
Spring 2005 ECE450H1S Software Engineering II

Lecture 8

Software Reuse
Don’t reinvent the wheel,

Do something smart

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering II

Last lecture and tutorial …

Aspect-orientation

• We explained the concept of aspect
orientation: separation of crosscutting
concerns

• In programming, aspects modularizes
scattered joinpoints in the code

• It is not only programming, you can
separate concerns scattered in design,
requirements specifications, goals as long
as crosscutting happens to them

Spring 2005 ECE450H1S Software Engineering II

Today …

On Software Reuse
1. Software reuse principles

1. Why reuse?
2. Elements of software reuse
3. Classic examples of software reuse

2. Software reuse in new practice
1. Component-based software reuse

1. Web service-oriented architecture (SOA)
2. WSDL, Semantics Web and BPEL

2. Quality-based software reuse
1. Non-functional requirements and quality attributes
2. Advices can be implemented through aspect orientation
3. Q7, a language for the quality-based aspect oriented reuse

3. Summary

Spring 2005 ECE450H1S Software Engineering II

1. Software reuse principles
• Hardware reuse

use the same tool more than once, producing the same
product more than once, etc.
Hammer a nail
Hammer a nail again
Hammer a nail again and again

• Software reuse: don’t reinvent the wheel
use the same knowledge more than once
Hammer a nail
Hammer a nut
Hit an object with a force, Newton’s discovery …

Create new software by reusing pieces of existing software
rather than creating new software from scratch.



Spring 2005 ECE450H1S Software Engineering II

1.1 Why Reuse?
• Save the cost, Reduce the effort

Software costs huge when it was created, but
costs almost nothing to copy or redistribute
One should focus on more creative tasks

• Reduce bugs
Use proven legacy software rather than write it
completely from scratch

The goal of software reuse is to reduce the cost
of software production by replacing creation with
recycling.

Spring 2005 ECE450H1S Software Engineering II

1.2 What hampers software reuse?
Common problems make the reuse difficult
• Identify units of reusable knowledge
• Store the reusable knowledge into a “knowledge

base”
• Search the reusable knowledge for your target
• Modify the reusable knowledge to fit your new

situations
• Combine the reusable knowledge with your

project

R. Prieto-Diaz. Status Report: Software Reusability. IEEE Software. 10(3): 61-
66, 1993.

Spring 2005 ECE450H1S Software Engineering II

1.2 What hampers software reuse?
Improve Software Reusability

Build for reuse
• Identify units of reusable knowledge
• Store the reusable knowledge into a “knowledge

base”
Build with reuse
• Search the reusable knowledge
• Modify the reusable knowledge to fit new

situations

• Combine the reusable knowledge with your
project

Spring 2005 ECE450H1S Software Engineering II

1.3 Five dimensions of good SR
Build for reuse
• Abstraction: Identify units of reusable knowledge and

concisely represent them in abstract form
• Classification: Store the reusable knowledge into a

“knowledge base” that is indexed and classified
Build with reuse
• Selection: Query the reusable knowledge into

parameterized form (e.g. function with formal
parameters)

• Specialization: Modify the reusable knowledge to fit
new situations (e.g. function with actual parameters)

• Integration: Combine the reusable knowledge with your
project (e.g. invocation, weaving, etc.)

[Krueger92] Software Reuse, ACM Survey. 1992



Spring 2005 ECE450H1S Software Engineering II

1.3 Five dimensions of successful SR

Classic software reuse examples
• High-level programming languages (e.g., Java, SQL)
• Library of generic (parameterized) components (e.g. Math library)
• Parser-generators and application generators (e.g. YACC, JavaCC, ANTLR,

automake, Eclipse)
• Menu/table driven mechanism for specifying parameters (e.g. GUI widgets)
• Application frameworks (e.g. Smalltalk, Motif, Swing/SWT)
• Aspects: Pointcuts and advices (e.g. AspectJ etc.)
• Internationalization/Localization (i18n/ l10n) (e.g. tag transformations)
• Document generations (e.g. Javadoc/XDoclet, DocBook, LaTeX, CSS, RSS, XSLT)
• Components-off-the-shelf (COTS) through middleware (e.g., OLE/ActiveX, CORBA,

Web Services)
• Plugin-ins, Skins, Themes, Macros, Extensions (e.g. Eclipse, Word, WinAmp, Mozilla

Firefox etc.)
• Domain engineering and application generation (e.g. SAP)
• Domain-specific languages (DSL) and transformation systems (e.g. Draco, TXL)
• 4-G languages (e.g. SQL, Wizards, templates, MIL/ADL, etc.)

Over 90% of source code in new applications is reuse code

Spring 2005 ECE450H1S Software Engineering II

1.3 Classic software reuse example 1

High-level programming languages
• Imagine the difficulty (complexity) in writing

matrix multiplication in machine code, or
assembly. In APL, all you need is one line!

• The level of abstraction is important!
C < Fortran < C++/Java < Python < SQL (4GL)

• The efficiency is another issue, but we have
compilers, HLPL increase the productivity of
programming by 10x!

• Even better, the compiler-generators can reduce
the efforts of writing a new compiler

• Programming libraries support still higher level
of abstraction

Spring 2005 ECE450H1S Software Engineering II

1.3 Classic software reuse example 2

Transformation systems
• Even better, the compiler-generators can reduce the

effort of writing a new compiler
• In transforming systems, the semantics of the artifacts

are defined through transformations and refinements
• Once a transformation is defined, it can be applied to

many semantics mappings
• This is still an active SE area in domain-specific

languages, generative programming
• A new trend is document-driven programming, i.e.

consider programs as data to be processed by other
programs.
For example, XSLT is XML transformation, while itself is
also an XML document (to be processed by XSLT).
You can write a localizing stylesheet to convert English
markup into Chinese, while the stylesheet itself can be
transformed as well…

Spring 2005 ECE450H1S Software Engineering II

2. New practice of software reuse
Where is the next 10x productivity breakthrough …

Let’s take a tour on component-based and
quality-based software reuse.
We must keep the following SR criteria in mind:

• Abstraction
• Classification
• Selection
• Specialization
• Integration



Spring 2005 ECE450H1S Software Engineering II

2.1 Component-based SR (COTS)
COTS = Component-off-the-shelf, shrink-wrap software
• Components are modules with high intra-component cohesion and

low inter-component coupling (modularizing)
• Components hide implementation details and only expose abstract

declarations (information hiding)
• Components can be specified through interface definitions, such as

MIL, IDL, ADL, WSDL (abstraction)
• Components can be indexed in program libraries, such as Windows

registries, Linux RPMs, sourceforge, UDDI (classification)
• Components communicate through standardized protocols, such as

DCOM,CORBA/RPC,JavaRMI,SOAP (selection)
• Components can be tuned to perform specialized tasks, such as

WS-policy (specialization)
• Components can be composed to perform complex tasks, using for

example, Shared libraries, WSFL/BPEL (integration)

Spring 2005 ECE450H1S Software Engineering II

2.1 component-based SR

Web service composition

code skeleton:

Set result;
Vector row;
amazonResults =run amazonService on ISBN;
For each element in amazonResults {

chapterResults =run ChaptersService on ISBN;,
For each element in chaptersResults {
row.add(amazonResults.price1,

ChapterResults.price2,
amazonResults.rate);

}
result.add(row )

}
return result;

amazonService

V1(ISBN, pPrice1, Rate) : -
AmazonT1(ISBN, price1),
AmazonT2(ISBN, rate, comment).

ChaptersService

V2(ISBN, price2): -
chaptersT3(ISBN , price2)

Q(ISBN, Price1, Price2, Rate): -
V1(ISBN, Price1, Rate),
V2(ISBN, Price2)

Input: ISBN
Output: Price1, Price2, rate

Q(ISBN, Price1, Price2, Rate) : -
AmazonT1(ISBN, Price1),
AmazonT2(ISBN, rate, comment),
ChaptersT3(ISBN , Price2)

�������

���	���
����
������


��������
�����������


�����������	���
�����


Input: ISBN
Output: pPrice1, rate

Input: ISBN
Output: pPrice2

Spring 2005 ECE450H1S Software Engineering II

Consideration for SR
• Abstraction: Use WSDL+Datalog+SQL to formally

describe the syntax + semantics + pragmatics of a web
service interface (c.f. less abstract WSDL+OWL-
S+BPEL approach)

• Classification: UDDI web service for the query, e.g.
xmethods

• Selection: query rewriting to convert the composite web
service into constituent ones

• Specialization: passing parameters through SOAP
messages

• Integration: using the web services as user-defined
functions in SQL (DB2)

[WSC] J. Lu, Y. Yu, J. Mylopoulos. “A lightweight approach to web service
sythesis”. WIRI, 2005.

Spring 2005 ECE450H1S Software Engineering II

2.2 Quality-based SR
• Most existing literature focuses SR on

functionalities, as represented by
component-based reuses

• Quality-based SR takes a new perspective
on non-functionalities, as they are
“tangled” with functionalities, one needs to
separate them from the components to
make it reusable assets

• Aspect-oriented SR aiming at just that!
[QBSR] J.C.S.P. Leite, Y. Yu, L. Liu, E.S.K. Yu, J. Mylopoulos. Quality-

based Software Reuse. CAiSE. 2005.



Spring 2005 ECE450H1S Software Engineering II

Towards QBSR

��
��
��
��

�	
	

�

�
�
�
���
�
�
�
��
�	


�
�
�

�



��
�

��
��

�
�

�

��
��
��
��
��

Spring 2005 ECE450H1S Software Engineering II

Abstraction: the Q7 language
• Q7 = 7 questions, 5W2H: (When, Who, Why,

What, Where, How, How much)
• 5W2H is the core idea for the Quality

Movements (adopted by the Japanese car
industry)

• Q7 are useful to elicit and represent knowledge
for quality attributes

• The idea of object-oriented (what), goal-oriented
(why), agent oriented (who), aspect-oriented
(where), testing-oriented (when), non-functional
requirements framework (how much) all root
deeply in the Q7 language

Spring 2005 ECE450H1S Software Engineering II

2.2.1 Q7 language for quality reuse
Who=Agent/Aspect/

Viewpoint Why=Goal/
Softgoal/Task

What=Topic

How=Advices

How much=Effects

Where=pointcuts

When=Claims

<car>::design { &
design[wheels]
design[shape] { &

(true)=>design[head] => ++widening
(true)=>design[body] => ++constant
(true)=>design[tail] => ++narrowing

} => ++streamline
design[engine] => ++powerful

}
speed { &

streamline
powerful

}
streamline{ &

widening
constant
narrowing

} => ++ beauty

??

Spring 2005 ECE450H1S Software Engineering II

Classification: introducing aspects



Spring 2005 ECE450H1S Software Engineering II

Where are the aspects?
<car>::design { &

design[wheels]
design[shape] { &

(true)=> design[head]
(true)=> design[body]
(true)=> design[tail]

}
design[engine]

}
<speed>::speed { &

streamline<=++*[shape]
powerful<=++*[engine]

}
<beauty>:: beauty {&

streamline<=++*[shape]
}
streamline { &

widening <=++*[head]
constant <=++*[body]
narrowing<=++*[tail]

}

<car>::design { &
design[wheels]
design[shape] { &

(true)=>design[head] => ++widening
(true)=>design[body] => ++constant
(true)=>design[tail] => ++narrowing

} => ++streamline
design[engine] => ++powerful

}
speed { &

streamline
powerful

}
streamline{ &

widening
constant
narrowing

} => ++ beauty

Spring 2005 ECE450H1S Software Engineering II

Separation of crosscutting
concerns

Spring 2005 ECE450H1S Software Engineering II

Build with reuse:
selection, specialization and integration

Spring 2005 ECE450H1S Software Engineering II

2.2.3 Linking Q7 to your code
/* @purpose SendEmail */
void send_email () {

/* @purpose ComposeEmail */
Document d = compose_body();
Address a = get_email_address();
/* @purpose SendOut */
send_out(a, d);

}

SendEmail { &

/* void send_email () { */
ComposeEmail
/* Document d = compose_body();
Address a = get_email_address(); */
SendOut

/* send_out(a, d); */

}

A JAVA PROGRAM

A Q7 “PROGRAM”



Spring 2005 ECE450H1S Software Engineering II

3. Your exercise
• Identify reusable parts from a legacy system
• If you would build for reuse, what would you do

for the web service module? Imagine a scenario
where your web service can be reused by some
teams’ client programs.

• If you would build with reuse, what would you do
for the graph editor client module? Imagine a
scenario where your client program can reuse
some teams’ web service modules.

• Use Q7 to categorize your non-functional
requirements and reuse some of them through
aspects

Spring 2005 ECE450H1S Software Engineering II

4. Summary
• Reuse and Reusability
• How to improve reusability

build-for-reuse versus build-with-reuse
• Example of how to reuse through

components
web service-oriented software reuse

• Example of how to reuse through aspects
quality-based software reuse

Spring 2005 ECE450H1S Software Engineering II

Further readings
[SR] Krueger. “Software Reuse”. ACM Survey. 1992.
[SReusability] R. Prieto-Diaz. Status Report: Software

Reusability. IEEE Software. 10(3): 61-66, 1993.
[NFR] L. Chung, E. Yu, J. Mylopoulos. The non-functional

requirements framework. 1999.
[ReusableAspects] S. Clarke, R. J. Walker. Composition

patterns: An approach to Designing Reusable Aspects.
ICSE. 2001

[WSC] J. Lu, Y. Yu, J. Mylopoulos. “A lightweight approach
to web service sythesis”. WIRI, 2005.

[QBSR] J.C.S.P. Leite, Y. Yu, L. Liu, E.S.K. Yu, J.
Mylopoulos. Quality-based Software Reuse. CAiSE.
2005.

Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A tutorial on componentization and Web

service composition
• How to deploy web services on the

Tomcat web server


