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• OME stands for Organizational Modeling
Environment. It was part of the Tropos project to
support goal-oriented and agent-oriented
requirements engineering methodologies (at
least 5 years development involving 10 man-
year efforts)

• OME has been widely used by more than 130
users (across the globe)

• Every OME user must sign an agreement with
Techne because the Knowledge Base was a
module protected by the license

• To enlarge the user-base, we decide to open-
source it last year … OpenOME

1. Historical retrospective
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2. Requirements and features
• Is a Graph editor

– A graph has elements and links in various form, basic operations
include: Load, Save, Insert, Delete, Select, Cut, Paste, Hide,
Highlight, Labelling, etc.

– Multiple views (under development)

• Supports requirements engineering
– Goal-oriented: goal reasoning through label propagation (NFR)
– Agent-oriented: group goals into agents rationale (i*)

• Interchanges with other graph editors
– Semantic Web queries: Protégé (OWL)
– Layout algorithms: AT&T Graphviz (DOT)
– Scalability: Microsoft Visio (XSLT) ……..under development
– Model-driven development: Rational Rose (EMF/XMI)

………………………………………………under planning
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3. Design: MVC
• Model-View-Controller design pattern
1. Model: The Telos Knowledge Base

representaiton and OME models
2. View: Graph presentation
3. Controller: commands in menu, toolbar

and various methods
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3.1 Model
• ModelManager
• Telos*: requirements as knowledge
• Telos as metamodelling language

– Level: Token, SimpleClass, MetaClass,
MetaMetaClass, Builtin classes …

– *.tel: L X IN {Y}* ISA {Z}* WITH {attribute,U:V}*
– ER, NFR(vgraph), ISTAR, GRL
– From jtelos.dll to TelosParser
– Export Telos model to other models: JTelosUtil.java

OTelos (ConceptBase), Protégé (KnowledgeBase)
TODO: Eclipse Modeling Framework (XMI)
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3.2 View
• GraphicView is a collection of GVElement,

GVLinks, maps the tokens in Telos model
into geometric shapes in the presentation
GVE$Record, GVL$Record …encodes the
location of the shapes, states of the
presentation, etc. They are saved as
SerializedViewObjects

• GVElement, GVLink
Visitor pattern and Decorator pattern

• They are extended by the OME plugins
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3.3 Controller
• OMETab: run it as standalone Java application,

or as a plugin for Protégé or Eclipse (under
development)

• GraphViewFrame and OMEDefaultPlugin:
control the menu, toolbar and methods
A method is interpretated as commands
– No argument command: Layout
– With one argument: Insert, …
– With two arguments: CreateLink, Move …
– With multiple arguments: Select, …

• They are extensible using the OME plugins
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4. Implementation issues
• OME: 90% Java + 10% C/C++
• Recently

– OpenOME: 99% Java + 1% scripts
– Use the Eclipse IDE

– CVS, bug report: host at SourceForge
– 3 research developers + some contribution

from you J
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5. Relation to your project
• It is the graph editor client of the choice for your

OmniGraphEditor project. You may choose additional
open-source graph editor as bonus point (such as Dia,
Visio, Eclipse GEF etc.), but that is not recommended
because of the large efforts

• Opportunities:
– You may add junit test cases to the code base to reveal bugs

(publish it to the bug tracking system) and fix them (+5%)
– You may apply design patterns, refactoring techniques on this

legacy code base, showing as an improved complexity metrics
(+2.5%)

– You may tune the performance of the system to speed up the
display, load/save for scalable graphs (+2.5%)

• Don’t forget your major project task (up to 100%!)
– To study the editor methods in the OpenOME and adapt them to

the OmniGraphEditor web service.


