Lecture 7
Aspect-orientation (AO*)

A new paradigm in Software
Engineering

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering Il

Last lecture and tutorial ...

Software Quality Measurements

* We have shown the use of quality
measurements to monitor the progress of
software development

* The development/restructuring
(maintenance) activities (refactoring,
tuning, adding features) can be guided by
the metrics of softgoals

Spring 2005 ECE450H1S Software Engineering Il

Today ...

On Aspect Orientation

Today we explain the paradigm of aspect-
orientation

1. Concepts: What are aspects?

2. Practices: Aspect-orientation at large
— AOP: Aspect-oriented programming
— AOSD: Aspect-oriented software development
— AORE: Aspect-oriented requirements
engineering
— AOSR: Aspect-oriented software reuse (probably
next lecture)

3. A case study of AORE
4. Summary

Spring 2005 ECE450H1S Software Engineering Il

1. What are aspects?

1. Some design principles
Divide and conquer: problem solving/design principle
Modularization: high cohesion/low coupling
Separation of concerns
DRY: Don't Repeat Yourself
Increase the fan-in

2. Previous paradigms

70s — 80s:
Structured programming (Goto’s considered harmful) =>
Structured Analysis, Structured Design

80s — 90s:
Object-oriented programming (OOP) =>
OOA/OOD => UML

3. Why another paradigm ?

Since late 90s ...)
Separation of the crosscutting concerns

4. What are aspects?
— Modularizing the crosscutting concerns

Spring 2005 ECE450H1S Software Engineering Il

1.1 Some design principles

Structured programming

e What is structured program?
— A program has no more GOTO'’s

(1) A decomposition hierarchy from abstract to concrete:
Divide and Conquer, Structured Design;
(2) Don't Repeat Yourself, Factoring / Refactoring ...

— Only three kinds of structure prevails /\ /\
« Sequential
« If-then-else
« Loops
[Dijkstra: Goto considered harmful] / N\ e —
— In other words, every statement block has single-entry, single-exit as C C C
Hammock Graph
[Weiser: Program slicing]
* “Whenever possible, we wish to maximize fan-in during the design
process. Fan-in is the raison d’'étre of modularity. Each instance of
multiple fan-in means that some duplicate code has been avoided.” o T~
raison d'étre: grounds for existence
(http:/iwww.french-linguistics.co.uk/dictionary/)
[Yourdon & Constantine79] Structured Design (pg. 172, see also
http://wwwpa.win.tue.nl/wstomv/quotes/structured-design hum) \/
[parnas: Modularization, information hiding] c
Spring 2005 ECE450H1S Software Engineering Il Spring 2005 ECE450H1S Software Engineering Il
Exam p|e 1.1 Some design principles
‘ Object-oriented programming
« Everything is an object (Smalltalk)
< . . - . .
MOVE UNTIL Information hiding / Encapsulation: object
VALUE

FIND %

REMOVALL

STRINGCOMH

Yourdon & Constantine, SD, pg.168

Spring 2005 ECE450H1S Software Engineering Il

groups related data and the operations on the
data into a module
Object has structural relationships:

— inheritance: generalization / specialization:
iIsA/instanceOf

— aggregation : hasA / isPartOf

— associations: 1-to-many, 1-to-1, many-to-many

In the end, the structurally-related objects are
packaged into components

Spring 2005 ECE450H1S Software Engineering Il

1.2 Aspect-orientation

« Component language
(any structured or OO language, even
corresponding design and requirements
specification)

» What are crosscutting concerns?

» An aspect language
— What are joinpoints?
— What are pointcuts?
— What are advices?

» A weaving mechanism

Spring 2005 ECE450H1S Software Engineering Il

Aspect concepts

» Concepts:

cross-cutting, AOP hides the join points
component, aspect,

join points, weaving

\/ AN —
V\/
C Aspect
Spring 2005 ECE450H1S Software Engineering Il

AOP (THE MAGIC)

Yl

<

MOVE UNTIL

VALUE

SCAN
FIND ,

REMOVALL

STRINGCOMH

Spring 2005 ECE450H1S Software Engineering Il

AOP (NOT REALLY MAGIC)

<

VALUE “

MOVE UNTIL

FIND SCAN

2

REMOVALL

FIND: AT LINE 5
VALUE: AT LINE7
SCAN: AT LINE 15
MOVE UNTIL: AT LINE 8
REMOVALL: AT LINE 2

STRINGCOMP

Spring 2005 ECE450H1S Software Engineering Il

ApplicationSession

ServerSession

Spring 2005

AOP example

StandardSession

ceptor tandar Standar

ServerSessionManager

aspectj.org

ECE450H1S Software Engineering Il

Stan Wagon'’s bike

My square-wheel
bike, on permanent
display at Macalester
College. This B
construction, believe 1,
it or not, earned me 4
an entry in "Ripley's
Believe It or Not";
beats standing in a
block of ice for three
days or growing
three-foot long
fingernails.

http://www.stanwago
n.com

Stan Wagon
(wagon@macalester.e
du), Prof. of
Mathematics and
Computer Science,
Macalester College,
St. Paul, Minnesota

Software Engineering Il

Spring 2005 ECE450H1S

Spring 2005

The Weaver

X
MOVE UNTIL
VALUE ‘;‘
‘
REMOVALL

FIND: AT LINES 4
VALUE: AT LINE7
SCAN:ATLINE1S ¢
MOVE UNTIL: AT LINE 8
EMOVALL: AT LINE 2

Yourdon & Constantine, SD, pg.168
ECE450H1S Software Engineering Il

Aspect@

aspect Logging {

pointcut NeedLogging():
call(void FIND()) ||
call(void MOVEUNTIL()) ||
call(void REMOVALL) | |
call(void SCAN() | |
call(void VALUE());

after() returning: NeedLogging() {
STRINGCOMP();
b

}

Spring 2005 ECE450H1S Software Engineering Il

2. Aspect-orientation at large

2.1 Aspect-oriented Programming
* It permeates into almost every popular
high-level programming languages
* Java
Hyper/J, Aspectd, AJDT, JBoss

o C/C++/C#
AspectC/C++, C#

 PHP
AOPHP, AspectPHP
... and many many more: see AOSD.NET

Spring 2005 ECE450H1S Software Engineering Il

Every AOP mechanism
has to support

» Definition and representation of aspects
— Definition of Advices in the component language
— Definition of Joinpoints in regular expressions

¢ Optionally, they can introduce new data members, changing the
structures of components

— Representation: New keywords, New directives, XML, but never
change the code of components directly
* Implementing a weaver

— As preprocessor => generates woven components in the
component language (AspectC, AOPHP)

— As instrumenting compiler => generates woven components in
the bytecode for the languages supporting reflection (AspectJ)

— As interpretator => interpreting the woven code on-the-fly
(AspectPHP)

Spring 2005 ECE450H1S Software Engineering Il

2. Aspect-orientation at large

2.2 Aspect-Oriented SD

AO includes the whole lifecycle of SE
— http://www.aosd.net

* There is a conference AOSD

« There are workshops on Early Aspects at AOSD,
OOPSLA, ICSE

» Hot topics related to all other SD technologies
— Aspect-oriented Refactoring

Aspect Mining

Aspect-oriented Debugging

Aspect-oriented Testing

Aspect-oriented Slicing

Aspect-oriented Model Checking

Spring 2005 ECE450H1S Software Engineering Il

2. Aspect-orientation at large

2.3 Aspect-Oriented RE

» Lessons learnt from success stories
— SP =>SA
— OOP => O0A
— Why not AOP => AOA?
» Separation of crosscutting concerns earlier

 Avoid duplication as early as possible
* Identify aspects before mining them from code

» Discover aspects in the early requriements
— From structured requirement documents
— From unstructured (textual) documents

» Verify discovered (candidate) aspects in AOP

Spring 2005 ECE450H1S Software Engineering Il

3. A Case Study on AORE

1. Quickly go through goal-oriented
requirements engineering basics

2. A requirements engineering process to
elicit early aspects (goal aspects)

3. A reverse engineering exercise to
identify candidate aspects (code
aspects)

4. Linking goal aspects with code aspects

Spring 2005 ECE450H1S Software Engineering Il

3.1 Requirements Goal Models

» A goal model is an intentional model

* A goal can be decomposed into AND or OR
subgoals

» A goal model has both hard and soft goals

— A hard goal can be either satisfied or denied
— A soft goal is partially satisfied => satisficed

» Soft goal uses HELP (+), HURT (-), MAKE (++)
or BREAK (--) correlations to show patrtial
satisfaction (satisfice) from a set of subgoals

Spring 2005 ECE450H1S Software Engineering Il

3.1.1 Hard goal model

Gareapiial Mdodaling GECEET

j osition o Schedule
"“'OR decomposition g reeting

Generate

Collect
e schedule

constraints

Colllect
timetables

Collect other
constraints
Interactively

Share “ v
timetables \
‘/9 Marual 1y Automatically
Person 0
% cocllect
L7 From
System #1L From
collects Initiator
cnly
By all
means
By email
& 2004 Jodr Mfdoroucs Jterntivis e Agants — €

Gorpaptiad Modeding CECEENT

V. Usability

G 2004 Jofur Myopoulos Jntritions s Agents — &

3.1.2 Soft goal model

e =

User
ilorability

Information

Sharing Ezse of
Learning
User
F1 ibidit
SrinEE Programpability

Allow
e / f

Settings +
Modularity
+ i+ +
Ellow +
Changs ¢,

Colours mllow

Error
Bvoidancs

Change &f Allow Tis User-Defined

Gtate thange.af Components Writing Tool
Language

3.1.3 Goal-Oriented
Requirements Analysis

FS: Fully satisfied FS: Fully satisficed
T: satisfied N o PS: Partially satisfied T: satisfied =gn, PS: Partially satisficed
F: denied [l.:)_F]’ UN: Unknown F: denied Fs UN: Unknown
T U: unknown PD: Partially denied T PD: Partially denied
FD: Fully denied FD: Fully denied

CF: Conflict CF: Conflict

Goal:
Call a Friend

Software Engineering Il Software Engineering Il

3.1.4 V-graph

In order to reason about interplay of %
functional and non-functional ‘%9
requirements, we create a particular type %
of goal model, called V-graph

/

< Task >

Spring 2005 ECE450H1S Software Engineering Il Spring 2005 ECE450H1S Software Engineering Il

3.2 The Process

— Start from root-level goals and soft goals,
correlate and decompose them into a V-graph

— A goal analysis based on the label
propagation algorithm is used to check for:

* Conflicts
* Inconsistencies
* Denial of any goal or soft goals

— After resolving the problems, a proper V-
graph is obtained

— Then we list the candidate aspects from the
V-graph

Spring 2005 ECE450H1S Software Engineering Il

resolve
conflict

Consistent
e o
Satisfied &

satisficed x

list

w2 aspects
> Ylaspects
inee

Software Eng

3.3 A Case Study

* Medi@Shop adapted from literature:

Castro, Kolp, Mylopoulos, Towards

requirements-driven information systems

engineering: the Tropos project, Journal of

Information Systems, 2002.

Can we find aspects from early requirements?
» osCommerce studied from an LAMP (Linux,

Apache, MySQL, PHP) Open-Source project:

(http://www.oscommerce.com)

Do they manifest in the developed software?

Spring 2005 ECE450H1S Software Engineering Il

= =]
| Eila Edi a Tools |_&e
J e Btk — g d ~ =] (@] a |) search ”“ Coogle - | =1| Sbsearch\“unks =2
| sddress [{#] hepiymydivect. zapte . orgicatalagr =1 =g
-y -
<P oscommerce < B @ =
T = 2
VWhat's %
aaaaaaaaa (] o ikarn
Softuare-> cay
DDDDDDDDDDD 17y wielcome would you like to log vourself in? Or would you
prefer to create an account?
uuuuuuuuuuuuuuuu
E-Quick sends quality phone cards to your hands., | L@seristaioos
IF‘IEasE Select vi

Laserlet 1100k

Duplications in code

E5 Compare contents _15 x|
[z collea php 55 |[Zhcolleaguestiuliotoscommerce-2 2msZ\cataloghshopping_cart.php >
Compare. | Hemdifersnce | Previous diference | Font | 4| @8] o[Saseeneiie
=] [1:=reme

zopm

3 $Ta: snopping carc.pmp,v 1.73 2003/05/09 23:03:56 hpdl Exp $

4

s E-Comuerce Solucions

-

2:

5:

5

1 Public License

require('includes/application top.php’l: : reemize("includes/applicaticn top.phe');

require (DIR_WS_LANGUASES . jlanmguags . '/' . FILENAME_PRIVACT); : require(DIR_WS_DANGUAGES . $langusge . '/’ . FILENRME SHOFPING_CAR

breaderuub->add (MAVBAR_TITLE, tep_href limk: (FILENAME BRIVACT)): $hraadeyuub-sadd (NAVBAR_TITLE, tep href link (FILENAME SHOPPING_CAR

ctype html public -y
<Tphp echo HTHL_EARANS;

ane=ttext heml; charset=<7php "t html: charsst=<iphp ec

1ESL') 7 HITES_SERVER 4 1 ETTPE_SERVER : HT
f='stylesheet oss's 5 n

s

ane=ron

. 'header.php'i; 2=

"3" cellpadding="3">
valign="top"><table borders

. teolumn left php'): 2=

<td Width="100%" valign="top"><table bordsr="0" width="1083" o

" width="100%" cellspacing="0" cellpaddi

able bordsr="0" widch="100%" cellspacing="0" callpad

44z <zxs

44 -
as: atd class='pageHeading"><7php scho HEADINC TITLE: 7»</7]| as- 2td class='pageHeading'><7phe scho HEADINC TITLE; 7»</td
< » . >

A0 differences found

Candidate code aspects in the code
Clone detection (by Semantic Design,Inc)

LOC | #clones | Code description Need refactoring?
1 319 | require($path . $file); No
1 260 | echo $expression; No

559 2 | class email; No
2 292 | define ($variable, $value); No
76 2 | class mime; No
4 67 | messageStack->add ($error); Yes (NFR)
15 15| Postal code zone check Yes (FR)

22 10 | require(application_top.php); Yes (FR/NFR)
SSL check
3 64 | Set HTML head CHARSET Yes (NFR)

Spring 2005 ECE450H1S Software Engineering Il

3.4 ldentifying goal aspects
Correlate initial goals and softgoals

B0
B

-~
Frant [shop] =
Front [shop] ——_ N i
St E- .
~
Rdsponsiveness ReEsponsivencgs
transactioy transactioy

TO T1
Spring 2005 ECE450H1S Software Engineering Il

J

Inconsistent decomposition

Security sponsivensks
[eystem transaat
E@ ~p
4
Helpr Ps

20N
7 Y
-~ =

~ o
\\\\/’ 5“@
NN [sysizmk,
FEAY =
N

TN
-~
N ke
N\

[zhop]
-~

”~
-~
Make sabiliw
P - =
L =]
Front [shop] o)
Sed S ake
~ Lz .

Managing
Ishop]

<

-

~ \-?IH I’
~ & sabiliffr
L

S UMaky

= ~
i \~_Make\\

Infarrming N

~
i ! ~
e
T1 T

Spring 2005 ECE450H1S Software Engineering Il

Resolving inconsistency

G

= =

OppIng
[shop]

Managing
[shap]

Informing
[ghap]

Spring 2005

ECE450H1S

Software Engineering Il

sponsivenehs
Make _Hiransacti
> =

Infarrning
[shop]

Spring 2005

Shopping
[shog] ™ J
~

Further decomposition

Make
Preparing R
car, productf — T T T T T 7 -
And A
N
N
Aoy
N N
N
Responsiveneds e
Wake _Hiransactioy Y - _ Wake
ke kN =
A AL Make =
a A e By =
'\\ ~ >

LY S
NN T ke
Managing (5 \(- N
[product] = \” \ \\\Ma
~

ECE

sponsiveneds
transactioy

Make 3
—_——— - — — — Ffsponsiveneds
TR = = =Htransactiog

Selecting
And fitern, car]
Preparing ‘ e
cart, product) Adding [1em) se = — — ==
cart] ~
And, Xy %
\ e
etting Y
o ‘

>N RS N o, -
oginiLogoul Sy, N \\ e Make
faccourt] b =Moo Ia s =~
N AT s =
vq‘ < \ % e
Thjd Clearing A
[car] fa >)

~
N- o, T = e
. Updating —2 - —"; N :<‘,\— "M ; -
% [aceount, ST AN, - N, e
produc PO TR

Updating 'y,
[product,
stock]

Managing
[product]

et
ot Managing
[account]

a
Eearcmng -
[stock] -
Reporting &
[siock]) =
) -

ol Reporting
[account]

B
Reporting
[product]

ECE450H1S

Spring 2005 ;)iware Engineering Il

And

shapping
Ishop]

Spring 2005

o
. S Je——{(eznpa @ 5
h stor 7
74>
Reparting ")
. s [siock] "’

!’
N

[produc]
<4
D 7
(=
[stock] ~)7 V/
N

>SS
-Nawgaung K o<l >0
And [stockl B> ‘
" ‘ S

17

Reporting Y 8\ %
S Renur\mﬂ
ek, g

Reporting
[product]

QZJQWare Engineering I

ECE450H1S

Resolving Conflicts

)
—r Scessbw(pn
ookie
: m_)F [car] tranzaction
-~ o 0
=~ \ngkb J_]J
lﬁ;p.;nsiven Responsiveneas
Huniﬂransact\
\Z
-

e

Transaction
[product]

Transaction
[stock]

Trangaction
[stock]

T6 T7

Spring 2005 ECE450H1S Software Engineering Il

Result candidate EB?spects

nnnnnnnnn
cccccc

ssssss
cccccc

atin » *4}
' SN
4 {can) /‘@ \"‘_/ \
Yy) Yty &_Q'

epotin
::::::

Goal Aspects

goal aspect Responsiveness[transaction] {
pointcut transaction():
Preparing[cart,product]) ||
CheckingOut[cart, product, account, stock]);
required () by: transaction() {
SessionCookie[transaction]();
}
¥
» AspectJ-like syntax

» Allow weaving the operationalized tasks with goals
specified in the pointcut

Spring 2005 ECE450H1S Software Engineering Il

Your exercise

» Reverse Engineering
Identify some aspects in the OpenOME

— Clone-detection or Callgraph extraction
— Goal analysis

» Forward Engineering
— Implement some new NFR through AspectJ

Spring 2005 ECE450H1S Software Engineering Il

4, Summary

» The concepts of aspect-orientation

* The practise of AOP, AOSD, AORE,
AOSR

» A Case study of AORE

Spring 2005 ECE450H1S Software Engineering Il

Further readings

[AOP] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. lrwin.
“Aspect oriented programming”. LNCS,
1241:220--242, Oct. 1997.

[AORefactoring] C. Zhang, H.-A. Jacobsen.
“Refactoring Middleware with Aspects”. TPDS
14(1):1058-1073. 2003

[AOMining] C. Zhang, H.-A. Jacobsen. “PRISM is
research in Aspect Mining”. OOPSLA, 2004.

[AORE] Y. Yu, J.C. Leite, J. Mylopoulos. “From
goals to aspects: discovering aspects from
goal models”. RE’04, 2004.

Spring 2005 ECE450H1S Software Engineering Il

What's next ...

A tutorial on aspect-oriented programming
tools

— Aspectd
— Eclipse/AJDT
— Visualizing Aspects
— Aspect mining tool
» A lecture on (aspect-oriented) Software
Reuse
— Q7 in the OpenOME

Spring 2005 ECE450H1S Software Engineering Il

