.g. C and Java) or docu-
mentation (e.g. LaTeX) languages when the program
or the document can be converted to and from XML
documents.

Keywords XML localization, XSLT, XHTML,
DocBook, program localization

1 Introduction

The world wide web (WWW) drives the information
to freely flow across borders into different countries us-
ing a variety of natural languages. One would expect
that all the exchanged information can be expressed in
a local language. However, the standards for exchang-
ing information in the web are mostly written in En-
glish. Hyper Text Markup Language (HTML) is such
an example, where all tags are either English words or
English abbreviations. Another example is the Exten-
sible Stylesheet Language (XSL), the language to ex-
press transformations between the Extensible Markup
Language (XML) [1] documents. People who can not
understand English may suffer from a ”culture shock”
when reading the source of a document if he can not
understand English.

We had asked a Chinese student to write a web
page about his country. We told him that every-
thing he needed would be Chinese using Chinese Front
Page from Microsoft. Well, it is partially true. The

menu system and the What You See Is What You
Get (WYSIWYG) display in the tool do hide the En-
glish from the document. But curiously, he opened the
source view to look at the code behind the web page:
it is a mixture of English tags with Chinese charac-
ters. It is hard to go on without explaining the magic
behind these tags. Such a language problem does not
occur to Chinese only. Indeed, every native speaker of
other languages has to learn quite a little English to
understand the HTML.

Is there a way to alleviate the learning burden
imposed on these people? This paper tries to explain a
new way of using XSL to make the language accessible
to them. The technique for the attempt is nothing
else but still XSL [3] Transformations, the powerful
transformer between XML documents that allow for
unicode to be used in tags and attributes [1].

2 Motivation

Throughout the examples in the paper, we convert be-
tween documents in English and Chinese. The tech-
nique can be extended to other natural languages in a
similar way.

First we use an HTML(hypertext markup lan-
guage) example to show the basic steps in the treat-
ment. A typical web page written in HTML looks like

<html>

<head><title>A HTML document</title></head>

<body><h1>Hello, world!</h1></body>

</html>

The document is written in English. Typically, a web
page has a root tag HTML enclosed by two brackets.
It has two subtrees which have head and body tags
as the root respectively. The title tag in the header
will normally be shown as the title of the web browser.
The body part is the web page displayed inside the web
browser. In this example, we welcome the world with
a level one heading h1.

The HTML code of the localized document is
shown as follows:

378-349 1059

debbie

<?xml version="1.0" encoding="GB2312"?>

<html xmlns="urn:html">

<head><title>HTML©l</title></head>

<body><h1>�PÇ-�¼</h1></body>

</html>

Although the English contents are localized, the for-
matting tags are still in English. In order to convert
them also into Chinese, we use an XSLT transforma-
tion.

3 Approach

An XSLT transformation converts an XML document
into another XML or a text document through a
stylesheet. In our case, in order to use XSLT, we first
assume the HTML is a strict XML document using the
HTML tags, i.e. XHTML [9]. Thus the input for the
stylesheet is an XHTML document and the output we
expect is a localized document in HTML-like language
where all tags are mapped one-to-one into keywords in
another natural language.

The mapping between the two sets of keywords is
first placed in the following XML document.

<?xml version="1.0" encoding="GB2312"?>

<dictionary>

<entry type="element">

<html>html</html><chtml>§©ý</chtml></entry>

<entry type="element">

<html>head</html><chtml>©ýD</chtml></entry>

<entry type="element">

<html>body</html><chtml>©ý�</chtml></entry>

<entry type="element">

<html>title</html><chtml>)�</chtml></entry>

<entry type="element">

<html>h1</html><chtml>�ÿ)�</chtml></entry>

<entry type="attribtute">

<html>size</html><chtml>Ú@</chtml></entry>

... </dictionary>

The document declares a dictionary which is a list of
two types of entries corresponding to elements or to
tags and to attributes respectively. Each entry has two
children, one for the source language (e.g. XHTML)
and the other for the localized language (e.g. Chinese
HTML).

Using the dictionary, the translator needs to look
up the keyword of each element or attribute and to
replace it with the corresponding keyword in the new
language. The target of such transformation for our
XHTML example is shown as follows:

<?xml version="1.0" encoding="GB2312"?>

<§©ý>

<©ýD><)�>HTML©l</)�></©ýD>

<©ý�><�ÿ)�>�PÇ-�¼</�ÿ)�>

</©ý�></§©ý>

The translation is done by an XSLT, as shown in
figure 1.

Localize
XSLT

SOURCE
XML document

in English:

XHTML
XSL
…

HTML

XSL CXSL

CHTML

…………

dictionary

TARGET
localized

XML document:

CHTML
CXSL

…

Figure 1. An XML document is localized by an XSLT
stylesheet which translates it from a source language
to a target one according to an auxiliary dictionary
document.

In figure 2, we dissect the stylesheet into several
understandable steps:

1. Declarations of the stylesheet: the first process-
ing instruction tells that the stylesheet is also an
XML document and its encoding is GB2312 for
simplified Chinese.

<?xml version="1.0" encoding="GB2312"?>

For other natural languages, one could use differ-
ent encodings.

2. Declarations of the entities used in the stylesheet:
an entity defines a macro replacement for a con-
stant string throughout the stylesheet, and the use
of an entity ent is &ent;. The defined entities will
be replaced with the corresponding strings by an
XML parser. Here in our example three entities
are defined for names of the source and target lan-
guage and the auxiliary dictionary file. They will
be used extensively in the following stylesheet.

<!DOCTYPE stylesheet [

<!ENTITY source "html">

<!ENTITY target "chtml">

<!ENTITY diction "document(’dictionary.xml’)

/dictionary/entry">]>

3. The following tag is the root of the XSL
stylesheet, it has a version attribute and several
name space attributes. The default name space
is the same as name space xsl, and two other
name spaces are respectively the URN (univer-
sal resource name) of the source and target lan-
guages.

<stylesheet version="1.0"

xmlns="http://www.w3.org/1999/XSL/Transform"

1060

stylesheet

output method=“xml”
indent=“yes”

Name spaces:
xmlns:xsl
xmlns:&source;
xmlns:⌖

Entities:
&source;
⌖
&dictionary;

template
match=“/”

template match=
“&source;:*”

template name=
“translate-element”

template name=
“filter”

template name=
“filter-string”

apply-templates
select=“&source;:*”

for-each element
call-template

for-each ”axis::”, “function(“
call-template

$node, $tag

$attr

for-each attribute
call-template

Localize
XSLT

$str

Figure 2. The localizing XSLT stylesheet traverses an
XML document hierarchy top-down. The tags and
attributes are translated from a source language to a
target language. Predefined XPath axes and functions
in the string value of attributes are replaced with their
target language counterparts.

xmlns:xsl="http://www.w3.org/1999/XSL/Transform"

xmlns:html="urn:&source;"

xmlns:chtml="urn:⌖">

...

</stylesheet>

4. The following tag specifies that the form of output
is still XML and it will be indented automatically.

<output method="xml" indent="yes"/>

5. The top level template matches the root tag of
the XML document in the source language and in-
vokes the other templates for individual elements.

<template match="/">

<apply-templates select="child::&source;:*"/>

</template>

6. The next template translates all the elements in
the source language.

<template match="&source;:*">

<variable name="node" select="."/>

<variable name="tag" select="local-name()"/>

<for-each select="&diction;[@type=’element’]">

<if test="$tag=./&source;">

<element name="./⌖">

<call-template name="translate-element">

<with-param name="node" select="$node"/>

</call-template>

</element>

</if>

</for-each>

<if test="count(&entry;[@type=’element’

and ./&source; = $tag])=0">

<element name="$tag">

<call-template name="translate-element">

<with-param name="node" select="$node"/>

</call-template>

</element>

</if>

</template>

The first two children of above template denote
the current element as $node and its tag name as
$tag. For each entry in the dictionary, if $node is
the same as the value of a source language term,
then it will be replaced with the corresponding
target language term, and the attributes are pro-
cessed by invoking another translate-element
template. The difference between call-template
and apply-templates is that the former does
not changes the context element but the latter
does. Therefore in the translate-element tem-
plate, the context element ”.” will be a dictionary
entry instead of an element $node in the source
document. To avoid losing the reference to the
source XML document, we need to pass $node
as a parameter to the invoked template using a
with-param child.

When none of the entries in the dictionary
matches $tag, as tested by comparing the count
of matching elements with zero, the tag name of
element $node remains $tag while the attributes
and values will be translated by the same sub-
template.

7. In the translate-element template, the current
element in the source document is passed as a pa-
rameter. Then for each attribute name and value,
one needs to look up the dictionary to replace the
keywords in the source language with their coun-
terparts in the target language. This is done simi-
larly to the translation of the element’s tag name.
The major difference is in the XPath expression
in the for-each select condition: to query the at-
tribute through "@*" instead of to query the tag
name through "&source;:*".

<template name="translate-element">

<param name="node"/>

<for-each select="$node/@*">

<variable name="attr"

select="local-name()"/>

<variable name="anode" select="."/>

<for-each select="&entry;[@type=’attribute’]">

<if test="$attr=./&source;">

<attribute name="./⌖">

<call-template name="filter">

<with-param name="attr" select="$anode"/>

</call-template>

</attribute>

</if>

</for-each>

<if test="count(&entry;[@type=’attribute’

and ./&source;=$attr])=0">

1061

<attribute name="$attr">

<call-template name="filter">

<with-param name="attr" select="$anode"/>

</call-template>

</attribute>

</if>

</for-each>

<value-of select="$node/text()"/>

<for-each select="$node/child::&source;:*">

<apply-templates select="."/>

</for-each>

</template>

8. For the value of an attribute, the filter tem-
plate is invoked to translate the predefined func-
tion names. In our XHTML example, few prede-
fined functions are used in the attributes, so we
just simplify the filter with copying the attribute
value.

<template name="filter"><param name="attr"/>

<value-of select="$attr"/>

</template>

As result of above-mentioned steps, the XHTML
document can be localized. This approach has two
advantages:

• Swapping the string values of source and target
entities, a localized document can also be trans-
lated back to an XHTML document. That is even
more useful because people can use their mother
tongues without knowing anything about English
terminology for XHTML.

• The vocabulary of the dictionary can be aug-
mented whenever new keywords are established.
Putting them in a separate dictionary allows flex-
ible translation without changing the translator
itself.

A more “ambitious” attempt is to localize the
XSL stylesheet using the stylesheet itself. Such an
attempt is fulfilled easily by inserting terminology of
XSL and CXSL into the source and target languages.
Given different name spaces, a common term can be
represented differently into different languages, for ex-
ample, an entry of the dictionary may be

<entry>
<lang1>A</lang1>
<lang2>B</lang2>
<lang3>C</lang3>

</entry>.

where a common term may have three different words
in three different languages. In this way, a multi-
lingual dictionary is more concise than a number of
bi-lingual dictionaries.

Meanwhile, in order to translate the predefined
keywords like axes in XPath expressions, the last step
of the XSLT is modified into the following code:

<template name="filter">

<param name="attrib"/>

<call-template name="filter-string">

<with-param name="str" select="$attr"/>

</call-template>

</template>

<template name="filter-string">

<param name="str"/>

<for-each select="&entry;[@type=’axis’]">

<variable name="axis"

select="concat(./&source;, ’::’)"/>

<variable name="to_axis"

select="concat(./⌖, ’::’)"/>

<if test="contains($str,$axis)

and starts-with($str, $axis)">

<call-template name="filter-string">

<with-param name="str" select=

"concat($to_axis, substring-after($str,$axis))"/>

</call-template>

</if>

</for-each>

<if test="count(&entry;[@type=’axis’

and contains($str,$axis)])=0">

<value-of select="$str"/>

</if>

</template>

In above code, the first template filter calls the
second template filter-string to replace every oc-
currence of a pattern (”axis::” or ”function(”) with
their counterparts in the target language. Note that
filter-string is a recursive template that keeps do-
ing the translation of one such pattern until no match
is found anymore.

At the end of this section, we list part of the lo-
calized results:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE stylesheet [

<!ENTITY source "xsl"><!ENTITY target "cxsl">

<!ENTITY diction "document(’dictionary.xml’)/

dictionary/entry">]>

<ø*,\ Çý="1.0" xmlns="urn:cxsl">

<Qñ 0�="xml" À�="yes"/>

<ÜÆ �{="/">

<a~ÜÆ
="�E::xsl:*"/> </ÜÆ>

<ÜÆ �{="xsl:*">

<#Þ Ö	="node"
="."/>

<#Þ Ö	="tag"
="Û\Ö()"/>

<�Ç
="&entry;[@type=’element’]">

<�* w��G="$tag=./xsl">

<Ã£ Ö	="{./cxsl}">

<®~ÜÆ Ö	="translate-element">

<Qkj Ö	="node"
="$node"/>

</®~ÜÆ> </Ã£> </�*> </�Ç>

<�* w��G="�j(&entry;[@type=’element’

?% ./xsl = $tag])=0">

<Ã£ Ö	="{$tag}">

<®~ÜÆ Ö	="translate-element">

<Qkj Ö	="node"
="$node"/>

</®~ÜÆ> </Ã£> </�*> </ÜÆ>

...

</ø*,\>

1062

4 Applications

In this section we discuss the use of the localization
through XSLT in two domains, i.e. the programming
languages and the documenting languages.

4.1 Programs

Programming languages are mostly in English. To a
non-English speaker, the keywords of a program are
not easy to understand and remember.

The XSL can be regarded as a programming lan-
guage, but in general, a program is not an XML doc-
ument.

Previous efforts like ret4j have been made to en-
able converting a Java program into an XML docu-
ment [8]. Likewise yaxx [12] can output the syntax
of a C or Fortran program into XML according to the
YACC grammar [6]. Such an XML document is a good
candidate for the localization. Since the grammar rules
for a programming language is fixed, one can use a sin-
gle translation dictionary that translates the program.
The translation can be done automatically with the
help of yaxx or ret4j.

For example, the following C program prints
”Hello, world”:

void main() {
printf("Hello, World!");

}

YACC is a compiler-compiler which takes the grammar
of a programming language like C as the input and it
generates a parser that constructs a syntax tree of the
C program. Our extension to YACC is called yaxx,
which output the internal syntax tree structure while
parsing the C program.

The example program is first output into an XML
document by yaxx reusing an ANSI-C grammar [10].
It is shortened here to present the essential elements.

<file>

<external_definition><function_definition>

<declaration_specifiers>

<type_specifier>void</type_specifier>

<declarator><identifier>main</identifier>

<PUNCT_LPAR/><PUNCT_RPAR/></declarator>

</declaration_specifiers>

<function_body>

<compound_statement><PUNCT_LBRACE/>

<statement_list>

<expression_statement><primary_expr>

<identifier>printf</identifier>

</primary_expr><PUNCT_LPAR/>

<primary_expr>"Hello, World!"

</primary_expr><PUNCT_RPAR/>

</expression_statement></statement_list>

<PUNCT_RBRACE/></compound_statement>

</function_body>

</function_definition></external_definition>

</file>

Then the XML document is converted into a lo-
calized document by the XSLT presented in this paper:

<©G>

<i\½B><<j½B><<j�Ò>

<¡nÃc>8</¡nÃc>

<�Ò><)#n>ÌÇ�</)#n>

<&iR/><�iR/></�Ò>

</<j�Ò><<j�>

<�\ªé><&�iR/>

<ªé,><,H*ªé><,H*ªé>

<)#n>Â*K\</)#n>

</,H*ªé><&iR/>

<,H*ªé>"�PÇ-�¼"

</,H*ªé><�iR/>

</,H*ªé></ªé,>

<��iR/></�\ªé>

</<j�></<j½B></i\½B>

</©G>

A localized XML document can be supplied to a code
generation XSLT to regenerate the localized code as
follows:

8 ÌÇ�() {

Â*K\("�PÇ-�¼");

}

This localized code can not be parsed by a common
C compiler, but it can be kept as a documentation
accompanying with the original program.

The grammar for the language of YACC gram-
mar is also a YACC grammar (see the implementa-
tion of bison [4], an open source variant of YACC),
therefore the YACC grammar can also be automati-
cally translated through the use of our XSLT and a
certain dictionary. The localized YACC with Unicode
support can accept the localized program as if it is the
original C program. The relationship of these tools are
illustrated in figure 3.

4.2 Documentation

DocBook is a standard way of representing books, arti-
cles and technical reports uniformly in XML [11]. The
tag names of DocBook are “unfortunately” in English
too. Therefore to localize a DocBook can also be as-
sisted with the XSLT approaches in the paper.

Existing tools that translates a DocBook into La-
TeX [5, 2] can be extended to translate the localized
DocBook into a LaTeX document. The LaTeX docu-
ment can be further rendered using the packages aware
of the local language. An example of such application
is the presentation of this paper. the localizing XSLT
in preparing the LaTeX source of this paper. The pa-
per is prepared in following steps:

1. Initially the paper was prepared as a localized
DocBook XML document;

2. A reverse translation converted it into an English
DocBook XML document;

1063

Localize
XSLT

A program in
localized L

An XML
syntax tree

A program in L, e.g.
C program, or localized C

A YACC grammar
of a language L, e.g.

ANSI C, YACC, …

Parser for L

YACC YAXX

Localized XML
syntax tree

Code generation
XSLT

Figure 3. Using a YACC grammar of the program-
ming language L, yaxx outputs the syntax tree of a
program into an XML document. A localizing XSLT
translates the document into the target language and
a code generation XSLT transforms the localized XML
document into a localized program.

3. The DB2LaTeX tool [2] was used to convert the
DocBook XML document into LaTeX. We made
minor changes to allow the use of CJK (Chinese
Japanese Korean) LaTeX package [7] in the La-
TeX output.

4. CJK package was used to render the LaTeX out-
put mixed with Chinese and to produce good
quality DVI and PDF document.

Localize
XSLTDocBook

DB2LaTeX
XSLT

Localized
DocBook

LaTeX CJK LaTeX

DB2CLaTeX
XSLT

Figure 4. The DocBook document for this paper
can be localized using XSLT. The DB2LaTeX XSLT
stylesheets are extended in order to produce a localized
document using the CJK LaTeX package.

5 Conclusion

This paper discusses an automatic approach to localize
any XML document in English to other natural lan-

guages and to convert the localized document back to
an English document. This approach makes the local-
ization of XHTML and XSL documents painlessly. Us-
ing the same XSLT together with other tools like yaxx,
a program can be localized; using the same XSLT to-
gether with DB2LaTeX, documents written in Doc-
Book can also be localized to CJK LaTeX. We see this
approach as a way to extend the English community
to a multilingual one.

References

[1] T. Bray, J. Paoli, and C. Sperberg-McQueen. Ex-
tensible Markup Language (XML). The World Wide
Web Journal, 2(4):29–66, 1997.

[2] R. Casellas. DocBook to LaTeX2e converson with
XSLT, 2002.

[3] J. Clark and S. Deach. Extensible Stylesheet Lan-
guage (XSL), Version 1.0. World Wide Web Consor-
tium Working Draft, Aug 1998.

[4] C. Donnelly and R. Stallman. Bison Manual: Using
the YACC-compatible Parser Generator, for Version
1.29. Free Software Foundation, 675 Mass Ave, Cam-
bridge, MA 02139, USA, 2000.

[5] M. Goosens and S. Rahtz. The LATEX Web Compan-
ion. Addison Wesley: Reading, Massachusetts, 1999.

[6] I. E. Gorman. Lex and yacc: Compiler-construction
techniques for the everyday programmer. Dr. Dobb’s
Journal of Software Tools, 21(2):86–97, feb 1996.

[7] W. Lemberg. The CJK package for LATEX2e — multi-
lingual support beyond babel. j-TUGboat, 18(3):214–
224, sep 1997.

[8] E. Mamas, G. Baron, and K. Kontogiannis. Reengi-
neering tool kit for java. Technical report, 2001.

[9] M. Sauers and R. A. Wyke. XHTML essentials. Wi-
ley, New York, NY, USA, 2001.

[10] A. standard. ANSI C: Standard x3.159, 1989.
[11] N. Walsh and L. Muellner. DocBook: The Definitive

Guide. O’Reilly and Associates, Inc., 1999.
[12] Y. Yu and E. H. D’Hollander. YACC extension to

XML. Technical report, Ghent University, 2002.

1064

	Table of Contents

