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A 3D iteration space visualizer (ISV) is presented to analyze the parallelism in loops and
to find loop transformations which enhance the parallelism. Using automatic program
instrumentation, the iteration space dependency graph (ISDG) is constructed, which
shows the exact data dependencies of arbitrarily nested loops. Various graphical
operations such as rotation, zooming, clipping, coloring and filtering, permit a detailed
examination of the dependence relations. Furthermore, an animated dataflow execution
shows the maximal parallelism and the parallel loops are indicated automatically by an
embedded data dependence analysis. In addition, the user may discover and indicate
additional parallelism for which a suitable unimodular loop transformation is calculated
and verified. The ISV has been applied to parallelize algorithmic kernel programs,
a computational fluid dynamics (CFD) simulation code, the detection of statement-level
parallelism and loop variable privatization.The applications show that the visualizer is
a versatile and easy to use tool for the high-performance application programmer.
( 2001 Academic Press

Keywords: program visualization, dependence analysis, loop transformations, iteration
space dependence graph, program instrumentation.
1. Introduction

THE EXTRACTION of parallelism in ordinary programs has been the topic of research for
about three decades. In the majority of cases the techniques focus on two basic steps:
dependence analysis and program transformations. Most useful parallelism comes from
repetitive program tasks which can be assigned to different processors, e.g. the iterations
of a loop nest. In this case, the basic task is one iteration of a parallel loop. Depending
on the required granularity, the parallel iterations are selected from the outermost
parallel loop, e.g. for multiprocessors, or from the innermost parallel loop, e.g. for
vectorization and pipelined instruction-level parallelism.

Despite the great steps forward in this area, there still remain many loops with
parallelism ‘obvious’ to the programmer, but which is difficult to detect using algorith-
mic techniques. The contrary is also true: the sophisticated dependence techniques and
the construction of loop transformations and statement mappings are beyond what the
programmer is able to see at first glance. Consequently, both approaches are com-
plementary and have their own merits.
1045-926X/01/040163#19 $35.00/0 ( 2001 Academic Press
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This paper focuses on the graphical support for an interactively parallel program
development. Basically, it assists the user by showing the exact dependence which
prevent parallel loops and it allows the user to perform program transformations which
enhance the parallelism. The visualization tool shows a three-dimensional iteration
space, which can be freely rotated and zoomed. Dependencies are shown or hidden, for
all or a few variables, and the parallel loops can be detected. If the user sees a specific
progression in the iteration space which enhances significantly the parallelism, he can
mark a progression plane. The corresponding loop transformation is calculated and the
dependencies within a plane and between planes can be selectively highlighted. From
this information the parallel code is constructed. In order to assist the search for
parallelism, the iteration space visualizer (ISV) indicates the dataflow execution which
shows the minimal execution time and the maximal obtainable parallelism. The ISV has
been used to interactively parallelize both common loops of standard algorithms as well
as real-world CFD-code. The visualizer is written in Java, because it makes the tool
platform independent, allows a web-based access and good graphics support.

The remainder of the paper is organized as follows. In the next section the definitions
of the iteration space dependence graph and its construction are explained. In Section 3,
the graphical features of the iteration space visualizer aimed at dependence analysis and
parallelism detection are shown. In Section 4, unimodular loop transformations and
statement reordering are explored for enhancing parallelism. The results of the ISV for
parallelizing a number of applications are given in Section 5 and the related work is
discussed in Section 6. Finally, Section 7 concludes the paper.

2. Iteration Space-Dependence Graph

In order to extract parallelism from the loops interactively, the dependencies among the
loop iterations must be exposed to the programmer. The object to be visualized is called
the Iteration Space-Dependence Graph (ISDG).

Consider an m-fold nested loop, l"1,2, m, with index variables i"(i1 ,2, im),
lower and upper bounds Ll and Ul :

do i3N
A( f (i))"2

2 (1)
2"A(g(i))

enddo

The iteration set N is given by

N"Mi"(i1,2, im) D 14l4m : Ll4il4UlN. (2)

In sequential loops, iteration i executes before iteration j if i is lexicographically less
than j, denoted as ipj, i.e. there is a k3[1,m] such that il"jl , l"1,2, k!1, and
ik(jk.

The lexicographical order of two dependent iterations ipj also defines a lexi-
cographically positive distance vector d"j!i.
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If two iterations i1pi2 access the same array element and at least one iteration
performs a write, there is a loop-carried dependence between the iterations i1 and i2,
denoted as i1 d i2.

The dependence set is defined as

E"M(i1, i2) D i1, i23N'i1d i2N. (3)

The directed dependence edge is classified as

z flow dependence: a write in i1 followed by a read in i2;
z output dependence: a write in i1 followed by a write in i2;
z anti-dependence: a read in i1 followed by a write in i2;

For example, in Loop (1), there is a flow dependence if f (i1)"g(i2), an output
dependence if f (i1)"f (i2); and an anti-dependence if f (i2)"g(i1).

The iteration space-dependence graph is now defined as the directed acyclic graph
SN, ET with nodes N representing iterations and edges E representing the depend-
encies.

As an example, consider the following program:

parameter (n"4)
real a(0:n#1, 0:n#1, 2)
do i"1, n

do j"1, n
do k"1, 2

if (k.eq.1) then
a (i, j, k)"(a (i!1, j, k)#a (i#1, j, k))/2

else
a (i, j, k)"(a (i, j!1, k)#a(i, j#1, k))/2

endif
enddo

enddo
enddo
end

The iteration space-dependence graph (Figure 1) is extracted from the program in
three steps,

(1) instrumenting the program;
(2) executing the instrumented program;
(3) constructing the ISDG from the trace of the execution.
The program is instrumented to generate the following output:

z at the start of an iteration: the iteration counter, id, and the loop indices, indices;
z at a read or write access: the iteration counter, id, the type of reference, ref"R or W,

the variable name: variable, and the subscript values: subscripts.



Figure 1. The ISDG of the example program, from which one can easily recognize that the size of the
iteration space is 4]4]2. The 32 iterations belong to eight independent partitions
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Scalar variables are treated as one-dimensional arrays with a single element. Non-
perfectly nested loops are converted to perfectly nested loops similar to the approach in [1].

After executing the instrumented program, the ISDG graph is constructed. First, an
empty list of read or write references is created for each memory location. Then the
trace records are processed as follows.

(1) Every read or write reference is appended to the reference list of the memory
location addressed by the subscripts.

(2) Dependence edges are constructed according to the following rules:

z a read reference creates a flow dependence with the preceding write into the
same location;

z a write reference creates an output dependence with the preceding write into
the same location;

z a write reference creates an anti-dependence with all the reads since the
preceding write into the same location.

3. Dependence Analysis

Having constructed the iteration space-dependence graph, this section first explains the
graphical features of the ISDG and then shows how to use them effectively to analyze
data dependencies.

3.1. Loop Visualization

Consider an m-level deep nested loop.

z If m"3, the iteration space-dependence graph is displayed in 3D corresponding to
the iteration indices of the three loops.
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z If m(3, a 2D view is available.
z If m'3, three loop indices must be selected from the hyper-dimensional iteration

space and the ISDG is projected onto a 3D space.

The size of the iteration spheres are proportional to the distance from the viewer
so that the programmer can recognize the spatial relationship between the adjacent
iterations.

Furthermore, the programmer can arbitrarily choose the size of the spheres either to
clearly indicate the iterations or to emphasize the dependence edges.

The graph can be zoomed in or out easily by resizing the window. It can be clipped by
changing the visible index range. This helps the programmer to examine the regularity of
the dependence patterns.

Optionally, the iteration indices can be displayed next to the iteration nodes. Grid
lines are available to show the shape and structure of the iteration space.

The graph can be rotated freely in three directions by changing the viewpoint angle.
The rotation can be done by dragging the mouse, by selecting an animated rotation, or
by directly specifying the X–Y–Z angles. The index-axes show the direction of the three
loops. The axes can also be dragged anywhere in the canvas.

Each directed edge represents the dependence between the connected iterations.
Three colors (red, green and blue) classify the edges into flow-, output- and anti-
dependencies, respectively. The programmer can click on any visible edge to find out the
source and target loop indices of the selected edges.

Dependencies can be selectively hidden by the dependence type and/or loop variable
names. The filter feature is useful to focus on the individual variables, to study the
algorithmic data dependencies, i.e., the flow dependencies; or the shared-memory-
originated dependencies, i.e., the anti- and output-dependencies. Memory-originated
dependencies can be eliminated by variable privatization or scalar expansion [2].
Similarly, filtering variables from the ISDG can clarify the cause of the loop depend-
encies.

To allow the high-resolution print of the graphics implemented in the visualizer,
a color Postscript interface is defined.

3.2. Detecting and Enhancing Program Parallelism

The runtime behavior of the loops is shown by simulating the program execution in
different kinds of iteration order. The traversal of the iteration space can be driven by
sequential loop execution, dataflow execution, parallel-loop execution and plane execu-
tion. During the simulated execution, the color of the nodes distinguishes the past,
present and future iterations. The following subsection explains the difference between
these execution orders and discusses the use of these features.

3.2.1. Sequential Execution: the Lexicographical Order

The trace from the program execution is ordered lexicographically. In the ISDG, the
iteration nodes are highlighted one-by-one by clicking the mouse and the total number
of the iterations is reported.
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3.2.2. Dataflow Execution: the Maximal Parallelism

In a dataflow execution, each iteration is executed as soon as its data are ready, i.e. after
the dependent iterations are all carried out. By clicking at an empty area of the canvas,
the highlighted nodes show the parallel executable iterations in each time step when
every iteration is assigned to different processor. This corresponds to a minimal
execution time with the maximum parallelism exploited. Although the dataflow execu-
tion normally does not follow the iteration order expressed by parallel DOALL loops, it
reflects the maximum speedup obtainable within this loop nest. This maximum speedup
is shown to the programmer.

3.2.3. Parallel Loop Execution: the Automatic Parallelization

When one or several loops are executed in parallel, the iterations in the parallelized loops
can run in one step and the iterations in the sequential loops must run one-by-one.

According to the selected dependencies in the ISDG, the visualizer checks all the
combinations of loops to find the coarsest grain of DOALL loop parallelism automati-
cally. When the DOALL loops are found, the speedup is reported by calculating the
ratio between the sequential time and the parallel execution time.

The automatic loop parallelization feature relieves the programmer of further analysis
when enough parallelism is obtained, e.g. compared with the dataflow execution.

The programmer may also interactively specify which loops are to be checked for
parallel execution. In that case, blinking edges warn for critical dependencies that
prevent the attempted loop parallelization.

After being verified by the parallel check, the DOALL loops will be enabled for
parallel traversal of the ISDG. By clicking at the empty area of the canvas, the
programmer can see what happens after the parallelization: how much parallelism or
speedup can be obtained by the automatic parallelization.

When the automatic parallelization shows less parallelism than the dataflow execu-
tion, some transformations of the loop should be considered to enhance the parallelism.
Therefore, the plane traversal is provided to find such a suitable loop transformation.

3.2.4. Plane Execution: Finding More Loop Parallelism

It is possible to specify any cutting plane by clicking on three nodes that are not on one
line. The cutting plane Ax#By#Cz"D is calculated and highlighted in the ISDG as
a polygon, bounded by the iteration space.

Alternatively, an experienced user can specify the plane by giving the four integer
parameters A,B,C and D.

When the cutting plane is defined, a mouse click starts the execution of the loop such
that all iteration nodes in the plane are executed in parallel. At each click, the cutting
plane progresses sequentially through the iteration space in a number of steps corre-
sponding to the parallel execution time.

Plane parallelization requires that there are no dependencies between the iterations in
the plane. This can be checked

z by hiding the dependencies between the planes, or
z by projecting the 3D iteration space onto a 2D executing plane.
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In summary, the programmer may apply the following procedure to interactively find
and enhance the parallelism of a program:

(1) detect the maximal parallelism possible, by watching a dataflow execution;
(2) apply automatic parallelization to parallelize as much loops as possible;
(3) hide the false dependencies and the dependencies caused by private variables

such that the pruned ISDG allows for more loops parallelization;
(4) do a plane execution if the loop parallelism is still less than the dataflow

parallelism; if a suitable plane traversal is found, calculate the corresponding loop
transformation.

4. Program Transformations

In this section the unimodular loop transformations and statement reordering to amplify
the parallelism are discussed.

4.1. Unimodular Loop Transformations

A unimodular matrix T specifies a one-to-one mapping between two loop iteration
spaces. Consequently, a unimodular transformation can be applied to re-orient the
ISDG in such a way that more parallelism can be extracted.

A unimodular matrix T has D det (T)D"1 and the mapping between the loop indices
i and i@ is described by

i@"iT. (4)

Generally, the loop boundaries are changed after a unimodular transformation,
and need to be recalculated. Furthermore, the transformation may change the lexi-
cographical ordering of the dependent iterations. For example, if i4j and i@'j@ then
the dataflow dependence becomes an anti-dependence, and therefore the loop trans-
formation is invalid. However, the correctness of a proposed loop transformation is
checked.

To find the unimodular loop transformation which engenders a plane execution
in the outermost loop, the normal vector (A,B,C ) of the plane is placed into the
first column of the 3D unimodular transformation matrix T. The other two
columns need to be chosen such that (1) the matrix is unimodular and (2) the
inner loops of the transformed loop nest execute the dependent iterations in lexi-
cographical order. Different unimodular solutions are possible, and the viewer will
indicate the valid loop transformations. After the unimodular transformation, the new
independent loop (either outermost or innermost) can be parallelized. The correspond-
ing loop boundaries can be calculated using integer programming tools like the Omega
calculator [3].

In case of linear array subscripts, a suitable loop transformation can be found based
on the pseudo-distance vectors as described in [4]. This method generates a parallelizing
unimodular transformation automatically and is also available in the viewer.
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4.2. Loop Projections

Regarding the dimensionality of the visual space, there are three kinds of index
mappings: from a 3D loop space to a 3D visual space is a 1–1 mapping, used for
unimodular and non-singular loop transformations; from '3D to 3D is a projection
useful to analyze higher-dimension loops; from a (3D to 3D is a dimension expansion,
useful for treating the parallel execution by statement reordering transformations.

The schemes discussed so far can be extended to non-perfectly nested loops after
suitable transformations such as statement reordering by affine mappings proposed by
Kelly and Pugh [5], including loop fusion, loop fission, etc.

In order to handle statement-level parallelism, the statements are given a dummy
index and the corresponding loop iterates through all the statements. This allows to
integrate a statement-level program-dependence graph (PDG) into the framework of
the ISDG.

Extending the ISDG with statements dependencies, a suitable affine mapping like
unimodular transformation on non-perfectly nested loops can be found [1]. In the next
section it is shown that for two examples in the recent paper of Lim and Lam [6], the
extended loop iteration space allows to use unimodular transformations to find state-
ment-level parallelism.

5. Applications and Results

To apply the visualizer, the instrumentation can be done by adapting front-end
compilers, such as FPT [7] for Fortran programs and in SUIF [8] for C programs. The ISV
instrumentation has been carried out for both compilers. A pragma C$doisv in Fortran or
Kpragma doisv in C before the selected innermost loop is the only required modification
to the source program to obtain the trace-generating code.

The visualization itself is written in Java so that it is portable and web-ready. All the
above instrumentation and visualization tools have been integrated into a web-based
environment that takes the source program as input and yields an applet, visualizing the
iteration space dependence graph [9].

The applet has been applied to several application programs and kernel loops. The
parallelism has been detected visually and the suitable program transformations were
found interactively. Note that the applet applies to the submitted program; it is the
programmer’s responsibility to verify the extensibility of the results found by the applet
in particular to a different size of the loop region.

5.1. Non-perfectly Nested Loop

The following program shows the well-known Gauss Jordan (GJ) elimination to explain
the approach to find parallelism in programs. GJ is an example of a 3D non-perfectly
nested loop, since there is an assignment statement out of the k loop body.

do i"1, n
do j"1, n

if (i.ne.j) then
f"a ( j, i)/a (i, i)
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C$doisv
do k"i#1, n#1

a ( j, k)"a ( j, k)!f*a ( i, k)
enddo

endif
enddo

enddo

Pragma C$doisv is inserted before the k loop to indicate which iteration space should
be instrumented. The program instrumented by FPT writes trace records into an ASCII
file serving as the input for the ISDG construction.

The ISDG (Figure 2) displays all types of dependence. By running the viewer, the user
can verify that the highlighted plane along the i axis cuts through exactly the same
iterations as the dataflow execution. This confirms that both j and k loops are maximally
parallelizable.

5.2. Statement Reordering

In Lim and Lam [6], an example of a doubly nested loop is illustrated for statement
reordering.

do l1"1, n
do l2"1, n

S0: a (l1, l2)"a (l1, l2)#b (l1!1, l2)
S1: b (l1, l2)"a (l1, l2!1)*b (l1, l2)

enddo
enddo
Figure 2. The ISDG of the Gauss Jordan elimination indicating the dependencies and the highlighted
plane I"1 with parallel iterations. The sequential time shows 30 sequential iterations while the data-flow
time shows four dataflow steps. Therefore, the potential speedup is 7.5. Since executing the loops J,K in

parallel is valid, the DOALL execution yields the same speedup as the dataflow execution
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The following adapted program uses the statement number as an additional loop
index l3.

do l1"1, n
do l2"1, n

c$doisv
do l3"0, 1

if (l3.eq.0) a (l1, l2)"a (l1, l2)#b (l1!1, l2)
if (l3.eq.1) b (l1, l2)"a (l1, l2!1)*b (l1, l2)

enddo
enddo

enddo

With the extra dimension, a 3D iteration space is obtained in Figure 3.
The planes l1!l2#l3"D traverse the iteration space in the same way as the

dataflow execution. Using a unimodular matrix

A
1 1 0

!1 0 1
1 0 0 B

the same plane traversal can be obtained, leading to a parallel i1 loop (see the
transformed ISDG in Figure 4).

The Fourier–Motzkin method is used to calculate the new loop bounds, giving the
following program:

DOALL i1"1!n, n
do i2"max(i1, 1), min(n, i1#n)

C$doisv
do i3"max(!i1#i2, 1), min(!i1#i2#1, n)

l1"i2
l2"i3
l3"i1!i2#i3
if (l3.eq.1) a (l1, l2)"a (l1, l2)#b (l1!1, l2)
if (l3.eq.2) b (l1, l2)"a (l1, l2!1)*b (l1, l2)

enddo
enddo

enddo

In order to optimize the code generation, the constraint of Lim’s mapping and the
unimodular mapping are given to the Omega calculator [3, 10] as the following:

d statement ordering mapping d unimodular mapping
symbolic n; symbolic n;
IS1:"M[i, j]: 1("i, j("nN; IS1:"M[i, j, k]: 1("i, j("n && k"0N;
IS2:"M[i, j]: 1("i, j("nN; IS2:"M[i, j, k]: 1("i, j("n && k"1N;
T1:"M[i, j]P[i!j, i, j, 1]N; T1:"M[i, j, k]P[i!j#k, i, j]N;



Figure 3. The ISDG of the expanded Lim’s loop is visualized in 3D space. Sequential execution requires
32 steps, while dataflow execution needs seven steps. Therefore, the maximum speedup is 32/7"4.57. The
i3 loop is automatically verified as a DOALL where its parallel execution requires 16 steps, yielding speedup
2.0. The highlighted plane l1!l2#l3"0 is selected by clicking at three iteration points (1, 1, 0), (1, 2, 1)

and (2, 2, 0)

Figure 4. The ISDG after the unimodular transformation. The transformed outermost loop
i1 is a DOALL. The highlighted plane i1"1 shows the largest partition which contains 7 sequential
steps, whereas the sequential execution takes 32 steps. Therefore, the parallel plane execution has a

speedup of 4.57
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T2:"M[i, j]P[i!j#1, i, j, 2]N; T2:"M[i, j, k]P[i!j#k, i, j]N;
codegen 0 T1 : IS1, T2 : IS2; codegen 0 T1 : IS1, T2 : IS2;

The affine functions T1, T2 map two statements S1, S2 to their processor id, where IS1,
IS2 are the iteration space constraints for S1, S2, respectively. The statement reordering
mappings found by Lim [6] is on a two-dimensional iteration space (i, j ), while the
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unimodular mappings found by the ISV is on a three-dimensional iteration space (i, j, k)
which has a dimension k for the statements. The optimized code obtained from
unimodular transformation is the same as in [6].

DOALL p"1!n, n
if (p.ge.1)b(p, 1)"a(p, 0)*b(p, 1)
do l1"max(p#1, 1), min(p#n!1, n)

a(l1, l1!p)"a(l1, l1!p)#b(l1!1, l1!p)
a(l1, l1!p#1)"a(l1, l1!p)*b(l1, l1!p#1)

enddo
if (p.le.0)a(p#n, n)"a(p#n, n)#b(p#n!1, n)

enddo

Having the branch statements removed, the optimized code has parallel p loop.

5.3. High-level Nested Loop

Cholesky is one of the seven kernel subroutines in the NASA7 program of the SPECfp92
benchmarks. It contains two 4-level nested non-perfectly nested loops. The 4-level
perfectly nested loop converted from the standard Cholesky program is shown here.

do i"0, nrhs
do k"0, 2*n#1

if (k.le.n) then
i0"min(m, n!k)
else
i0"min(m, 2*n!k#1)
endif
do j"0, i0

C$doisv
do l"0, nmat

if (k.le.n) then
if (j.eq.0) then

8 b(i, l, k)"b(i, l, k)*a(l, 0, k)
else

7 b(i, l, k#j)"b(i, l, k#j)!a(l, !j, k#j)*b(i, l, k)
endif

else
if (j.eq.0) then

9 b(i, l, k)"b(i, l, k)*a(l, 0, k)
else

6 b(i, l, k!j)"b(i, l, k!j)!a(l, !j, k)*b(i, l, k)
endif

endif
enddo
enddo

enddo
enddo



Figure 5. The 4D ISDG of the Cholesky loop shows the projected 3D view of the (i1, i2, i3) loops. The
dependencies between the left and right parts of the combined iteration space along i1, i2, i3 directions

prevent the parallelization of these three loops
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The ISDG obtained from the instrumented program trace contains four loop indices,
which can be projected to four 3D views: (i1, i2, i3), (i1, i2, i4), (i1, i3, i4) and (i2, i3, i4). The
projection (i1, i2, i3) of the ISDG is shown in Figure 5.

In this projection, no parallel loops can be detected. However, the (i1, i2, i4) view
(Figure 6) shows that the i4 loop always iterates through parallel partitions and therefore
can be permuted to the outermost loop.

This is true also for other 3D projections. Thus, a parallel program like the one in Lim
et al. [11] is obtained.

5.4. A CFD Application

In the 3D mould-filling simulation code developed by the WTCM research center [12],
the majority of the computations is spent on an iterative solver of Navier–Stokes
equations. Each iterative step is a 3-level kernel loop, which performs Successive Over
Relaxation to solve a system of linear equations. The complexity of the iteration
reference patterns (an average of 172 indirect array references per iteration, spread over
33 if-branches) makes it hard if not impossible for automatic parallelizing compilers to
find a parallel loop. The ISDG of the kernel loop is shown in Figure 7.

A parallel plane is obtained by shift-clicking on three nodes in one of the dataflow
execution steps. This plane cuts through the iteration space with exactly the same
iterations as the dataflow execution, yielding the maximal iteration-level parallelism. The
plane execution shows that there are 19 parallel planes going through the 19 dataflow
steps. Projecting the ISDG to 2D, a cutting plane 3i1#2i2#i3"15 is shown in
Figure 8.



Figure 6. The same 4D Cholesky ISDG is projected to 3D space (i1, i2, i4) where dimension i1 is vertical
onto the (i2, i4) plane. Here loop i4 iterates through independent partitions
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Independence between the iterations within each of the 19 planes allows two parallel
innermost loops. However, the dependencies between the iterations of different planes
requires the outermost loop to be sequential. Therefore, a unimodular transformation

A
3 0 1
2 1 0
1 0 0B

is obtained from the plane direction vector (3, 2, 1). The transformed ISDG is shown in
Figure 9.



Figure 7. The ISDG of the original CFD loop with n"4 is shown. The sequential execution has 64 steps
while the dataflow execution has 19 steps, thus a speedup of 64/19"3.37 is the maximal. This picture
shows that the fourth step has three parallel iterations. Shift-clicking at the three dataflow parallel iterations,

namely (1, 2, 2), (1, 1, 4) and (2, 1, 1), a cutting plane is found as 3i1#2i2#i3"9, as highlighted

Figure 8. The ‘largest’ cutting plane as highlighted intersects the iteration space with six iterations,
i.e. (1, 4, 4), (2, 3, 3), (2, 4, 1), (3, 1, 4), (3, 2, 2), (4, 1, 1). The 2D projection of this plane shows that the

iterations in the plane are independent of each other
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By the regularity of the calculations, we can draw the conclusion that the inner two
loops are parallelized while the outermost loop has 6n!5 steps. Therefore, a O(n2/6)
speedup is found when executing the n3 iterations.

5.5. Using the ISV as an Education Tool

The ISV has been used during the laboratory exercises of the course ‘Parallel and
Distributed Systems’, taught at the Gent University. The students had to analyze



Figure 9. Performing the unimodular transformation, the new ISDG is calculated without regenerating the
trace. It shows that the i2, i3 loops can run in parallel while the sequential i1 loop goes through the planes
i1"6}24. The highlighted plane is corresponding to the fourth step as in Figure 7, where the three

iterations there are transformed as (9, 2, 1), (9, 1, 1) and (9, 1, 2), respectively
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a doubly nested loop for the distance vectors, to find a suitable unimodular loop
transformation, to write out the transformed code and to test it for performance gain.
The program is given below.

PARAMETER (m"10)
DIMENSION a (0 : m#1, 0: m#1)
do i"1, m
do j"1, m
a (i, j)"0.2*(a(i, j)#a(i, j!1)#a(i!1, j)#a (i#1, j)#a (i, j#1))
enddo
enddo
end

There are two distance vectors (1, 0) and (0, 1). We knew that a unimodular (column)
transformation (11 1

0) yields two new distance vectors (1, 1) and (1, 0), which allow to
parallelize the inner loop. We intended to guide the students to find out this &standard’
answer, given below.

do i1"2, 2*m
DOALL i2"max (1, i1!m), min (m, i1!1)
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i"i2
j"i1!i2
a (i, j)"0.2*(a(i, j)#a (i, j!1)#a (i!1, j)#a (i#1, j)#a (i, j#1))
enddo
enddo

After 1 h of paper and pencil work, 10 out of 26 students had found the answer.
Then, they could verify their findings using the ISV. After using the visualizing tool for
about 10 min, almost everyone obtained the transformed code.

Interestingly to note, three students unexpectedly presented us with two other
transformations (11 !1

0) and (21 1
0). These solutions are also correct, showing that the ISV

allows to find several correct transformations for some programs. In addition, the ISV
indicates that the first transformation yields a speedup of 5.26 for m"10, while the
second one sacrifices the performance with a speedup of 3.57 for m"10.

This example shows that it is easier to convey the concept of parallel programming to
the students with the help of a visualizing tool.

6. Related work

Experience of using a parallel programming environment shows that scientific program-
mers prefer an interactive tool to study data dependencies and program transformations
[13, 14].

During the past decades, many techniques in the area of data-dependence tests
[15–17] and program transformations have provided the programmer with much useful
material, e.g. the Banerjee, Range [18, 19] and Omega [3, 17] tests, the unimodular
[1, 20, 21] and non-singular [22] loop transformations and recently statement reordering
transformations [5, 6, 11] for non-perfectly nested loops. Most techniques are illustrated
by dependence graphs, such as the program-dependence graph (PDG) and the iteration
space dependence graph (ISDG). The difference between the PDG and the ISDG is
that the PDG emphasizes the statement-level dependencies and ISDG emphasizes the
iteration-level dependencies. The ISDG makes it easier to see the effects of unimodular
and non-singular-loop transformations.

Most examples in the published papers use two-dimensional graphs in order to
explain techniques which can be extended to multiple dimensions. However, 2D graphs
cannot easily reveal the details of real programs with more than doubly nested loops.
Therefore, 3D assisting tools have entered the parallel programming scene.

For instance, in the recent paper of Sasakura et al. [23], a 3D visualization tool
‘NaraView’ is presented for studying data dependence. The visualizing approach of the
authors is to linearize the iterations into a single time dimension and to layout data arrays
on the other two dimensions. Their objectives are closely related to this paper. The
choice of using two dimensions for array and one dimension for the linearized iteration
index is useful for lifetime and variable privatization analysis. However, for analyzing
iteration-level parallelism, the explicit visualization of the loop variables comes at the
expense of two visualization dimensions. Therefore, the approach presented in this
paper is better geared towards the visualization of the dependence distance patterns in
a multi-dimensional iteration space, which is very important for loop transformations.
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7. Conclusion

A 3D iteration space visualizer (ISV) is presented, which shows the exact loop
dependencies and allows programmers to discover parallelism in an interactive way. The
approach complements the analytical methods in the traditional automatic parallelizing
compilers. The dependence analysis and program transformation tools integrated in the
visualizer assist the development of parallel programs when the dependencies are too
complex for the compiler to analyze or the dependence patterns show more parallelism
than the compiler has exploited.
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