University of Toronto

ECE450S Software Engineering Il Spring 2005

Project Software — OmniEditor for Graphs

1 Introduction and Motivation

OmniEditor was a pilot course project (CSC408H1F 2004/2005) to bridge the gap between different
text editors, such as VIM/NetBeans (developed in C/Java), Eclipse (developed in Java/SWT), JEdit
(developed in Java/Swing), etc. It relies on Web Services to provide interoperability and reusability.
The motivation for the development was stated as follows:

“ Text editors are the best friends of programmers. There are, however, multiple choices of editors
that may confuse a new programmer once he or she is used to one of them. It wastes the pro-
grammer’s time to study a new set of key bindings as the time can be spent on more creative tasks.
... They have different key bindings that lock the programmer in the pro/con camps. As software
engineers, we want to bridge the gap between the different editors and help the programmer to use
any text editor through familiar key bindings.

As a continution of the pilot projects, the text-based OmniEditors could be extended to deal with
graphics, since the same incompatibility problem exists in the interoperation of graph editors. Our
Guinea Pig graph editors is a tool called "OpenOME” (Java), which can model goal-oriented re-
quirements in software development.

The project involves software reengineering, testing and maintenance. The spirit of team work is
very important to the success of software engineering.

2 Requirements

The objective of the project is to bridge the OpenOME editors through Web Services. For example,
as a user adds/deletes an element in the graph, such change should be seen by other users through
the Web.

It is not required to reinvent the wheel, i.e., only need to use one legacy OpenOME editor and the
OmniEditor. The students are not recommended to spend lots of time to write another graphic editor
or a completely new web service. Instead should understand the existing ones, and extend them.

Functional requirements

To be more specific, the end user of the target system should be able to edit in a local goal graph
while invoking the graph editing services provided by at least one remote graph editor to perform
some remote tasks.

The aim of this project is to find a subset of the smallest common divisors of editors such that
together, the editors can fulfill useful editing tasks, such as



1. UPLOAD: inform the remote service to open a shared channel with the editing state, such as
the content of the local graph and the selection in the buffer;

2. DOWNLOAD: query the remote service about the editing state of potentially other editors,
such as the content of a certain channel and a certain selection; 1

3. INSERT: insert an element into the shared buffer at a certain location;
4. SELECT: select a region of elements;

5. DELETE: delete the selected elements from the shared buffer;

6. COPY: copy the selected elements into the shared buffer;

7. PASTE: copy the shared buffer into the editing area;

Features 1-7 are basic editing operations that are required to be implemented as a web service
such that they can be programmably invoked by any remote programs. Each team should finish at
least {1, 2, 3, 4, 5} operations, {6, 7} are optional operations for advanced editings.

Correctness and reliability must be tested for the selected features. Interoperability and extensibility
are required too. Responsiveness and usability are desired, but not required.

3 Deliverables

Phase A deliverables

Phase A involves requirement engineering and design recovery. The deliverable should be a docu-
ment covers requirement specification, feasibility analysis, alternative selections and risk analysis,
architecture design and test plan.

Phase B, C deliverables

Phase B involves the development of the followings.

1. Design the OmniGraphEditor web service that can be used by OpenOME. Each team must
use Java programming language to design a web service based on Eclipse. Specify your web
service using a WSDL description.

2. Test your own web service and submit your test cases and their verifiable scripts;

3. Publish your web service with its description to the classmates (we will announce the official
URL for each team).

We may call the "UPLOAD/DOWNLOAD” operations "LOAD/SAVE” from the perspective of the service

provider.



The deliverable for Phase B includes the design documents and test cases. The changes must be
managed and the released functionality must be unit tested.

Phase C involves an invocation of the web services developed by other teams from the local editor
developed by the home team. Each team is now responsible to integrate at least one service and
two clients such that they can be used to do useful synchronized tasks (detail requirements will be
announced later). The team must study the other’s document and validate the other’s services. The
communication across teams must settle the defects and proceed. Each team must maintain the
developed web-service too.

References

http://www.cs.toronto.edu/ yijun/csc408h
http://skywolf.cdf.toronto.edu:8081/axis/index.html
http://www.cs.toronto.edu/ yijun/OpenOME.html/



