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Having done one module, to swap with 
other team, you can sign a contract with 
other teams:

• Name of Team A: …………………….
• Name of Team B: …………………….
• Team A is responsible for the ……………. module
• Team B is responsible for the ……………. module
• Terms on functionalities and qualities
• Terms on intellectual properties: license
• Terms on compensation for failures
• And so on …
• Signature

1. Sign a Contract
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• Why design contracts? Verification and Validation
________ checks whether the end-product meets the customer 
requirements
________ check whether the product of current phase preserves the 
requirements of the product of the previous phase

• In object-oriented software construction, a design contract consists of 
such obligations

– Pre-conditions and post-condition for a _________
– Invariants for a ________

• Inheritance can extend the design contracts 
– precondition of A.foo() implies precondition of B.foo() 

_______ extends _______
– postcondition of C.bar() implies postcondition of D.bar()

_______ extends _______
– invariant of E implies invariant of F

_______ extends _______

Reference
Bertrand Meyer. “Object-oriented software construction”. Prentice Hall, 1997.

2. Design by contracts
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3. Programming by contracts
How to guarantee the design contracts?

Today we show three techniques:
• Assertions
• Unit tests
• Class wrappers
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3.1 Assertions
• Assertions are debug statements inserted into the normal 

statements to check on the conditions
float division(float a, float b) {

assert(______);
float c;
// c = f(a, b) 
assert(______);
return c;

}
class number {

int n;
// invariant: n>0
void inc() { assert(_____)... assert(_____); }
void dec() { assert(_____)... assert(_____);};

}
• Assertions can be ____________ before the code is released
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3.2 Unit tests
• One can guarantee the correctness through unit 

tests, for example:
– junit.framework.Assert.assertTrue("outpu
t matches input", nodiff);

– junit.framework.Assert.assertEquals("out
put matches input", output, 
expected_output);

– junit.framework.Assert.assertNotNull("ou
tput matches input", object);

– And so on
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3.3 Class wrappers
• Having a class wrapper is more convenient
• Example

cl ass Number  {
Number I mpl n;
f l oat  di v i s i on ( f l oat  a,  f l oat  b)  {

asser t ( b! =0) ;
f l oat  c = n. di v i s i on( a,  b) ;
asser t ( c* a == b) ;
r et ur n c ;  

}     
}

• Question: The ________ design pattern is used in the above example

• Advantages over assertions and unit tests
– Better than assertions: _______________________________
– Better than unit tests: ________________________________

_______________________________________
• Reference
• http://www.ddj.com/documents/s=1640/ddj0503f/
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4. Summary
• What is “design by contracts”
• How to implement the contracts
• Think about how to enforce your customer 

contracts with your developer contracts?
• Questions and answers…
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Project information

On Web Service Deployment
• What’s more

– We have a course forum
http://seawolf.cdf.toronto.edu:9192/ece450

• If you want to deploy the web service in the lab
– We have a Tomcat/MySQL server in the Linux Lab of CDF
– Production http://werewolf.cdf.toronto.edu:9192/production
– Sand box:  http://werewolf.cdf.toronto.edu:9192/sandbox
– Put your binary files into

• /u/yijun/.ece450/production
• /u/yijun/.ece450/sandbox

– Ask me to create a mysql database for you if necessary


