
Spring 2005 ECE450H1S Software Engineering II

Tutorial 2
OpenOME distilled

On the Requirements, Design and
Implementation of the legacy tool

http://www.cs.toronto.edu/~yijun/OpenOME.html
http://sourceforge.net/projects/openome

Spring 2005 ECE450H1S Software Engineering II

Spring 2005 ECE450H1S Software Engineering II

1. Historical retrospective
2. Requirements and features
3. Design and patterns
4. Implementation and issues
5. Relation to the course project

Contents

Spring 2005 ECE450H1S Software Engineering II

• OME stands for Organizational Modeling
Environment. It was part of the Tropos project to
support goal-oriented and agent-oriented
requirements engineering methodologies (at
least 5 years development involving 10 man-
year efforts)

• OME has been widely used by more than 130
users (across the globe)

• Every OME user must sign an agreement with
Techne because the Knowledge Base was a
module protected by the license

• To enlarge the user-base, we decide to open-
source it last year … OpenOME

1. Historical retrospective

Spring 2005 ECE450H1S Software Engineering II

2. Requirements and features
• Is a Graph editor

– A graph has elements and links in various form, basic operations
include: Load, Save, Insert, Delete, Select, Cut, Paste, Hide,
Highlight, Labelling, etc.

– Multiple views (under development)

• Supports requirements engineering
– Goal-oriented: goal reasoning through label propagation (NFR)
– Agent-oriented: group goals into agents rationale (i*)

• Interchanges with other graph editors
– Semantic Web queries: Protégé (OWL)
– Layout algorithms: AT&T Graphviz (DOT)
– Scalability: Microsoft Visio (XSLT) ……..under development
– Model-driven development: Rational Rose (EMF/XMI)

………………………………………………under planning

Spring 2005 ECE450H1S Software Engineering II

3. Design: MVC
• Model-View-Controller design pattern
1. Model: The Telos Knowledge Base

representaiton and OME models
2. View: Graph presentation
3. Controller: commands in menu, toolbar

and various methods

Spring 2005 ECE450H1S Software Engineering II

3.1 Model
• ModelManager
• Telos*: requirements as knowledge
• Telos as metamodelling language

– Level: Token, SimpleClass, MetaClass,
MetaMetaClass, Builtin classes …

– *.tel: L X IN {Y}* ISA {Z}* WITH {attribute,U:V}*
– ER, NFR(vgraph), ISTAR, GRL
– From jtelos.dll to TelosParser
– Export Telos model to other models: JTelosUtil.java

OTelos (ConceptBase), Protégé (KnowledgeBase)
TODO: Eclipse Modeling Framework (XMI)

Spring 2005 ECE450H1S Software Engineering II

3.2 View
• GraphicView is a collection of GVElement,

GVLinks, maps the tokens in Telos model
into geometric shapes in the presentation
GVE$Record, GVL$Record …encodes the
location of the shapes, states of the
presentation, etc. They are saved as
SerializedViewObjects

• GVElement, GVLink
Visitor pattern and Decorator pattern

• They are extended by the OME plugins

Spring 2005 ECE450H1S Software Engineering II

3.3 Controller
• OMETab: run it as standalone Java application,

or as a plugin for Protégé or Eclipse (under
development)

• GraphViewFrame and OMEDefaultPlugin:
control the menu, toolbar and methods
A method is interpretated as commands
– No argument command: Layout
– With one argument: Insert, …
– With two arguments: CreateLink, Move …
– With multiple arguments: Select, …

• They are extensible using the OME plugins

Spring 2005 ECE450H1S Software Engineering II

4. Implementation issues
• OME: 90% Java + 10% C/C++
• Recently

– OpenOME: 99% Java + 1% scripts
– Use the Eclipse IDE

– CVS, bug report: host at SourceForge
– 3 research developers + some contribution

from you J

Spring 2005 ECE450H1S Software Engineering II

5. Relation to your project
• It is the graph editor client of the choice for your

OmniGraphEditor project. You may choose additional
open-source graph editor as bonus point (such as Dia,
Visio, Eclipse GEF etc.), but that is not recommended
because of the large efforts

• Opportunities:
– You may add junit test cases to the code base to reveal bugs

(publish it to the bug tracking system) and fix them (+5%)
– You may apply design patterns, refactoring techniques on this

legacy code base, showing as an improved complexity metrics
(+2.5%)

– You may tune the performance of the system to speed up the
display, load/save for scalable graphs (+2.5%)

• Don’t forget your major project task (up to 100%!)
– To study the editor methods in the OpenOME and adapt them to

the OmniGraphEditor web service.

