
Spring 2005 ECE450H1S Software Engineering II

Tutorial 3
More on Design patterns

Study Several Examples of
Design Patterns

Explain its relation to our course
projects

Spring 2005 ECE450H1S Software Engineering II

Last lecture…
On design patterns

• We explained what are patterns, what are
design patterns

• How are they categorized?
• How to apply them?
• How to identify them?
• How to assess them?

Spring 2005 ECE450H1S Software Engineering II

1. Design patterns structures
Creational patterns
Structural patterns
Behavioural patterns

2. How are they related to each other?
3. Design patterns by examples

Some special design in OpenOME
4. Their relation to your course project

Today…

Spring 2005 ECE450H1S Software Engineering II

1. The GOF Catalogue
• Creational

Abstract Factory, Builder, Factory method,
Prototype, Singleton

• Structural
Adapter, Bridge, Composite, Decorator, Façade,
Flyweight, Proxy

• Behavioural
Chain of Responsibility, Command, Interpreter,
Iterator, Mediator, Memento, Observer, State,
Strategy, Template Method, Visitor

Spring 2005 ECE450H1S Software Engineering II

BuilderAbstract Factory

Factory method

PrototypeSingleton

Spring 2005 ECE450H1S Software Engineering II

Adapter
Bridge

Composite
Decorator

Spring 2005 ECE450H1S Software Engineering II

Flyweight

Proxy

Façade

Spring 2005 ECE450H1S Software Engineering II

Chain of Responsibility Command

Interpreter Iterator

Spring 2005 ECE450H1S Software Engineering II

Mediator

Memento

Observer State

Spring 2005 ECE450H1S Software Engineering II

Strategy

•Template Method •Visitor

Spring 2005 ECE450H1S Software Engineering II

2. Relation among patterns

Ladan Tahvildari and Kostas Kontogiannis. “On the Role of Design Patterns
in Quality-Driven Re-engineering”

Spring 2005 ECE450H1S Software Engineering II

A layered version

Spring 2005 ECE450H1S Software Engineering II

3. Some Special design patterns in
our legacy software

1. MVC patterns
classic design pattern from SmallTalk
Most editors follows the pattern

2. Plugin patterns
OpenOME, Protégé, Eclipse

3. Meta-modelling patterns
Telos, EMF, UML, Protégé

Spring 2005 ECE450H1S Software Engineering II

3.1 MVC

Spring 2005 ECE450H1S Software Engineering II

3.2 Plugin patterns

AbstractPlugin

attribute

<<abstract>> plugin_method()

ConcretePlugin

attribute = value

plugin_method()

Extension SubSystem

System

Spring 2005 ECE450H1S Software Engineering II

3.2.1 OpenOME
• AbstractPluginMethod.java

– PluginMethod.java

• OMEPlugin.java
– OMEDefaultPlugin.java

A bunch of methods
– Extended by …

• edu.toronto.cs.ome.plugins
– ERPlugin.java
– NFRPlugin.java
– IStarPlugin.java
– …

• Plugin is selected at run-time,
depending on the input
class.ForName(…)

Spring 2005 ECE450H1S Software Engineering II

3.2.2 Protégé
• ClsWidget, ExportPlugin, ImportPlugin,

ProjectPlugin, SlotWidget, TabWidget,
Widget

• Plugins are packaged into a JAR file,
under the “plugins” subdirectory

• OMETab.java is a TabWidget plugin
packaged as
plugins/edu.toronto.cs.ome/OpenOME.jar

Spring 2005 ECE450H1S Software Engineering II

3.2.3 Eclipse

http://www.eclipse.org/articles/Article-Plug-in-architecture/plugin_architecture.html
And many articles on its plugin developments … plugin.xml, feature.xml

Spring 2005 ECE450H1S Software Engineering II

4. Think about these …
• How would you classify the classes in

edu.toronto.cs.ome.OME into the MVC
pattern?

• Which design pattern is used by Web-
Service projects?

• Which basic design patterns are used by
the aforementioned Plugin patterns?

Spring 2005 ECE450H1S Software Engineering II

5. Relation to your project
• Opportunities:

– You may add junit test cases to the code base to
reveal bugs (publish it to the bug tracking system)
and fix them (+5%)

– You may apply design patterns, refactoring
techniques on this legacy code base, showing as an
improved complexity metrics (+2.5%)

– You may tune the performance of the system to
speed up the display, load/save for scalable graphs
(+2.5%)

• Don’t forget your major project task (up to
100%!)
– To study the editor methods in the OpenOME and

adapt them to the OmniGraphEditor web service.

