
Spring 2005 ECE450H1S Software Engineering II

Lecture 9 / Tutorial 8
Software Contracts

Design by contracts
Programming by contracts

Spring 2005 ECE450H1S Software Engineering II

1. Sign a contract
2. Design by contract
3. Programming by contract
4. Summary
5. Questions and Answers

Today…

Spring 2005 ECE450H1S Software Engineering II

Having done one module, to swap with
other team, you can sign a contract with
other teams:

• Name of Team A: …………………….
• Name of Team B: …………………….
• Team A is responsible for the ……………. module
• Team B is responsible for the ……………. module
• Terms on functionalities and qualities
• Terms on intellectual properties: license
• Terms on compensation for failures
• And so on …
• Signature

1. Sign a Contract

Spring 2005 ECE450H1S Software Engineering II

• Why design contracts? Verification and Validation
________ checks whether the end-product meets the customer
requirements
________ check whether the product of current phase preserves the
requirements of the product of the previous phase

• In object-oriented software construction, a design contract consists of
such obligations

– Pre-conditions and post-condition for a _________
– Invariants for a ________

• Inheritance can extend the design contracts
– precondition of A.foo() implies precondition of B.foo()

_______ extends _______
– postcondition of C.bar() implies postcondition of D.bar()

_______ extends _______
– invariant of E implies invariant of F

_______ extends _______

Reference
Bertrand Meyer. “Object-oriented software construction”. Prentice Hall, 1997.

2. Design by contracts

Spring 2005 ECE450H1S Software Engineering II

3. Programming by contracts
How to guarantee the design contracts?

Today we show three techniques:
• Assertions
• Unit tests
• Class wrappers

Spring 2005 ECE450H1S Software Engineering II

3.1 Assertions
• Assertions are debug statements inserted into the normal

statements to check on the conditions
float division(float a, float b) {

assert(______);
float c;
// c = f(a, b)
assert(______);
return c;

}
class number {

int n;
// invariant: n>0
void inc() { assert(_____)... assert(_____); }
void dec() { assert(_____)... assert(_____);};

}
• Assertions can be ____________ before the code is released

Spring 2005 ECE450H1S Software Engineering II

3.2 Unit tests
• One can guarantee the correctness through unit

tests, for example:
– junit.framework.Assert.assertTrue("outpu
t matches input", nodiff);

– junit.framework.Assert.assertEquals("out
put matches input", output,
expected_output);

– junit.framework.Assert.assertNotNull("ou
tput matches input", object);

– And so on

Spring 2005 ECE450H1S Software Engineering II

3.3 Class wrappers
• Having a class wrapper is more convenient
• Example

cl ass Number {
Number I mpl n;
f l oat di v i s i on (f l oat a, f l oat b) {

asser t (b! =0) ;
f l oat c = n. di v i s i on(a, b) ;
asser t (c* a == b) ;
r et ur n c ;

}
}

• Question: The ________ design pattern is used in the above example

• Advantages over assertions and unit tests
– Better than assertions: _______________________________
– Better than unit tests: ________________________________

• Reference
• http://www.ddj.com/documents/s=1640/ddj0503f/

Spring 2005 ECE450H1S Software Engineering II

4. Summary
• What is “design by contracts”
• How to implement the contracts
• Think about how to enforce your customer

contracts with your developer contracts?
• Questions and answers…

Spring 2005 ECE450H1S Software Engineering II

Project information

On Web Service Deployment
• What’s more

– We have a course forum
http://seawolf.cdf.toronto.edu:9192/ece450

• If you want to deploy the web service in the lab
– We have a Tomcat/MySQL server in the Linux Lab of CDF
– Production http://werewolf.cdf.toronto.edu:9192/production
– Sand box: http://werewolf.cdf.toronto.edu:9192/sandbox
– Put your binary files into

• /u/yijun/.ece450/production
• /u/yijun/.ece450/sandbox

– Ask me to create a mysql database for you if necessary

