CSC408 Software Engineering Project
Part B

University of Toronto
Nov. 7th, 2004

Submitted by:

Jianlei Su — 992529652
Yuen-nung Chiao — 990155728
Yang Jia — 992110069

Kelvin Chan — 991461208

CSC408 Project Part B
OmniEditor Design Document

TABLE OF CONTENTS

TABLE OF CONTENTS
1. ABOUT OUR WEB SERVICE
1.1. (0175387 120 A ([0 P] 2 15 T
1.2. AT D) B) 52 PPN
1.3. DEPLOYMENT AND INSTALLATION ...oovtuuueeeeeeiitttiiieeeeeeeeetatieeeeeeeeesstteaeeeeesessstiaaeeeeesssrttaaeeessssssttaaeeesesessrrnaaeens
L300 MANUGILY ...ttt e ettt
1.3.2. Deploy and Install AUtOMATICALLYcccouiiiiiiii et e e eaaee e
2. CUSTOMER — OMNIEDITOR USER’S GUIDEeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeesseessses 10
2.1. J L 010 064 i (0) PPN 10
2.1 1. TRE CAIIOTS ..o e e 10
201,20 ROQUIFOIMENES. ...ttt et 10
2.1.3. WRAE IS OMAIETIIOF? ... e 11
2,14, WRAE'S 1 ERIS FELEASE? ... e e 11
2.2. USING OMNIEDITOR WEB SERVICEuuuuuuuuiiiiininnninssnsnnssns 12
2.2.1. Basics - GtING SIAFLEA...............c.ccooiiiiiiiiii ittt 12
2.2.2. ReCOMMENA PrOCEAUITe.cccooeeiieeeeeeeee e e 13
2.3. PUBLISHED INTERFACES.......uuuuuttttutssnns 13
3. UNIT TEST REPORTS 14
3.1. TEST ENVIRONMENT0uuttvtuttusessnssnsnnns 14
3.2. FUNCTIONAL TEST REPORTutviitititiuittttttttstestesssssesssnsnes 14
321 FURCHONAL TSt — JURIE ... e e ee e 14
3.2.2. Overall test on register, logout, upload, download, find, and update in OmniEditingService class............... 18
3.2.3.0 BUG ROPOTES. ... e 20
3.2.4. Integration Test Plan — PRASE Cccccooiiiiiiiiiii ittt ettt 21
3.3. INON-FUNCTIONAL TESTS ... ttttuutuuutuuuuunnunnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnsnnnnssssnssnssssssnsssssnsssssssssssssssssssssssssssssssssssssssnssnsnnns 25
3.3.1. Correctness and RelIADIliLY...............ccccouiiimiiiiiiiiii ittt ettt 25
3.3.2. Performance and COMPIEXILY...........ccc.coiuiimiiiiriiiii ettt ettt et et 27
4. MAINTENANCE PLAN 29
4.1. CUSTOMER COMMUNICATION0utvtvvvuvusssnssns 29
4.2. (CORRECTTVE ..tttttttvusvussnsnsnnnnnns 29
42,10 BUZ REPOTTING ...ttt e 29
4.2.2. Bug SoIVING ANd TrACKING.c.ccooiiiiiiiiiiie ettt ettt 29
4.3. N D YN i i Y N 30
4.4. PERFECTIVE ...ottttitttttttittttttttstsssssasssnssnnnnnn 30
4.5. PREVENTIVEtttttttttttttttettttseussessasssnsnnnnnnn 30
5. REQUIREMENT SPECIFICATION 31
5.1. FUNCTIONAL REQUIREMENTS:uuuvtutuuutusssusssnsnnns 31
Si L UPIOGU....c....oooiiiie ettt 31
5020 DOWRIOQU. ... e e 31
5030 FUIA oo 31
S.1id. REGUSTEF ... et 31
.15 UPGATE ...t ettt 32
.10, GELFTICINGINES ...ttt ettt ettt 32
50170 LOZQOUL....cciiiieee e et 32
5.2. NON-FUNCTIONAL REQUIREMENTScuuuuuuuuuuunnnnnnnnnnnnnnnnnnnnsnnssns 32
5.3. L3 2] 123151 1 1 PPN 33
5.3.1. TeCHRICAL fEASIDIIILY...........cooeiiiieit e e 33
5.3.2. Operational fEASIDIIILYccccoiiiiiiiiiiiii ettt e 34
5.3.30 SChedUle fEASIDILItY.cc..coviiiiiiiii ittt 35

Page 2 of 52

CSC408 Project Part B
OmniEditor Design Document

7.

8.

9.

5.4. OTHER FEASIBILITY ANALYSIS ...ooviiviiiiieeeeeeeeeviiiieeeenns
5.5. ARCHITECTURE DESIGNcuuiiiiiiiiiiiceiiieeeeeieeeevieeen
5.5.1. Overview— Basic FUNCLIONS.................c....coeevienei..

5.5.2. Overview— Additional Functions

5.5.3. High Level Use Caseccccccoouevviiinianiinncanann.
5.5.4. Sequence Diagrams (special cases)

PROJECT PLAN

6.1. TASK ALLOCATION .. .uuuiiiiiiiiiiieeeeeeeeeeiiiieeeeeeeeeevviiineeeens
6.2. GANTT CHART ...oovvviieeeeeeeeettee et e e

TEAM ORGANIZATION

7.1. TEAM MANAGEMENTccvttiiieeeeeeeeiiiiieeeeeeeeeevriieeeeens
7.2. SKILLS AND PREFERENCEScccceeeeiieeeeeeeeeeeeeeeeeeeeeeennn,
7.3. TEAM MEETING SCHEDULE........ccuuuuvvereeveuereeeennennenenennes
7.4. METHODS OF COMMUNICATION:cccvvviiiieeeeeeirnnreennn.

RISK ANALYSIS

.. 47

8.1. PERSONNEL SHORTFALLuvvvvvvvvvuurereseenenennsnnnnnnnnnneennes
811, IMPACT.......ccccooviiiiiiiiiiiiiiiiiiiiic
8.1.2. PreVeMIION.............coeiiiiiiiiiiieiiiiieeeeeeeeeie e

8.2. UNREALISTIC SCHEDULE/BUDGET.........uvvvvieeeeeiirineen.
821, IMPACT.......ccccooviiiiiiiiiiiiiiiiiiii
8.2.2. PreVeRIION........c....ooiiiiiieiiiiiiieiieee e

8.3. WRONG FUNCTIONALITY ...ovvvvvvvverieeerereeneennnnennnnnnennnennes
8.3 1. IMPACT.......ccccooviiiiiiiiiiiiiiiiiii
8.3.2. PreVeRIION........c....oeiiiiiieiiiiieieiieee e

8.4. (€015 o4 17N 1 1 (€ SN
841, IMPACT.......ccccooviiiiiiiiiiiiiiii
8.4.2. PreVemIiON..............oeiiiiiiiiiiieiiiiieeeeee e

8.5. REQUIREMENT VOLATILITY ...ovvvvvvvvreveneeenneeneneennnnennnnnnes
8.5. 1. IMPACT.......ccccooviiiiiiiiiiiiiiiiiiii
8.5.2. PreVeRMIION........c.....coeiiiiieiiiiieieiieeeeeee e

8.6. BAD EXTERNAL TASKS ...ovvvvvviviiiiiiirineeneniineeneennennennennnes
8.6.1. IMPACT........cccooviiiiiiiiiiiiiiiiiiiiii e
8.6.2. PreVemliON..............cooiiiiieiiiiiiiiiiieieiiieeeeeie e

8.7. CAPABILITY SHORTFALLS ...ouviiivieeeiiieeeieieeeeiieeeviieees
8.7. 1. IMPACT.......ccc.cooviiiiiiiiiiiiiiiiiiiiii e
8.7.2. PreVeRIION........c....oeiiiiiieiiiiieieiieeeee e

APPENDIX A: TASK ALLOCATION

Page 3 of 52

CSC408 Project Part B
OmniEditor Design Document

1. About Our Web Service

1.1.Overview (Incl. URL)

Web Service URL:
http://seawolf.cdf.toronto.edu:8086/service/OmniEditingService
Project website (contains useful files and documentation)
http://seawolf.cdf.toronto.edu:8086/doc/index.html

Our team provides three web service functionalities: UPLOAD, DOWNLOAD and FIND. You
can find the javadoc of the WS interface and the java code at the project website (see above).

1.2.WSDL File

<?xm version="1. 0" encodi ng="UTF-8""?>
<wsdl : definitions
t ar get Nanmespace="http://seawol f. cdf .t oront o. edu: 8086/ servi ces/ Omi Edi ti ngSer vi ce"
xm ns="http://schemas. xm soap. or g/ wsdl /"
xm ns: apachesoap="http://xm . apache. or g/ xm - soap”
xm ns:inpl="http://seawol f.cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
xmns:intf="http://seawol f.cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
xm ns: soapenc="http://schenas. xnm soap. or g/ soap/ encodi ng/ "
xmns:tnsl="http://omieditor" xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: wsdl soap="htt p://schemas. xm soap. or g/ wsdl / soap/ "
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XMLSchema" ><wsdl : t ypes><schena
t ar get Nanmespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
xm ns="http://ww. w3. org/ 2001/ XM_Schema" ><i nport
nanmespace="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ ><conpl exType
name="ArrayOf _xsd_stri ng"><conpl exCont ent ><restriction
base="soapenc: Array"><attribute ref="soapenc: arrayType"
wsdl : arrayType="xsd: string[]"/></restriction></conpl exCont ent ></ conpl exType></ schem
a><schena tar get Nanespace="http://omieditor"
xm ns="http://ww. w3. org/ 2001/ XM_Schema" ><i nport
nanmespace="http://schemas. xm soap. or g/ soap/ encodi ng/ "/ ><conpl exType
name="0Omi Edi t or " ><sequence><el enent maxCccur s="unbounded" name="fil eNanes"
nillable="true"
type="inpl : Arraytf _xsd_string"/></sequence></ conpl exType></ schema></wsdl : t ypes>
<wsdl : nessage nanme="upl oadRequest " >
<wsdl : part name="userld" type="xsd:int"/>
<wsdl : part name="fil eNane" type="xsd:string"/>
<wsdl : part name="fileContent" type="xsd:string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="downl oadRequest " >
<wsdl : part name="user|d" type="xsd:int"/>
<wsdl : part name="fil eNanes" type="inpl:Array>d _xsd_string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="get Fi | eNanmesRequest " >
<wsdl : part name="userld" type="xsd:int"/>
</ wsdl : mressage>
<wsdl : nessage nanme="r egi st er Response" >
<wsdl : part name="regi sterReturn" type="xsd:int"/>
</ wsdl : mressage>

Page 4 of 52

CSC408 Project Part B
OmniEditor Design Document

<wsdl : mnessage nanme="upl oadResponse" >
</ wsdl : mressage>
<wsdl : message nane="get Fi | eNamesResponse" >
<wsdl : part name="get Fi | eNamesReturn" type="inpl: ArrayOf _xsd_string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="updat eResponse" >
<wsdl : part name="updateReturn" type="inpl:ArrayXf _xsd_string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="downl oadResponse" >
<wsdl : part nanme="downl oadRet urn" type="inpl:ArrayCf _xsd_string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="| ogout Request ">
<wsdl : part name="userld" type="xsd:int"/>
</ wsdl : mressage>
<wsdl : nessage nanme="fi ndResponse" >
<wsdl : part name="findReturn" type="xsd:int"/>
</ wsdl : mressage>
<wsdl : nessage name="fi ndRequest" >
<wsdl : part name="userld" type="xsd:int"/>
<wsdl : part name="text" type="xsd:string"/>
<wsdl : part name="fil eNane" type="xsd:string"/>
</ wsdl : mressage>
<wsdl : nessage nanme="updat eRequest ">
<wsdl : part name="user|d" type="xsd:int"/>
<wsdl : part name="fil eNane" type="xsd:string"/>
</ wsdl : mressage>
<wsdl : nessage name="r egi st er Request " >
</ wsdl : mressage>
<wsdl : nessage nanme="| ogout Response" >
</ wsdl : mressage>
<wsdl : port Type nanme="Omi Edi ti ngServi ce">
<wsdl : operati on nane="regi ster">
<wsdl : i nput nmessage="inpl:regi sterRequest" name="regi st er Request"/ >
<wsdl : out put nmessage="i npl : regi st er Response" nane="r egi st er Response"/ >
</ wsdl : operati on>
<wsdl : operati on nane="find" paranmeterOder="userld text fileNane">
<wsdl : i nput nmessage="inpl:findRequest" name="findRequest"/>
<wsdl : out put nmessage="inpl: fi ndResponse" nane="fi ndResponse"/ >
</ wsdl : operati on>
<wsdl : operati on nane="update" paraneterOder="userld fil eName">
<wsdl : i nput nmessage="i npl : updat eRequest " nanme="updat eRequest"/ >
<wsdl : out put nmessage="i npl : updat eResponse" nanme="updat eResponse"/ >
</ wsdl : operati on>
<wsdl : operati on nane="upl oad" paraneterOrder="userld fileName fil eContent">
<wsdl : i nput nmessage="i npl : upl oadRequest" nanme="upl oadRequest"/ >
<wsdl : out put nmessage="i npl : upl oadResponse" nanme="upl oadResponse"/ >
</ wsdl : operati on>
<wsdl : operati on nane="downl oad" paraneterOrder="userld fil eNanes" >
<wsdl : i nput nmessage="i npl : downl oadRequest" nanme="downl oadRequest" />
<wsdl : out put nmessage="i npl : downl oadResponse" nane="downl oadResponse"/ >
</ wsdl : operati on>
<wsdl : operati on nane="get Fi | eNanes" paraneter Order="userl d">
<wsdl : i nput nmessage="inpl : get Fi | eNanesRequest" nanme="get Fi | eNanesRequest" />
<wsdl : out put nmessage="i npl : get Fi | eNamesResponse"
nanme="get Fi | eNanesResponse"/ >
</ wsdl : operati on>
<wsdl : operati on nane="| ogout" paraneter O der="userld">

Page 5 of 52

CSC408 Project Part B
OmniEditor Design Document

<wsdl : i nput nessage="inpl : | ogout Request"” nane="| ogout Request"/>
<wsdl : out put message="i npl : | ogout Response” name="I| ogout Response"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="QOmi Edi ti ngSer vi ceSoapBi ndi ng"
type="i npl : Omi Edi ti ngService">
<wsdl soap: bi ndi ng styl e="rpc"
transport="http://schemas. xn soap. or g/ soap/ http"/>
<wsdl : operati on nanme="regi ster">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="regi st er Request " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://omi edi t or.c408h003" use="encoded"/ >
</ wsdl : i nput >
<wsdl : out put nane="regi st er Response" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on name="find">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="fi ndRequest ">
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://omi edit or.c408h003" use="encoded"/>
</wsdl : i nput >
<wsdl : out put nane="fi ndResponse" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nane="updat e" >
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="updat eRequest " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://omi edi t or.c408h003" use="encoded"/>
</ wsdl : i nput >
<wsdl : out put nane="updat eResponse" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nane="upl oad" >
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="upl oadRequest " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://omi edi t or.c408h003" use="encoded"/>
</wsdl : i nput >
<wsdl : out put nanme="upl oadResponse" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nanme="downl oad" >

Page 6 of 52

CSC408 Project Part B
OmniEditor Design Document

<wsdl soap: oper ati on soapActi on=""/>
<wsdl! : i nput nane="downl oadRequest " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://omi edi t or. c408h003" use="encoded"/ >
</ wsdl : i nput >
<wsdl : out put nane="downl oadResponse" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nane="get Fi | eNanes" >
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="get Fi | eNanmesRequest " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://omi editor.c408h003" use="encoded"/>
</ wsdl : i nput >
<wsdl : out put nane="get Fi | eNamesResponse" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
<wsdl : operati on nane="| ogout ">
<wsdl soap: operati on soapAction=""/>
<wsdl : i nput nane="| ogout Request " >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanmespace="http://omi edit or.c408h003" use="encoded"/>
</ wsdl : i nput >
<wsdl : out put nane="I| ogout Response" >
<wsdl soap: body encodi ngStyl e="http://schemas. xm soap. or g/ soap/ encodi ng/ "
nanespace="http://seawol f. cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"
use="encoded"/ >
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nanme="QOmi Edi ti ngServi ceService">
<wsdl : port bi ndi ng="i npl : Omi Edi ti ngSer vi ceSoapBi ndi ng"
nanme="Omi Edi ti ngServi ce" >
<wsdl soap: addr ess
| ocati on="http://seawol f.cdf.toronto. edu: 8086/ servi ces/ Omi Edi ti ngServi ce"/>
</ wsdl : port >
</ wsdl : servi ce>
</wsdl : definitions>

End of WSDL File

Page 7 of 52

CSC408 Project Part B
OmniEditor Design Document

1.3.Deployment and Installation
You can deploy and install the service manually or automatically.

1.3.1. Manually

1.Package and compile your java code.
2.The package should be under:
Tomcat 5.0\webapps\axis\WEB-INF\classes\omnieditor\

For example,
Tomcat 5.0\webapps\axis\WEB-INF\classes\omnieditor\OmniEditingService.class

In each class (eg, OmniEditingService.java), the package is: package omnieditor
3.Put all class file for the web service under:
Tomcat 5.0\webapps\axis\WEB-INF\classes\packageDir\

For example:
Tomcat 5.0\webapps\axis\WEB-INF\classes\packageDinOmniEditingService.class

4.Use the javs2wsdl tool to generate OmniEditingService.wsdl.
5.Start Tomcat

6.Write (or generate) deploy.wsdd as follows:

<deployment xmIns="http://xml.apache.org/axis/wsdd/"
xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">
<service name="OmniEditingService" provider="java:RPC">
<parameter name="className" value="c408h003.omnieditor.OmniEditingService"/>
<parameter name="allowedMethods" value="*"/>
<typeMapping
xmlns:ns="http://seawolf.cdf.toronto.edu:8086/services/OmniEditingService "
gname="ns: ArrayOf xsd_string"
type="java:java.lang.String[]"
serializer="org.apache.axis.encoding.ser.ArraySerializerFactory"
deserializer="org.apache.axis.encoding.ser.ArrayDeserializerFactory"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
/>
<typeMapping
xmlns:ns="http://omnieditor"
gname="ns:OmniEditor"
type="java:omnieditor.OmniEditor"
serializer="org.apache.axis.encoding.ser.BeanSerializerFactory"

Page 8 of 52

CSC408 Project Part B
OmniEditor Design Document

deserializer="org.apache.axis.encoding.ser.BeanDeserializerFactory"
encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
/>

</service>
</deployment>

End of WSDD File

7.Deploy the web service with the WSDD file at a command prompt in the “omnieditor’
directory:

<Your root>Tomcat 5.0\webapps\axis\WEB-INF\classes\omnieditor>
java org.apache.axis.client. AdminClient deploy.wsdd

1.3.2. Deploy and Install Automatically

1. Make sure $AXISCLASSPATH has been set to be able to run:
org.apache.axis.client. AdminClient

2. tar -xvf the deploy_me.tar to your working folder
3. sh deploy.sh //to deploy

4. sh deploy.sh //to undeploy

Page 9 of 52

CSC408 Project Part B
OmniEditor Design Document

2. Customer — OmniEditor User’s Guide

We have provided a User’s Guide for our customers. This file can also be obtained separately on
the project website.

2.1.Introduction

2.1.1. The editors

Text editors are the best friends of programmers. There are, however, multiple choices of
editors that may confuse a new programmer once he or she is used to one of them. It wastes
the programmer’s time to study a new set of key bindings as the time can be spent on more
creative tasks.

For example, VIM (developed in C) and Emacs/XEmacs (developed in Lisp/C) were long seen
as the best of breed in the programming world. They have different key bindings that lock the
programmer in the pro/con camps. Yet another set of editors catches up with a huge set of
new features, such as Eclipse and jEdit (developed in Java).

As software engineers, we want to bridge the gap between the different editors and help the
programmer to use any text editor through familiar key bindings.

These open-source editors have been engineered for years. In addition, they are good quality
editors that have been widely used as integrated development environments (IDE). Unlike
commercial editors such as Microsoft Word, Notepad, Wordpad, UltraEdit etc., open-source
editors can be studied and modified to satisfy end-user’s needs.

In software engineering practice, a program with more than 75,000 lines of code (LOC) can be
considered large. The following table lists some statistics of the above mentioned open-source
editors. Note that XEmacs is a graphical user interface (GUI) variant of Emacs.

The project involves software reengineering, testing and maintenance. The spirit of team work
is very important to the success of software engineering.

2.1.2. Requirements

The easiest way of sharing information between different editors is through a file interface.
However, it is inconvenient because it serializes the development, in other words, one editor
can load a file only after another editor has saved it. Another way is to share by Copy-Cut-
Paste operations on a shared clipboard. Remote cooperation is limited because the clipboard
is local. Therefore we would like to communicate the editing events across editors through an
interoperatable interface, such as web services.

The idea of sharing editing skills among different IDEs is not new, for example, a VIM editing
session can be associated with the NetBeans IDE (the one that accompanied with JDK) or
Visual Studio. However, it is preferred to have a general design that any IDE can
communicate with each other through a common interface.

The objective of the project is to bridge different editors through web services. For example, a
programmer familiar with VIM can edit a text file while at the same time the change can be
reflected in Eclipse, on a remote machine. It is not required to reinvent the wheel, i.e., only
need to use one legacy editor that exists for years.

Page 10 of 52

CSC408 Project Part B
OmniEditor Design Document

The students are not recommended to spend lots of time to write a new text editor. Instead
should understand the existing one, and extend it.

2.1.3. What is OmniEditor?

OmniEditor is a web service developed for the aforementioned situation. It is implemented
using JAX-RPC technology.

After weeks of continued discussion and coding effort in this direction, OmniEditor now delivers
the following key features:

* Flexibility. The web service architecture gives the developer freedom to easily
implement their editor for custom text editing.

« Stability. OmniEditor defines a set of published interfaces which change relatively
slowly compared to the rest of OmniEditor.

+ Component-oriented deployment. You can easily define reusable networks of
Handlers to implement common patterns of processing for your editors, or to distribute to
partners.

+ Common Editing framework. We have a clean and simple abstraction for editing
functions (i.e., UPLOAD, DOWNLOAD, FIND, MOVE, etc), and the core of the editor is
completely platform and transport-independent.

We hope you enjoy using OmniEditor. Please note that this is an open-source effort - if you

feel the code could use some new features or fixes, please get involved and lend a hand! The
OmniEditor developer community welcomes your participation.

2.1.4. What's in this release?

This release includes the following features:

» UPLOAD: inform the OmniEditor to open a channel with the editing state, such as the
content of the local text buffer and the position of the cursor in the buffer;

« DOWNLOAD: query the OmniEditor about the editing state of potentially other editors,
such as the content of a certain channel and the position of the cursor;

» FIND: search a string and move the current to the found occurrence, if it does not exist,
then do not move the cursor and return false;

* REGISTER USER: register to use the OmniEditor service; this will start a editing session
within the server;

+ UPDATE: get the difference between the local file buffer and the OmniEditor file buffer,
then, the local editor can do what appropriate to the local file;

* GET FILES: retrieve the names of all files currently available in the OmniEditor;

 LOGOUT: end an editing session with the OmniEditor.

Page 11 of 52

CSC408 Project Part B
OmniEditor Design Document

2.2.Using OmniEditor Web Service

18.

19.
20.

21.
22.
23.
24.
25.

2.2.1. Basics - Getting Started
Let's take a look at an example OmniEditor client that will call the upload method on the public
OmniEditor server at cdf.

package c408h003.omnieditor,

import javax.xml.namespace.QName;
import org.apache.axis.client.Call;

import org.apache.axis.client.Service;
import org.apache.axis.utils. Options;

public class TestOmniEditorService Client download {
public static void main(String [] args)

{
try {
Options options = new Options(args);
String endpointURL = options.getURL(),
String textToSend;

args = options.getRemainingArgs();
Service service = new Service();
Call cal = (Call) service.createCall(),

call.setTargetEndpointAddress(new java.net. URL(endpointURL));
System.out.printin(endpointURL);

call.setOperationName(new QName("OmniEditingService", "download"));

System.out.println(((String[])call.invoke(mew Object[] {new Integer("1"),
new String[]{ "testFile"} }))[0]);

} catch (Exception e) {
System.err.println(e.toString()),

/
/
/

So what's happening here? On lines 14 and 15 we create new Service and Call objects. These
are the standard JAX-RPC objects that are used to store metadata about the service to invoke.
On line 16, we set up our endpoint URL - this is the destination for our SOAP message. On
line 18 we define the operation (method) name of the Web Service. And on line 19 we actually
invoke the desired service, passing in an array of parameters - in this case just one String
array.

Page 12 of 52

CSC408 Project Part B
OmniEditor Design Document

2.2.2. Recommend Procedure

To use the OmniEditor web service, we recommend the following procedure, though it's not

mandatory.

1. Use registerUser() to get a user identification number.

2. Upload a new file onto the OmniEditor; or, use getFiles() to retrieve all files (file names)
currently available on the OmniEditor, then use download() to get the contents of the files
want to edit.

3. Then, do all editing operations (for now, only find is provided, ©, others are coming soon.)

4. Use logout() to end the current editing session.

2.3.Published interfaces

* java.lang.String[] download(int userld, java.lan.String[] filenames);

* intfind(int userld, java.lang.String text, java.lang.String filenames);

* java.lang.String[] getFileNames(int userld);

» void logout(int userld);

* intregister();

* void upload(int userld, java.lang.String filename, java.lang.String fileContent);
* java.lang.String[] update(int userld);

Page 13 of 52

CSC408 Project Part B
OmniEditor Design Document

3. Unit Test Reports

3.1.Test Environment

Operating System Linux 2.4.27 -1686

Editor Eclipse 3.0 for Linux
(x86/Motif)

Soap Engine Apache Axis 1.1

Web Application Apache Tomcat 5.5

Server

3.2.Functional Test Report

3.2.1. Functional Test— JUnit

All the unit test cases were done using JUNIT. Each method of every class has gone through
an extensive testing phase. The programmer of the codes had done testing while programming
but to make the testing phase more robust we had another team member design and test the
system without knowledge of how the program with coded. The testers were instructed to try
and “break” the system as much as possible and in as many ways as possible. Although at first
there were many bugs found in the system, we believe it is better to find them now then later.
This method of testing ensures that our web-service is robust and bugs would be found. The
testers have no reason not to find bugs because if any bugs were found the programmer must
fix it and tester does not have to do more work. On the other hand because the programmer
has to fix all the bugs, the programmer would want to make it as robust as possible such that
less work would be needed to be done. Thus everyone is working hard to find bugs and solve
them. In this environment or strategy of testing it should be the most efficient and stable.

The testing strategy that was used for testing the different methods was using all the different
possible types of arguments that each method would take and comparing the results. The test
cases have been written a head of time such that while comparing the outputs there is no
chance of errors.

The following are test cases for each of the methods in every class. For more information
please refer to the JUNIT testing code.
Note: All following expected results are satisfied by our present OmniEditor version

3.2.1.1. FindAction Class

* FindAction(int, String, Boolean, Boolean)
0 positive, negative and zero user id
0 search empty string, single words and phrases
0 all combinations of true/false for searching forward/backward and being case-
sensitive.

Page 14 of 52

CSC408 Project Part B
OmniEditor Design Document

* toString()
0 compared the output all the above tested cases, which is basically all possible
outputs.

3.2.1.2. User

* User(int)
0 user with positive, negative and zero user Ids.
* addFile(String)
0 add files with empty file names, single word file names, and multi word file
names.
* removeFile(String)
0 removed files with empty file names, single word file names, and multi word
file names.
0 remove files that exist and don’t exist
o getld()
0 get Ids with positive, negative and zero user Ids.
o getFiles()
0 get files for a user that has no files.
0 get files for a user that has only one file.
0 get files for a user that has multiple files.
* getVersionNumber(String)
0 retrieved a version number for a file.

3.2.1.3. UserFile Class

* UserFile(String, int)
0 version number negative, empty file name
0 version number positive, non-empty name
0 version number was zero, multi word file name

* Version
0 retrieved the variable while it’s negative, positive and zero.
* Name

0 retrieved the variable while it’s empty and not empty.

3.2.1.4. File Class

* File(String, String)

0 add a file with no file name, no content.

0 add a file with a file name with no content.

0 add a file with no file name with content.

0 add a file with a file name and file content.
e addUser()

0 adding a user to a file with no users.

0 adding a user to a file with one or more user

Page 15 of 52

CSC408 Project Part B
OmniEditor Design Document

* removeUser()
0 removing user from a file with more then one user
0 removing user from a file with one user
0 removing a user from a file with no user
* find(int, String, Boolean, Boolean)
0 positive, and zero start positive
0 search empty string, single characters, single words and phrases
0 all combinations of true/false for searching forward/backward and being case-
sensitive.
* getContent()
0 get the file content of a file that is empty
0 get the file content of a file that has one character
0 get the file content of a file that has one word
0 get the file content of a file that has one sentence
0 get the file contents of a file that is extremely large
* getName()
0 get file name that is a empty string
0 get a file name with one word
0 get a file name with multiple words
0 get a file name with an extension
* getVersionNumber()
0 get a file that is at version zero
0 get a file that is at positive version
» getAction()
0 retrieve a the action of a file with no actions performed
0 retrieve a the action of a file with one action performed
0 retrieve a the action of a file with many action performed
* addAction()
0 a find action
0 adding find actions multiple times
* getUserCount()
0 no users after the file is initialized
o file with one user
0 file with twenty user

3.2.1.5. OmniEditingService Class

* OmniEditingService()
0 Build OmniEditor object with this constructor 1 time
Expected: an OmniEditor object is created
0 Build OmniEditor object with this constructor 10 times
Expected: only one OmniEditor object is created as a singleton

* register()
0 Register a user
Expected: a non-negtive integer as userld is returned and the user are created
in user list

Page 16 of 52

CSC408 Project Part B
OmniEditor Design Document

0 Register 10 users (even number of users)
Expected: 10 non-negtive integers as userld are returned and the 10 different
users are created in user list

0 Register 7 users (ode number of users)
Expected: 7 non-negtive integers as userld are returned and the 7 different
users are created in user list

0 More test cases in Overall test

* logout (int)
0 Logout an unexisting userld before the user register
Expected: No exception occurs
0 Logout an existing user with specific userld
Expected: The user is removed from user list.
Logout all existing users (even num: 10) with specific userlds
Expected: The users are removed from user list.
Logout all existing users (ode num: 7) with specific userlds
Expected: The users are removed from user list.
0 More test cases in Overall test

(@)

(@)

* upload(int,String,String)

0 Upload an empty file with empty file name (*)
Expected: Nothing gets created in the buffer of OmniEditorBuffer

0 Upload an empty file with nonempty file name
Expected: an empty buffer is created in OmniEditorBuffer with the specified
file name

0 Upload an nonempty file with nonempty file name
Expected: a buffer with exactly the same content as original file is created in
OmniEditorBuffer with the specified file name

0 Upload 10 files with large size (1 MB) each.
Expected: All files are stored correctly in OmniEditorBuffer with specified file
names.

0 More test cases in Overall test

* download(int,String[])

0 Download an unexisting file.
Expected: null is returned

0 Download an existing file.
Expected: the file content is returned as the 1% element in returned String
Array

0 Download 10 existing files.
Expected: the file content is returned as the first 10 elements in returned String
Array

0 Download 7 existing files.
Expected: the file content is returned as the first 7 elements in returned String
Array

0 More test cases in Overall test

Page 17 of 52

CSC408 Project Part B

OmniEditor Design Document

* update(int, String)

o

o

update when no new action has been done on the file
Expected: null is returned
More test cases in Overall test

* find (int, String , String)

o

o

o

find a string in an unexisting file

Expected: return -1

find a string in an existing file

Expected: return correct position of the string’s 1* occurrence
More test cases in Overall test

» getFileNames (int, String , String)

o

o

do getFileName before any user upload any file

Expected: the returned String[] has length 0

upload a file and do getFileName

Expected: the returned String[] has length 1 with uploaded file name as 1*
element.

register 2 users and each upload 1 file and then do getFileName

Expected: the returned String[] has length 2 with 2 uploaded file names as 1*
and 2™ elements.

3.2.2. Overall test on register, logout, upload, download, find, and update in
OmniEditingService class

o

Register 10 users, and upload a file and download the file, and then logout all
10 users and download the file again

Expected: The last download of the file should return null since all users
logout and the file should have been removed from OmniEditorBuffer
Register 10 users, upload a file and download the file, and then logout 9 out 10
users currently in system, and download the file again

Expected: The last download of the file should return the contend of the file
and shouldn’t be null since user 10 is still using the file.

Register 2 users, upload 7 files with one user, and logout the 2 users out.
Change the content of the 7 files, and upload with 1 user again, and download
the 7 files with another user.

Expected: The downloaded files should have new contend rather than old one

With 2 users in the system, user 1 does a find action and use 2 does update
Expected: return a String[] with find information as first array element
Register 5 users, and user 1 upload a file and user 2 find a string in the
uploaded file

Expected: Correct postion of the first occurrence of the string is returned.

Page 18 of 52

CSC408 Project Part B
OmniEditor Design Document

3.2.2.1. OmniEditorBuffer Class

OmniEditorBuffer()

0 created an new Omni Editor Buffer
registerUser()

o0 registered 100 users
removeUser(int)

0 remove the first user

0 remove the last user

0 remove all the users
isUserOnline(int)

0 make sure registered users are online

0 check that removed users are no longer online
isFileOnline(int)

0 check that added files are online

0 check removed files are no longer online
addFile(int, String, String)

0 add a file with no file name, no content.

0 add a file with a file name with no content.

0 add a file with no file name with content.

0 add a file with a file name and file content.

0 added 100 files
getFileContent(int, String[])

0 get the file content of a file that is empty

0 get the file content of a file that has one character

0 get the file content of a file that has one word

0 get the file content of a file that has one sentence

0 get the file contents of a file that is extremely large
find(int, int, String, String, Boolean, boolean)

0 positive, and zero start positive

0 search empty string, single characters, single words and phrases

0 all combinations of true/false for searching forward/backward and being case-

sensitive.

getFileNames()

0 get file name that is a empty string

0 get a file name with one word

0 get a file name with multiple words

0 get a file name with an extension
getChanges(int, String)

0 get file with no changes

0 get file with single change

0 get file with multiple changes
removeFile(File)

0 remove first file

0 remove last file

0 remove a file that is not online

Page 19 of 52

CSC408 Project Part B
OmniEditor Design Document

0 remove all files
* removeFileByName(String)
0 remove first file
0 remove last file
0 remove a file that is not online
0 remove all files

3.2.3. Bug Reports

Date Date Type | Bug Description Action Status
found resolved
File Class
Nov 01 | Nov Ol | Failure | Unused argument in removed resolved
removeUser()
OmniEditorBuffer Class
Nov 04 | Nov 04 | Failure | isUserOnline: index out of Incorrect variable used in | resolved
bound the for-loop.
Nov 04 | Nov04 | Fault | getFileContent: only retrieves | removed commented else | resolved
the last file content the rest is statement
null
Nov 05 | Nov05 | Fault |removeUser(): after the user Incorrect return statement | resolved
removed, the user count of all | used in the for-loop,
files editing should be changed to break
decremented and remove the statement
file if the count becomes zero,
but all user’s get removed.
Nov 05 | Nov 05 |Fault | registerUser: when add user, Changed the compare resolved
the userld returned could be condition from ‘equal to’
duplicate to ‘less than and equal to’
Nov 05 | Nov 05 | Failure | getchanges: couldnt retrieve loop was incorrect. It resolved
changes was re-written.
Nov 06 | Nov 06 | Failure | Testing of user-logout failed When a user connect to resolved
the web service and
download an existing
file, the getFileContent
does not add the file to
the user’s list and
increment the user count
of the file. Add those
into the method. Add a
method to the User class
for the convenience of
the programming.
User Class
Nov 04 | Nov 04 | Failure | getFile: null pointer exception | retrieved the UserFile
object instead of the its

Page 20 of 52

CSC408 Project Part B
OmniEditor Design Document

| | | | name |
OmniEditingService
Nov 03 | Nov 03 | Failure | Upload: if upload a file twice, | Fixed when isUserOnline | resolved
we will get above is fixed
ArraylndexOutOfBoundsExce
ption
Nov 04 | Nov 04 | Failure | Logout: before all user logout | Fixed when resolved
the file they have are removed | getFiletoContent problem
in OmniEditorBuffer is
fixed

3.2.4. Integration Test Plan — Phase C
We will use Sandwich Integration testing

Our OmniEditor works like this: When a client request a web service, the request is sent to
OmniEditor (wrapped by OmniEditingService object to make singleton of the OmniEditor
object), which hands the request to an OmniEditorBuffer object that controls the private data
members and objects residing in the OmniEditor and contains functions to manipulate these
objects. Therefore OmniEditorBuffer is the middle level between the lower-level and top-level.

3.2.4.1. Top-Down:

Test the major interface to users in OmniEditor and OmniEditingServices, namely Upload,
Download, Find, Register, Logout, Update and getFileNames. Create stubs for the
functions in OmniEditorBuffer.java that correspond to each web service function we
provide, namely:

- registerUser /'l For Register

- renoveUser /'l For Logout

- renoveFile /'l For Logout

- isUserOnline // For Upl oad/ Downl oad
- isFileOnline // For Upl oad/ Downl oad

- addFile /1 For Upl oad

- getFileContent // For Downl oad

- find /1l For Find

- getFil eNanes /'l For GetFil eNanmes
- get Changes /'l For Update

This is to make sure the major control and decision-making is correct.

We deployed our websevice on one of our CDF machines and simulated editor-clients as
follows:

* test upload as remote client:
The result of this test is to output a file with the uploaded file contest and the test
succeeded.

public class TestOmniEditorService_Client {

Page 21 of 52

CSC408 Project Part B
OmniEditor Design Document

public static void main(String [] args)

{
try {
Options options = new Options(args);

String endpointURL = options.getURL();
String textToSend;

args = options.getRemainingArgs();

Service service = new Service();
Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new java.net.URL(endpointURL));
System.out.printin(endpointURL);

call.setOperationName(new QName("OmniEditingService", "upload"));
call.addParameter("arg1", XMLType.XSD_INT, ParameterMode.IN);
call.addParameter("arg2", XMLType.XSD_STRING, ParameterMode.IN);
call.addParameter("arg3", XMLType.XSD_STRING, ParameterMode.IN);
call.setReturnType(XMLType.AXIS_VOID);

call.invoke(new Object[] { new Integer("2"), "testFile","i'm this cool..." });

} catch (Exception e) {
System.err.printin(e.toString());
}
}
}

» Test download as remote client:
The result of this test is to output the content of the file just uploaded, and it
succeeded.

public class TestMultiUpload_download {
public static void main(String [] args)

{
try {
Options options = new Options(args);

String endpointURL = options.getURL();
String textToSend;

args = options.getRemainingArgs();

Service service = new Service();
Call call = (Call) service.createCall();

Page 22 of 52

CSC408 Project Part B

OmniEditor Design Document

call.setTargetEndpointAddress(new java.net.URL(endpointURL));
System.out.printin(endpointURL);

call.setOperationName(new QName("OmniEditingService", "upload"));
call.addParameter("arg1", XMLType.XSD_INT, ParameterMode.IN);
call.addParameter("arg2", XMLType.XSD_STRING, ParameterMode.IN);
call.addParameter("arg3", XMLType.XSD_STRING, ParameterMode.IN);
call.setReturnType(XMLType.AXIS_VOID);

call.invoke
call.invoke
call.invoke

new Object[] { new Integer("1"), "testFile1","this is content1" });
new Object[] { new Integer("1"), "testFile2","this is content2" });
new Object[] { new Integer("1"), "testFile3","this is content3" }

call.invoke(new Object[] { new Integer("1"), "testFile4","this is content4" });

)
)
;
call.invoke(new Object[] { new Integer("1"), "testFile5","this is content5" });
)
)
)
)

o~~~ o~

call.invoke(new Object[] { new Integer("1"), "testFile6","this is content6" }
call.invoke(new Object[] { new Integer("1"), "testFile7","this is content7" }
call.invoke(new Object[] { new Integer("1"), "testFile8","this is content8" }
call.invoke(new Object[] { new Integer("1"), "testFile9","this is content9" }
call.invoke(new Object[] { new Integer("1"), "testFile10","this is

content10" });

System.out.printin("finished uploading 10 files");

Service service1 = new Service();
Call calll = (Call) service1.createCall();

call1.setTargetEndpointAddress(new java.net.URL(endpointURL));
call1.setOperationName(new QName("OmniEditingService",

"download"));

}

}

String[] files = (String[])call1.invoke(new Object[] {new Integer("1"),
new String[){ "testFile1",

"testFile2",
"testFile3",
"testFile4",
"testFile5",
"testFile6",
"testFile7",
"testFile8",
"testFile9",
"testFile10",}});

for (int i=0; i<files.length;i++)

System.out.printin(files[i]);
}

} catch (Exception e) {

}

System.err.printin(e.toString());

Page 23 of 52

CSC408 Project Part B
OmniEditor Design Document

« Test Find as Remote client:

The result of this test is to output the position of the sting to be found, and it
succeeded.

public class TestOmniEditorService Client find {
public static void main(String [] args)

{

try {
Options options = new Options(args);

String endpointURL = options.getURL();
String textToSend;

args = options.getRemaining Args();
Service service = new Service();

Call call = (Call) service.createCall();

call.setTargetEndpointAddress(new java.net.URL(endpointURL));
System.out.println(endpointURL);

call.setOperationName(new QName("OmniEditingService", "find"));

call.addParameter("argl", XMLType.XSD_INT, ParameterMode.IN);

call.addParameter("arg2", XMLType.XSD_STRING, ParameterMode.IN);

call.addParameter("arg3", XMLType.XSD STRING, ParameterMode.IN);

call.setReturnType(XMLType.XSD INT);

Object templnt = call.invoke(new Object[] {new Integer(1),"this",
"testFile"});

System.out.println("templInt:"+tempInt.toString());

} catch (Exception e) {
System.err.println(e.toString());

j
h
h

3.2.4.2. Bottom-up:

Low-level modules test steps:

1. Action.java and FindAction.java:
Action is an interface, which FindAction implements. It is just an action object that
contains a constructer and a toString() function and can be easily tested.

2. User.java & UserFile.java :
These two classes are a smallest interdependent set, and can be tested
independently from other files. UserFile.java contains only a constructor and two
data members, filename and version. It is contains the file name of the file that the
User is editing and the user's local version for that file. User.java maintains a list of
UserFiles and functions to manipulate the list.

Page 24 of 52

CSC408 Project Part B
OmniEditor Design Document

By this time the stubs for register() and isUserOnline() in top-down testing can be
removed.

File.java

The File object is a representation of an open file in the server that several clients are
editing. Each File keeps track of a list of Users that are editing it, the number of the
users editing it, a list of the Actions done on it, and other information such as cursor
position and version number. It also contains functions to manipulate the User list
and Action list, and a find() function that supports the higher level find()'s.

File is tested here because the correctness of File is dependent on the correctness of
all four classes mentioned above.

OmniEditorBuffer.java — Meet with Top-Level
Once File.java is tested, the low-level modules needed for the functions in
OmniEditorBuffer are all tested and so the stubs for these functions can be removed.

3.3.Non-Functional Tests

3.3.1. Correctness and Reliability
We can see the evolution of the number failures (reliability) and faults (correctness) from the
data obtained in our bug report (See 3.2.3).

Test Period: Nov 01 to Nov 07, 2004.

Bug Report Summary
Date
Date Type Location resolved
11/01/04 failure 11/01/04
11/03/04 failure OmniEditingService: upload() 11/03/04
11/04/04 failure OmniEditingService: logout() 11/04/04
11/04/04 failure User: getFile() 11/04/04
OmniEditorBuffer:
11/04/04 fault getFileContent() 11/04/04
OmniEditorBuffer:
11/04/04 failure isUserOnline() 11/04/04
11/05/05 fault OmniEditorBuffer: removeUser() 11/05/05
11/05/05 fault OmniEditorBuffer: registerUser() 11/05/05
11/05/05 failure OmniEditorBuffer: getChanges() 11/05/05
OmniEditorBuffer:
11/06/06 failure getFileContent() 11/06/06
For failures:
Failure data summary
Failure Cumulative Failure in
date Failures interval Failure Intensity
11/01/04 1 1 1.00
11/02/04 1 0 0.50
11/03/04 2 1 0.67

Page 25 of 52

CSC408 Project Part B
OmniEditor Design Document

11/04/04
11/05/04
11/06/04
11/07/04

N NO O

O = =~ W

1.25
1.20
1.17
1.00

Failure intensity graph:

2.00

Failure Intensity Chart

1.80
1.60 -
1.40
1.20
1.00 <
0.80 A
0.60 -
0.40 -
0.20 A
0.00 ‘

Intensity

11/1/2004 11/2/2004 11/3/2004 11/4/2004 11/5/2004

Time

11/6/2004

Fault data summary:

Fault data summary
Fault
date Cumulative Faults

Faults in
interval Intensity

11/01/04
11/02/04
11/03/04
11/04/04
11/05/04
11/06/04
11/07/04

W wWww-~00O0

O ON-00O0

0.00
0.00
0.00
0.25
0.60
0.50
0.43

Chart:

Page 26 of 52

CSC408 Project Part B
OmniEditor Design Document

Fault
0.70
0.60)
0.50
2
= 040
&
E 0.30
0.20
0.10 1
0.00 & ‘ <& ‘ < : ‘ ‘ ‘
11/01/04 11/02/04 11/03/04 11/04/04 11/05/04 11/06/04 11/07/04
Date

We do not have a lot of data so far, but as we test the system more we will have more failure
and fault data for a more detailed analysis.

3.3.2. Performance and Complexity

Performance is broken down into Time and Space performance and complexity is the major
reason for low understandability, testability, maintainability. For the time performance, we
setup the web service running at the server of gh-08.cdf.utoronto.ca (IP address:
http://128.100.31.98:8080/axis/services/OmniEditingService). Then we run the test cases at
home machine, the result is as follow.

d: \applications\Tomcat 5. 0\webapps\axis|\WEB—INF\classes> java
c408h003. omnieditor. TestOmniEditorService Client —
Ihttp://128. 100. 31. 98:8080/ax1is/services,/OnniEdi tingService
htip://128 100. 31. 95:8080/ax1s/services,/OmiEditingService

d: \applications\Tomcat 5. 0\webapps\axis|\WEB—INF\classes> java
c408h003. omnieditor. TestOmniEditorService Client download —
Ihttp://128. 100. 31. 98:8080/ax1is/services,/OnniEdi tingService
htitp://128 100. 31. 95:8080/ax1s/services,/OmiEditingService
i’m this cool. ..

d:\applications\Tomcat 5. 0\webapps\axis|\WEB—INF\classes> java
c408h003. omnieditor. TestOmniEditorService Client find —
Ihttp://128. 100. 31. 98:8080/ax1s/services,/OnniEdi tingService
htitp://128 100. 31. 95:8080/ax1s/services,/OmiEditingService
templint:4

real Om?7. 900s

user Om0. 0155
Sys Om0. 203s

Page 27 of 52

CSC408 Project Part B
OmniEditor Design Document

Clearly, the running time is depend on the network bandwidth and the traffic on it. Below is the
download testing program’s time performance. For download a file, it takes 1.465 seconds. It's
not bad for a network response.

$ time java c408h003. omnieditor. TestOmniEditorService Client download —1http://
128. 100. 31. 95:8080/axis/services,/OmniEdi tingService

htitp://128 100. 31. 95:8080/ax1s/services,/OmiEditingService

i’m this cool. ..

real Oml. 465s
user Om0. 0155
Sys Om0. 031s

The find and update take a little more (0.561s) than download. That should be caused by go
over all file contents and comparing against the search target.

James jia@james /cygdrive/d/applications/Tomcat 5. O0/webapps/axis/WEB-INF/classes
$ time java c408h003. omnieditor. TestOmniEditorService Client find —1http://128.
100. 31. 958:8050/axis/services,/OmniFEdi tingService

http://128 100. 31. 95:8080/axis/services/OmiFdi tingService

templnt:4

real Om’Z. 026s
user Om0. 030s
SysS Om0. 141s

§ time java c408h003. omnieditor. Testlpdate Client -
Ihttp://localhost :8080/axis/services,/OmniEdi tingService
htip://localhost:8050/ax1is/services/OmniEditingService
null

real Om’Z. 153s
user Om0. 015s
Sys Om0. 171s

Profiler instruments the code by book-keeping instructions. When the program runs, these
instructions can be used to tell

- Which functions are called the most

- How is time distributed among different functions?

- From these data, one can pinpoint the bottleneck of the execution time

We tried to user java profile to run our web service, but it failed. The out put is following.

HPROF ERROR: thread local table NULL in method exit 009F8348
HPROF ERROR: thread local table NULL in method exit 009F8348

Page 28 of 52

CSC408 Project Part B
OmniEditor Design Document

HPROF ERROR: class ID already in use
Exception in thread "main" java.lang. NoClassDefFoundError: java
Dumping CPU usage in old prof format ... done.

And for the complexity, we tried the maccab and halstead mentioned in the tutorial. But those
two seem only work for ¢ program. We got errors when running them against our *.java files.
Since the program is not too complicated, we suppose that the complexity is not high.

4. Maintenance Plan

4.1.Customer Communication
We have created a yahoo newsgroup for communicating with our customers.
* Name of the yahoo.com newsgroup: c408h003
 URL: http://groups.yahoo.com/group/c408h003
* To post to the newsgroup by email, send to: c408h003@yahoogroups.com

We will also have a project website. The project website will contain:
» Documentation (including javadoc)
* File and tool downloads (e.g. wsdl2java)
» Bug Tracking Information
» General project updates, such as version changes.

4.2.Corrective

4.2.1. Bug Reporting
To report a bug, the customer can post/email to the newsgroup stating:
» Description of the problem
e The operation it appears in
* The command called, and any output or error messages that might be helpful

Upon receiving the bug report, our team member will give the customer a tracking number.
The customer can check the status of the bug on our project website.

The customer can keep constant communication with the group by emailing the newsgroup or
posting to it.

4.2.2. Bug Solving and Tracking

* 24-hour guarantee: The bug will be solved in 24 hours, starting from when the group
received the bug and the tracking number is assigned.

» Every week from November 08 to the due date of Phase C, two members are assigned
the bug-checking and bug-solving task. The two members alternate each week with
the other two. The first two members responsible will be Yang Jia (James) and Yuen-
nung Chiao (Juno).

* Once the bug is solved, the customers will be notified. The customers can also check
the project website for this information.

Page 29 of 52

CSC408 Project Part B
OmniEditor Design Document

4.3. Adaptive

Since the project is done with Java and web service, the adaptability should be good.
However if the customers made reasonable request on changing the system to fit their needs, they
can send a Request for Feature report to the above newsgroup stating:

» The condition of the change request
* A description of what they want
» The preferred deadline for the feature

Our team will contact the customer to clarify the feature request if necessary, and a Feature tracking
number will be assigned. Customers can check the status of the feature on the project website.
Note that extra features usually have a lower priority than bugs so the 24-hour guarantee does not

apply.

The feature requests will be handled by the two members not currently responsible for bug-solving in
that week.

4.4.Perfective

Regression tests will be run after every change made to the system. As we test we will find some
areas that we can improve, for example the performance.

If there are improvements added to the project (not from customer request), the customers will be
notified with the version changes and the website will be updated with this information.

Perfective changes have not as high a priority as bugs. It will be taken care of by the two members
not responsible for bug-solving in that week.

4.5.Preventive

With regression testing we might find some problems that have not yet manifested or caught by
customers, if so the problem is treated as a bug, but has less priority than customer's bugs. These
bugs are not reported to customers as they were found, but will be described on the project website
if there are any version changes.

Since preventive changes are treated as bugs, they are handled by the two members responsible for
the bugs that week.

Page 30 of 52

CSC408 Project Part B
OmniEditor Design Document

5. Requirement Specification

The Javadoc for the functional requirements can also be found at c408h003’s project website:
http://seawolf.cdf.toronto.edu:8086/doc/i

5.1.Functional Requirements:

5.1.1. Upload
Opens a channel with the editing state, such as the content of the local text buffer and
the position of the cursor in the buffer
Inputs: user | d - the user who want to upload a file

fil eNane -the name of the file

fi | eCont ent - the file contents of which the user want to share
Outputs: void
Precondition: The arguments are not null.
Postcondition: A file object with the editing states is created and saved to the buffer, editing
states includes the content of the local text buffer and the position of the cursor. If the user is
not registered yet, register the user.

5.1.2. Download
Sends the current editing state of the specified buffer to the user initiates this service.
Inputs: userld - the user who wants to download a file
fileNames - the file names of which the user want to get
Outputs: the current contents of each file in the buffer
Precondition: The files specified by filenames exist in the buffer
Postcondition: The contents of the files specified are sent to client

5.1.3. Find
Finds a string in the specified editing buffer
Inputs: userld - the user who want to search in the file
t ext - the string to be looked for in a file
fileName - the file name in which the user want to find the string
forward - true to search forward in the file, false otherwise.
caseSensitive - true for case-sensitive search, false otherwise
Outputs: the first occurrence position of the text in the file
Precondition: There is a working file buffer in the server.
Postcondition: the current occurrence be highlighted if there is at least one. Nothing if none
exists.

5.1.4. Regqister

Gets the user id to start the web service.

Inputs: void

Outputs: An integer ID number assigned by the web service
Precondition: The user is not registered yet.

Postcondition: The user is registered with the web service.

Page 31 of 52

CSC408 Project Part B
OmniEditor Design Document

5.1.5. Update
Gets the difference (changes made) between the user’s version and the server’s version.
Inputs: user | d - the user's identification

fi | eNane - the name of the file to be updated
Outputs: a string array stands for all actions perform on the file. Each string stands for one
action.
Precondition: The version number of user’s local file is different from that of the server’s file.
Postcondition: The versions of the local and the server side is the same for that file.

5.1.6. getFileNames

Gets all files available on the web server.

Inputs: user 1 d - the user's identification number
Outputs: a string array of all file names currently available.
Precondition: User must be registered

Postcondition: File list is not modified.

5.1.7. Logout

Logout the web service.

Inputs: user 1 d - the user's identification number
Outputs: void

Precondition: The user is registered with the service.
Postcondition: The user is removed from web service.

5.2.Non-functional requirements
Softgoal: Correctness

Metric: the outputs of the functions

Satisfaction criteria: the outputs of the functions are the same as expected

Softgoal: Reliability

Metric: replicability or the extent to which similar results can be reproduced over time using the
same instrument

Satisfaction criteria: the functionalities provided should be able to repeat over and over with the

same results as long as the inputs are the same.

Softgoal: Interoperability
Metric: Data communication
Satisfaction criteria: Reliable, timely data communication must occur between clients, as well as

from client to host/access point and back.

Softgoal: Extensibility

Page 32 of 52

CSC408 Project Part B
OmniEditor Design Document

— Metric: Capability to add new editors to the system
— Satisfaction criteria: Provide an easy to learn and use interface for integrating new editors on to

the current system

— Softgoal: Security
— Metric: Integrity of the buffer
— Satisfaction criteria: Through all the operations on the buffer, all clients should be able to operate

on the same buffer at all the time.

— Softgoal: Usability
— Metric: The easiness to use the functionalities provided.
— Satisfaction criteria: The functionalities provide should be straightforward to use if the user has

experience in Eclipse text editing. The learning time < 5 minutes.

— Softgoal: responsiveness [Operation]
— Metric: response time

— Satisfaction criteria: response time < 1 second

5.3.Feasibility

5.3.1. Technical feasibility
In this part, we will try to answer the following questions to show the design and planning of
our project are technically feasible:

5.3.1.1. Is building a web application for OmniEditor service a feasible choice?
For the following reasons, our answer is yes:

Web application uses HTTP as communication protocol. It is more system and
programming language independent than the protocols used by RPC calls.

Sometimes RPC represents a compatibility and security problem and firewalls and
proxy servers will normally block this kind of traffic. However, HTTP is different, since it
is supported by all web servers and browsers, and it can bypass the block of firewall.

Furthermore, we will use SOAP as the message format to request to and get response
from web server. Since SOAP provides a way to communicate between applications
running on different operating systems and it is supported by different technologies and
programming languages, our service will provide good portability for clients on various
systems.

Page 33 of 52

CSC408 Project Part B
OmniEditor Design Document

5.3.1.2. Is our proposed solution to the shared editing service reliable and practical?

We will show our solution in greater detail in Architecture. However, the core of our
solution is build on the idea that, in the shared editing service, each client can only edit
/ change the content of the document when he / she has the latest version of the
document. We decide to stick to this rule because we believe that it is essential that no
one can overwrite others’ change he / she is not aware of, and changes can only be
made when a client possess the latest information about the document being edited.

We borrowed this idea from the pattern that CVS used to solve current version systems
problem. Since CVS is a mature technology and is believed to provide a reliable
solution to a problem very similar to ours, as long as we make our shared editing
service easy to use, our solution should be both reliable and practical.

5.3.1.3. Are all software components/tools we need to use available?

The key software components / tools we need to use to build our OmniEditor are listed

below:
Tools Description
Editor Eclipse 3.0 for Linux

(x86/Motif)

Java SDK j2sdk1.4.2_05
Soap Engine Apache Axis 1.1
Web Application Apache Tomcat 5.5
Server

All of these components are open source projects and their source codes are available
online. We have already installed them on our CDF machines and they worked without
problem.

In summary, as shown in the three aspects, we believe that our solution is technically
feasible.

5.3.2. Operational feasibility

5.3.2.1. Is the Problem worth solving?

Suppose this is a product we are going to build in real world, this is a very important
question to answer before we start.

Shared editing service can be very powerful if we provide enough functionality to
multiple users such that everybody can share latest information. It is like a large
whiteboard in a meeting room, and all participants shared their ideas and therefore can
be more efficient and productive.

Page 34 of 52

CSC408 Project Part B
OmniEditor Design Document

It is obvious that the basic functions we are going to implement for the shared service

can not fulfill this purpose. However, we believe that it is still worth building as long as
we provide enough scalability such that new functionalities can be easily added to this
software. Therefore, our focus is not only to implement the basic functions but also to

build a flexible skeleton that is easy to support new shared-editing functionalities.

5.3.3. Schedule feasibility

5.3.3.1. Can we meet the deadline to deliver our product?

In order to meet deadline of delivery of our product, we need to keep up with the

following schedule:

5.3.3.2.Schedule for OOD, OOP

OOD and OOP Deadline Owner

OoOoD Oct 10, 2004 All members

Publish the interface of all classes | Oct 12, 2004 Jianlei Su

and public methods for team

development

Implement Find function locally Oct 14, 2004 Yang Jia

Implement Upload function Oct 16, 2004 Jianlei Su

Implement Download function Oct 18, 2004 Jianlei Su

Implement Find function Oct 20, 2004 Jianlei Su

Unit Test Development Oct 28, 2004 Yang Jia/Kelvin Chan
Functional/Non-functional Unit Nov 03, 2004 Yang Jia/Kevin

Testing Chan/Jianlei Su

Web Service Deployment Test Nov 03, 3004 Yang Jia

Code Documentation Nov 03, 2004 Yuen-nung Chiao
Project Phase B Write-up Nov 07, 2004 Yuen-nung Chiao

5.3.3.3. Schedule for Phase C

OOD and OOP Deadline Owner

OOoD Nov 13, 2004 All members

Publish the interface of all classes and | Nov 15, 2004 Jianlei Su

public methods for team development

Implement client-side (depend on which | Nov 23, 2004 Yang Jia / Jianlei Su /
set of functions we choose) Kelvin Chan / Y.N. Chiao
Unit Test Development Nov 25, 2004 Y.N. Chiao / Kelvin Chan

Page 35 of 52

CSC408 Project Part B
OmniEditor Design Document

Unit Testing Nov 30, 2004 Yuen-nung Chiao /
Kelvin Chan

Code Documentation Nov 30, 2004 By all members

Project Phase C Write-up Dec 02, 2004 Y.N. Chiao

5.4. Other Feasibility Analysis

Other Feasibility analysis such as Economic feasibility analysis is not applicable to this course
project, and therefore we will not discuss it here.
In summary, the discussion above shows that our product satisfies technical feasibility,
operational feasibility. If we stick to our planed schedule, we can also achieve schedule

feasibility for our project.

Page 36 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5. Architecture Design
5.5.1. Overview — Basic Functions

OmniEditor
has a
o UserFile list i R

User | (flename, Ecllpse Client 1

Version)
z —SOAP via HTTFP
OmniEditorBuffer P' TexiEditor WS plug-in

Registers user. Lacal

DOWNLOAD Editing

User list add buffer

| /prads. o Eclipse Client 2

Flle list

FIND }smp
\@or WS plug-in
searches Local

updates Editing
buffar

File

k. has an

\. Action list

OmniEditorBuffer keeps a User list and File list for OmniEditor and provides functions to
manipulate them. User list contains a list of Users currently registered to use the WS. File list
contains a list of Files currently opened for editing; each File has its own current version
number. The filenames must be unique.

User keeps a list of UserFiles, which only contains the name of the files the User is editing
(thus User can editing more than one File), and the User’s version of the Files. User can only
modify a File if his/her file version for that file is the same as the one kept in the File object.

Whenever Upload is called, the file buffer is loaded with the new content. If the calling client is
not registered, Upload registers it and adds the new File to the File list.

When Download is called, the File content is sent to the client.
When Find is called, a FindAction is added to the list of Actions a File maintains to indicate an

action of Find is done on the File. Find searches the File and returns the offset where the
string is found.

Page 37 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.2. Overview — Additional Functions
OmniEditor
has &

[e | | UserFile list P .
User | vl Eclipse Client 1

Version)
" Register SOAP via HTTP
: o
Omn|EditorBuffer N— S@or% plugein

Logo

2

Lacal
Editing
buffer

{

remove Liser

Liser list _._._____._.______,_._-—-—

Hecrease opan count or remave the File

| '///@m) Eclipse Client 2
P

Flle list
oo ITextEditor W3 plug-in
T———__finds file in SOAP [: Lacal
Editing
buffer

File

Action list

Register: Registers a User into the User list. A User ID is assigned and returned to the client
by the WS.

Logout: Remove the User from the User list, and decrease the open count of the Files that this
User was editing in the File list. If any File in the File list has an open count of zero, it means
this File is no longer being edited by anyone and Logout removes it from the File list.

GetFileNames: Returns to the client a list of file names of the Files that are currently open in
the server.

Update: Finds the specified File in the File list, and returns the list of Actions done on the File

to the client, starting from the actions that the client has not yet downloaded (controlled by the
File’s version number and the client’s own version number of that File.)

Page 38 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.3. High Level Use Case

System

Use WS editing
SEMVICES

User Reqgister and Maintain | "
Client information *
/ Web Sarvice
-
Provide WS editing *
Services &
‘_F_.,—'""'"'F Fequest WS Servi
’ V4
o T el V":ﬁs Maintain Files
Eclipse Client ; sl information

The user can invoke the editing services via the Eclipse client, which is in charge of requesting
web services from the WS server and interpreting the returned results. The “WS editing
services” includes UPLOAD/DOWNLOAD/FIND as specified in the OmniEditor project handout,
and also helpful functions Register, Logout, getFileNames and Update. The WS Server
maintains registered clients and their files, also a list of all open files in the server. It provides
the WS editing services to the clients/users.

Page 39 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.4. Sequence Diagrams (special cases)

5.5.4.1. First Client Upload (starting a new editing session)

Sequence Diagram -
First client Upload

ipse client: itor
User {Plug-in)
T
| |
~ ImvokeWS(Upload) |
L

Weh Service

|
|
|
|
Upload(} |

Sy

| > regsten)
> addFile(file)

returnResull() (Client 10)

When a user wants to start a cooperative editing session on a file, the user invokes the web service
capabilities in the Eclipse client and indicates the file to upload. The web service server will register the
client in its User list along with the file name it has uploaded. The server then creates and adds this new
File to the server’s list of open Files. It then returns the result to the client, which is the client ID that the
WS assigned to this User. If the call fails, an error message is returned.

Page 40 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.4.2. New Client joins an existing editing session (downloads)

Liser Eclipse Client; |TextEditor WS Service

& invokeWS(Register) [
~

Register()

Register(}
retumBasult() (Clent 1D}

imvokeWSigatFileMames)

getFilaMNames)

getFileMames()

returnRasult() (list of file names)

InvekeWS(dawnload)

download{flenames)

download{cld, filanames)

returnResultl) (list of file contants)

When a new user wants to join an existing editing session, the user first invokes the web service

indicating that he/she wants to register. After the WS server receives the request from the Eclipse client,
it will register the new client and return the client ID assigned to the user.

The user then use getFileNames() to ask for a list of currently opened files in the web server. The WS
returns the list of names to the user.

After getting the filenames, the user can choose which list of files to download by calling download()

(giving a list of file names and its client ID to the WS). The WS returns the contents of these files to the
user; in the server it also updates the information on what files this user is currently editing.

Page 41 of 52

CSC408 Project Part B

OmniEditor Design Document

5.5.4.3. Find
Liser Eclipse Client: |TextEditor WS Service :File
<L invoketS{Find) | I I
-l I I
find{filename, str, ..} | I
L I
find() I
ol
T retuen()
| "TNSR,
| return() (Offset of the string found) |
I e B e e e L} I
| L | I
| I

find()

addActon()

User invokes the Find command. Client sends requests Find() service from WS with
correct arguments. The WS calls find() for the particular File object, the File object finds
the string and returns the offset, and records this Find action made to itself. The offset is

then returned to the client.

5.5.4.4. Register
Liser Eclipse Client; [TextEditor WS Senice User
T invokeWWS(Register) l | i
) |
ragistar() | JI
i
creata()]I
returniu)
% A Moes coean GERSED oo
I
T |
| registerliser()]I
: addUsariu) i
|
: i
| |
| 1
: return() (userD) i
————————— - |
| H !
|

User invokes the Register command and client sends it. WS registers the new user by
creating a new User object for the new user, and adds it to the list of Users that the WS
maintains. WS then returns the new User ID to the client.

Page 42 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.4.5. Logout

User Eclipse Client: [TextEditor WS Sarvice :Flle

A invokeWWS{logowst) i

T
I
r I
I
L

logoutiuserD)

I

|

|

|

|

remove(userl D) :
|

N

removallzan)

flor eviery Fie that this user opened)

returpi) (open_count - -)

|
removellser() |

|
if open_count is 0, re:mn-.-'eFIIeﬂ

__..__..__..__..__..__l

returmf)

EE L]
[[

Upon Logout, WS calls its own removeUser(), which first removes the User from its User
list. Then for each File that this User was editing, decrease the open_count for that File
in the WS’s File list. If the open_count is 0, that means this File is no longer being edited

by anyone, and WS removes it from the File list.

Page 43 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.4.6. getFileNames

Uger Eclipse Client. 1TexiEdior WS Service File
I invokeWsigeiFileNames) |r i i
7l | |
getFileMames() I I
1
|
|
or each File m the Fike list |
getMame() [
1
T getFileMames])
|
: return{} {name)
| e
|
: returnilist of flenames)
| e i
|
|
|

I

I

I

I

I

- I
I I

I I

I I

I |

WS calls its getFileName(), which loops through the File list and for each File, gets the
names of the File, store them in an array, and return the array of filenames to the client.

Page 44 of 52

CSC408 Project Part B
OmniEditor Design Document

5.5.4.7. Update

=
H1

Eclipse Client:

MextEditor WS Service

— invokeWS{update) i

=l

updater)

refurniarray of action strs)

{tor gach

SAction

acticn In the Fika's Achon list]
getAction()

return{action)

getChanges()
toString(action)

—

return{sir)

WS calls its getChanges() to handle update() calls. For the specified File, go through
the File’s Action list (i.e. change history). Convert each Action object to a string, and
store these action strings in an array. The array of action strings is then returned to the

client.

Page 45 of 52

CSC408 Project Part B
OmniEditor Design Document

6. Project Plan
6.1.Task Allocation

6.2.

Task allocation will mostly be on a voluntary basis, done first at the beginning of each phase,
and continues throughout the phase as each member progresses and issues are raised. If
there are unclaimed tasks, it will be assigned by voting.

Gantt chart
Please refer to Appendix A for the Gantt chart of task allocations and schedules.

7. Team Organization
7.1.Team Management

We decided to take a flexible approach in our team management. After several meetings we
decided it is best for our team to not select an overall team leader, but each member will be
consulted as expert on the area they are best skilled at (according to skills and preferences
below). For each phase, each member will become expert on the area he/she is assigned to
explore, and he/she will be the chief consultant on that subject. Generally for Phase B:
Jianlei Su — Design, chief programmer

Yang Jia — Design, programmer, High-level Test Manager, WS Deployment

Kelvin Chan — Design, programmer, Junit Test Manager

Y.N. Juno Chiao — Design, maintenance/integration plan, report update/organization

7.2.Skills and Preferences

Every team member will participate in the design of the Web Service (phase B) and the client
side (Phase C), the following is a list of skills that we believe each person is most skilled at.
This will help to determine which task will be allocated to which member.

» Jianlei Su — design and architecture, programming, debugging

* Yuen-nung Chiao- design and architecture, documentation, debugging
* Yang Jia — programming, testing, debugging

» Kelvin Chan— documentations, debugging, testing

7.3.Team Meeting Schedule

» Every Thursday before and after class: short discussion on what to prepare for the
Saturday team meeting.

» Every Saturday: In-person team meetings from 2 till completion of discussion. Minutes
taken by different team member each meeting.

* Online meetings through MSN during the week when necessary.

Page 46 of 52

CSC408 Project Part B
OmniEditor Design Document

Decision Making Strategy

For Next Meeting

v

Further research is|
required

Problem Discussion

Two people take
different sides and
argues their
points.

Pro/ Cons are
Listed

Conclusion is
Vote on the issue written down for
future reference

7.4. Methods of Communication:

» Weekly meetings — Saturdays at 2 p.m.

* Email

* MSN Messenger — During the week for online meetings and exchange of information.

* Newsgroup — Yahoo newsgroup was created specifically for this project, where message
and files are uploaded for every member to see.

Page 47 of 52

CSC408 Project Part B
OmniEditor Design Document

8. Risk Analysis

8.1. Personnel Shortfall

Working as a group of 4. Our project plan and team organization, task allocation and schedule
are developed based on a team of four members. Adding one more member might have
negative impact on our group.

Lost of team member (e.g. due to illness). Unfortunate accidents may always occur; the only
thing that can be done would be preparing for this possibility. Insufficient planning

- Inadequate time allocated for tasks.

- Under estimation of project difficulty or complexity.

- Insufficient testing time allocated.

8.1.1. Impact

* Addition of members: Adding one more member to the group at this time will cause more
harm than good since it will most likely result in more arguments and confusion on the task
and structures that have been developed. The whole project plan and team organization
has to be restructured and we will lose valuable time.

» Lost of team member: If the other members are informed of this near the due date and they
are not familiar with the sick member’s work and progress, the team might not be able to
finish the project deliverables in time.

8.1.2. Prevention

* If some other team breaks up and need to disperse their members into other teams, our
team will try to talk to the professor to not take another team member if possible (this has
already happened, we did not take another member). If it is inevitable, we will call a
meeting as soon as the new team member is decided and reorganize the team structure
and project plan. For example, if the new member is good at software development, we will
put him/her on the software development part of the project and thus have more manpower
in other areas such as testing.

* Each member has the obligation to keep each others informed on the progress and work
that we are doing. This will be done through email and especially weekly meetings. If the
one team member cannot finish their work before the due date due to illness/accident/etc, a
group meeting will be called in person or via msn to decide who will take on the
responsibility

8.2.Unrealistic Schedule/Budget

There is the assumption that the professor has planned the project specifically for this term
course thus everything should be completed on time and within the budget. But if we are not
able to progress according to our project plan schedule due to the members’ busy schedules:

8.2.1. Impact
The deliverables of the particular phase might not be completely finished, or it will be or poor
quality resulting in bad marks, which is the profit we get for this project.

8.2.2. Prevention
We hold group meetings every weekend to make sure everyone’s on schedule. If any team
members are concerned about other member’s progress and work quality, he/she is

Page 48 of 52

CSC408 Project Part B
OmniEditor Design Document

responsible to voice their concern publicly on the team’s yahoo course group or on MSN,
where the team keeps communication outside of class and regular group meetings.

8.3.Wrong Functionality

Given that our team has discussed the requirements many times, there is a very minimal
possibility of misunderstand any part of the requirements. If there are any doubts there have been
notes taken and diagrams drawn of the requirements which can be quickly reviewed.

8.3.1. Impact

Our customers in phase C will run into trouble when they find that the services do not behave
according to the specifications. Bugs will be generated which decrease our final marks, and
extra time and effort will will need to be spent on solving the problem.

8.3.2. Prevention

Frequent team discussion will reveal the discrepancies among each member’'s understanding
of the requirements. Once discrepancy is found the team should discuss what correct
functionality is and confirm it with the professor or the TAs. Each member is responsible of
visiting the course newsgroup and website so each member will be updated on the latest news
on the project. During development each member should post/commit the changes they made
to the private group newsgroup and CVS so everyone can see the current development of the
project. This way if there are any issues it can be quickly identified and dealt with.

8.4.Gold-Plating
Too many unnecessary functions are developed in order to make the project look impressive.

8.4.1. Impact

We will spend too much time on unnecessary functions and lose time on testing on the
necessary ones. The WS interface might seem too complicated to use for other teams since
the more functions there are the more they have to learn about them. This may result in less
team choosing our services and also may contain more hidden bugs.

8.4.2. Prevention

While we discuss the design of this project we as a group constantly remind each other to
keep things simple and not to do too much. We plan each task carefully such that it will be
versatile yet not too complicated as to potentially create major issues.

8.5.Requirement Volatility

There might be an issue of redesigning or reworking of tasks, which maybe caused from
unclear requirements or changing requirements.

8.5.1. Impact
Time will be lost on trying to redesign things that are already done, when this time can be
useful for testing or debugging.

8.5.2. Prevention

To minimize the possibility of requirement adjustments, clear well defined documents will be
created to avoid any possibilities of this issue occurring. In the case that requirements must be
changed the architecture of the system has been designed to be loosely connected and thus
changes will be minimal in terms of the entire project.

Page 49 of 52

CSC408 Project Part B
OmniEditor Design Document

8.6.Bad External Tasks

8.6.1. Impact
If our team has failed to select a web-service that is relatively bug free and simple to
implement then it may cause problems in our development of the omni-editor.

8.6.2. Prevention

To minimize the risk of this event each web-service will have to be looked at thoroughly and
detailed analyses have to be done. There are websites set up by each team with their
documentations. We also need to talk to those team members to see if they seem trustworthy
enough to uphold their various promises of customer support.

8.7. Capability Shortfalls

The technologies that have been selected may have short comings which are not known until it
is used.

8.7.1. Impact
As the problems manifest, members will spend hours of time trying to debug or solve the
problem. This time and effort is wasted.

8.7.2. Prevention

The environment and technologies have been previously reviewed by the members of the
team and tested for the functionalities that we need to use. If there are more problems
regarding the technologies, we will contact the TAs and the professor for help, and post the
problem on the newsgroup. Since many other groups use the same technology, we might be
able to resolve the issue quickly.

Page 50 of 52

CSC408 Project Part B
OmniEditor Design Document

9. Appendix A: Task Allocation

D Task Mame | Duration Start Finish Predecessars Resource Mames
1 Phase A 20 days Fri 3i17/04 Fri 10/8/04
1 Phase B 20 days Mon 10/11/04 Sat 11/6/04 |1
12 Crversll Design Plan 3days| Mon 10M11:/0¢ Wed 10V13/04 Kelvin, James, Ray,Juno
T 12 | Class Skeleton Design 56days| Tue 10/12/0¢) Tue 10190412 James, Juno, Kelvin, Ray
14 Group 3 (1,2 9) Implementation 1225 days Thu 1014/04| Mon 11/1/04 13
15 Omnieditor Class 6.5 days Fri 10/22/04 Mon 11/1/04| 19
16 Programming 1 day Fri 10/22/04| Mon 1002504 Ray
17 Unit Testing 4 days| Mon 10/25:/0¢ Fri 10/28/04 168 James
12 Documentation 1.5 days Fri 10/28/04 Mon 11104 17 Jemes,Ray
12 OmniEditor Buffer Class 38 days Mon 10/18/04 Fri 10/22/04 23 27
a0 | Programming 1day| Mon 10/1&0<] Tue 10/12/04 Ray
21 Unit Testing 1day| Tue 10/M200¢ Wed 10:20V04| 20 Felvin
22 D'ocumentstion 1.5 days| Wed 10V20i04 Fri 10/22/04 21 Kelvin,Ray
23 OmniEditor User Class 225 days Thu 10014/04 | Mon 10/18/04
24 Programming 0.5 days| Thu 10014:0¢ Thu 10014404 Ray
BE Unit Testing 1day| Frii0/15/04] Fri 10/15/04 24 Kelvin
26 Documentstion 0.75 days| Mon 10/18/0¢| Mon 10M18/04 25 Kelvin,Ray
27 OmniEditor File Class 225 days| Thu 10014/04 Mon 10/18/04
22 Programming 0.5 days| Thu 10/140¢| Thu 1071404 Ray
28 Unit Testing 1 day Fri 10/15/04 Fri 10/15/04 228 Felvin
30 Documentstion 0.75 days| Mon 10/18/0¢| Mon 10/18/04 29 Kelvin,Ray
3| OmniEditor User File Class 225 days Thu 1014/04 | Mon 10/18/04
BE Programming 0.5days| Thu 10/14/0<] Thu 10/14/04 Ray
33 Unit Testing 1 day Fri 10715/04 Fri 10/15/04 22 Kelvin
34 Documentation 0.75 days| Mon 10/158/0¢) Mon 101804 33 Kelvin, Ray
35 OmniEditor Action ! FindActi 225 days Thu 1014/04 | Mon 10/18/04
36 Programming 0.5 days| Thu 10V14:0¢ Thu 1014404 Ray
ar Unit Testing 1 day Fri 10715/04 Fri 10/15/04 26 Helvin
32 Documentation 0.75 days| Mon 10/158/0¢) Mon 101804 37 Kelvin, Ray
T 38 | Integration Testing / Bug Fixing 1day| Mon 11104 Tue 11/2/04 14 Kelvin, James Ray
40 Update Documentation Tdays| Mon 10/11/0¢) Tue 10/18/04 Juno
41 Report Review 2 days Thu 11/4/04 Sat 11/6/04 40
42 |PhaseC 20 days Mon 11/8/04 Fri 12r3/04 |11
43 System Analysis 4 days Mon 11/8/04| Thu 11/11/04
T 43 | Requirements gathering Zdays| Mon 11804 Tue 11/8/04
45 Omni Editor Design 3 days Fri 11/12/04| Tue 11/16/04| 44,43
45 Implemeantstion 8 days| Wed 1171704 Fri 11/26/04 45
47 Testing & Bug Fixing Bdays Mon 11/2800¢ ‘Wed 12/1/04| 46
| 48 | Report Review Zdays| Thu12/2/04 Fri 12/2/04 47

Page 51 of 52

7S JO 76 93eq

L¥
0f
Aeylsowierurgay B BE

Argungay w@ ae
Ly s LE

9g
e GE

Argrungay ﬂm FE
LA £e

43
e
0E
Bz
8z
iz
9z
52
¥z
£z
zz
4
0z
Bl
8l
Ll
8l
5l
e ¥l
£l
4!

l

Argumgey ﬁm
[=

Aeygunay|

Aey‘sawug,

Aey unayfoanp sawep
ounpAey saue

Lo J.! r__

o

glalilmlLimlslslafim Lims[slalLim/Linls]slalLlmlLimlslslalLlm LlwlsslalLm Llmls sl alim LTwlsslalLiml LinlslslalLlm LTnls[s]a] LM Lln]s

0,82 AN 0, LE AOR FO ¥ L AON 0,4 ADR FOLERO 0, 'v2 R0 FOOLLWO ¥0.'0L R0 FO S RO 0, '8z dag

JuaWNOO(J uSISa(J IoNpHIUWO
g 1ed »2lo1d 80¥DSD

