Lecture 7
Aspect-orientation (AO*)

A new paradigm in Software
Engineering

Copyright © Yijun Yu, 2005
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Last lecture and tutorial ...

Software Quality Measurements

* We have shown the use of quality
measurements to monitor the progress of
software development

* The development/restructuring
(maintenance) activities (refactoring,
tuning, adding features) can be guided by
the metrics of softgoals
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Today ...

On Aspect Orientation

Today we explain the paradigm of aspect-
orientation

1. Concepts: What are aspects?

2. Practices: Aspect-orientation at large
— AOP: Aspect-oriented programming
— AOSD: Aspect-oriented software development
— AORE: Aspect-oriented requirements
engineering
— AOSR: Aspect-oriented software reuse (probably
next lecture)

3. A case study of AORE
4. Summary

Spring 2005 ECE450H1S Software Engineering Il

1. What are aspects?

1. Some design principles
Divide and conquer: problem solving/design principle
Modularization: high cohesion/low coupling
Separation of concerns
DRY: Don't Repeat Yourself
Increase the fan-in

2. Previous paradigms

70s — 80s:
Structured programming (Goto’s considered harmful) =>
Structured Analysis, Structured Design

80s — 90s:
Object-oriented programming (OOP) =>
OOA/OOD => UML

3. Why another paradigm ?

Since late 90s ... )
Separation of the crosscutting concerns

4.  What are aspects?
—  Modularizing the crosscutting concerns
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1.1 Some design principles

Structured programming

e What is structured program?
— A program has no more GOTO'’s

(1) A decomposition hierarchy from abstract to concrete:
Divide and Conquer, Structured Design;
(2) Don't Repeat Yourself, Factoring / Refactoring ...

— Only three kinds of structure prevails /\ /\
« Sequential
« If-then-else
« Loops
[Dijkstra: Goto considered harmful] / N\ e —
— In other words, every statement block has single-entry, single-exit as C C C
Hammock Graph
[Weiser: Program slicing]
* “Whenever possible, we wish to maximize fan-in during the design
process. Fan-in is the raison d’'étre of modularity. Each instance of
multiple fan-in means that some duplicate code has been avoided.” o T~
raison d'étre: grounds for existence
(http:/iwww.french-linguistics.co.uk/dictionary/)
[Yourdon & Constantine79] Structured Design (pg. 172, see also
http://wwwpa.win.tue.nl/wstomv/quotes/structured-design hum) \/
[parnas: Modularization, information hiding] c
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Exam p|e 1.1 Some design principles
‘ Object-oriented programming
« Everything is an object (Smalltalk)
< . . - . .
MOVE UNTIL  Information hiding / Encapsulation: object
VALUE

FIND %

REMOVALL

STRINGCOMH

Yourdon & Constantine, SD, pg.168

Spring 2005 ECE450H1S Software Engineering Il

groups related data and the operations on the
data into a module
Object has structural relationships:

— inheritance: generalization / specialization:
iIsA/instanceOf

— aggregation : hasA / isPartOf

— associations: 1-to-many, 1-to-1, many-to-many

In the end, the structurally-related objects are
packaged into components
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1.2 Aspect-orientation

« Component language
(any structured or OO language, even
corresponding design and requirements
specification)

» What are crosscutting concerns?

» An aspect language
— What are joinpoints?
— What are pointcuts?
— What are advices?

» A weaving mechanism
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Aspect concepts

» Concepts:

cross-cutting, AOP hides the join points
component, aspect,

join points, weaving

\/ AN —
V\/
C Aspect
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AOP (THE MAGIC)

Yl

<

MOVE UNTIL

VALUE

SCAN
FIND ,

REMOVALL

STRINGCOMH
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AOP (NOT REALLY MAGIC)

<

VALUE “

MOVE UNTIL

FIND SCAN

2

REMOVALL

FIND: AT LINE 5
VALUE: AT LINE7
SCAN: AT LINE 15
MOVE UNTIL: AT LINE 8
REMOVALL: AT LINE 2

STRINGCOMP
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ApplicationSession

ServerSession

Spring 2005

AOP example

StandardSession

ceptor tandar Standar

ServerSessionManager

aspectj.org
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Stan Wagon'’s bike

My square-wheel
bike, on permanent
display at Macalester
College. This B
construction, believe 1,
it or not, earned me 4
an entry in "Ripley's
Believe It or Not";
beats standing in a
block of ice for three
days or growing
three-foot long
fingernails.

http://www.stanwago
n.com

Stan Wagon
(wagon@macalester.e
du), Prof. of
Mathematics and
Computer Science,
Macalester College,
St. Paul, Minnesota

Software Engineering Il
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The Weaver

X
MOVE UNTIL
VALUE ‘;‘
‘
REMOVALL

FIND: AT LINES 4
VALUE: AT LINE7
SCAN:ATLINE1S ¢
MOVE UNTIL: AT LINE 8
EMOVALL: AT LINE 2

Yourdon & Constantine, SD, pg.168
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Aspect@

aspect Logging {

pointcut NeedLogging():
call(void FIND()) ||
call(void MOVEUNTIL()) ||
call(void REMOVALL) | |
call(void SCAN() | |
call(void VALUE());

after() returning: NeedLogging() {
STRINGCOMP();
b

}
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2. Aspect-orientation at large

2.1 Aspect-oriented Programming
* It permeates into almost every popular
high-level programming languages
* Java
Hyper/J, Aspectd, AJDT, JBoss

o C/C++/C#
AspectC/C++, C#

 PHP
AOPHP, AspectPHP
... and many many more: see AOSD.NET
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Every AOP mechanism
has to support

» Definition and representation of aspects
— Definition of Advices in the component language
— Definition of Joinpoints in regular expressions

¢ Optionally, they can introduce new data members, changing the
structures of components

— Representation: New keywords, New directives, XML, but never
change the code of components directly
* Implementing a weaver

— As preprocessor => generates woven components in the
component language (AspectC, AOPHP)

— As instrumenting compiler => generates woven components in
the bytecode for the languages supporting reflection (AspectJ)

— As interpretator => interpreting the woven code on-the-fly
(AspectPHP)
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2. Aspect-orientation at large

2.2 Aspect-Oriented SD

AO includes the whole lifecycle of SE
— http://www.aosd.net

* There is a conference AOSD

« There are workshops on Early Aspects at AOSD,
OOPSLA, ICSE

» Hot topics related to all other SD technologies
— Aspect-oriented Refactoring

Aspect Mining

Aspect-oriented Debugging

Aspect-oriented Testing

Aspect-oriented Slicing

Aspect-oriented Model Checking
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2. Aspect-orientation at large

2.3 Aspect-Oriented RE

» Lessons learnt from success stories
— SP =>SA
— OOP => O0A
— Why not AOP => AOA?
» Separation of crosscutting concerns earlier

 Avoid duplication as early as possible
* Identify aspects before mining them from code

» Discover aspects in the early requriements
— From structured requirement documents
— From unstructured (textual) documents

» Verify discovered (candidate) aspects in AOP
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3. A Case Study on AORE

1. Quickly go through goal-oriented
requirements engineering basics

2. A requirements engineering process to
elicit early aspects (goal aspects)

3. A reverse engineering exercise to
identify candidate aspects (code
aspects)

4. Linking goal aspects with code aspects
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3.1 Requirements Goal Models

» A goal model is an intentional model

* A goal can be decomposed into AND or OR
subgoals

» A goal model has both hard and soft goals

— A hard goal can be either satisfied or denied
— A soft goal is partially satisfied => satisficed

» Soft goal uses HELP (+), HURT (-), MAKE (++)
or BREAK (--) correlations to show patrtial
satisfaction (satisfice) from a set of subgoals
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3.1.1 Hard goal model
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3.1.3 Goal-Oriented
Requirements Analysis

FS: Fully satisfied FS: Fully satisficed
T: satisfied N o PS: Partially satisfied T: satisfied =gn, PS: Partially satisficed
F: denied [l.:)_F]’ UN: Unknown F: denied Fs UN: Unknown
T U: unknown PD: Partially denied T PD: Partially denied
FD: Fully denied FD: Fully denied

CF: Conflict CF: Conflict

Goal:
Call a Friend
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3.1.4 V-graph

In order to reason about interplay of %
functional and non-functional ‘%9
requirements, we create a particular type %
of goal model, called V-graph

/

< Task >
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3.2 The Process

— Start from root-level goals and soft goals,
correlate and decompose them into a V-graph

— A goal analysis based on the label
propagation algorithm is used to check for:

* Conflicts
* Inconsistencies
* Denial of any goal or soft goals

— After resolving the problems, a proper V-
graph is obtained

— Then we list the candidate aspects from the
V-graph
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resolve
conflict

Consistent
e o
Satisfied &

satisficed x

list

w2 aspects
> Ylaspects
inee

Software Eng

3.3 A Case Study

* Medi@Shop adapted from literature:

Castro, Kolp, Mylopoulos, Towards

requirements-driven information systems

engineering: the Tropos project, Journal of

Information Systems, 2002.

Can we find aspects from early requirements?
» osCommerce studied from an LAMP (Linux,

Apache, MySQL, PHP) Open-Source project:

(http://www.oscommerce.com)

Do they manifest in the developed software?
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Duplications in code

E5 Compare contents _15 x|
[z collea php 55 |[Zhcolleaguestiuliotoscommerce-2 2msZ\cataloghshopping_cart.php >
Compare. | Hemdifersnce | Previous diference | Font | 4| @8] o[ Saseeneiie
=] [ 1:=reme

zopm

3 $Ta: snopping carc.pmp,v 1.73 2003/05/09 23:03:56 hpdl Exp $

4

s E-Comuerce Solucions

-

2:

5:

5

1 Public License

require('includes/application top.php’l: :  reemize("includes/applicaticn top.phe');

require (DIR_WS_LANGUASES . jlanmguags . '/' . FILENAME_PRIVACT); :  require(DIR_WS_DANGUAGES . $langusge . '/’ . FILENRME SHOFPING_CAR

breaderuub->add (MAVBAR_TITLE, tep_href limk: (FILENAME BRIVACT)): $hraadeyuub-sadd (NAVBAR_TITLE, tep href link (FILENAME SHOPPING_CAR

ctype html public -y
<Tphp echo HTHL_EARANS;

ane=ttext heml; charset=<7php "t html: charsst=<iphp ec

1ESL') 7 HITES_SERVER 4 1 ETTPE_SERVER : HT
f='stylesheet oss's 5 n

s

ane=ron

. 'header.php'i; 2=

"3" cellpadding="3">
valign="top"><table borders

. teolumn left php'): 2=

<td Width="100%" valign="top"><table bordsr="0" width="1083" o

" width="100%" cellspacing="0" cellpaddi

able bordsr="0" widch="100%" cellspacing="0" callpad

44z <zxs

44 -
as: atd class='pageHeading"><7php scho HEADINC TITLE: 7»</7]| as- 2td class='pageHeading'><7phe scho HEADINC TITLE; 7»</td
< » . >

A0 differences found

Candidate code aspects in the code
Clone detection (by Semantic Design,Inc)

LOC | #clones | Code description Need refactoring?
1 319 | require($path . $file); No
1 260 | echo $expression; No

559 2 | class email; No
2 292 | define ($variable, $value); No
76 2 | class mime; No
4 67 | messageStack->add ($error); Yes (NFR)
15 15| Postal code zone check Yes (FR)

22 10 | require(application_top.php); Yes (FR/NFR)
SSL check
3 64 | Set HTML head CHARSET Yes (NFR)
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3.4 ldentifying goal aspects
Correlate initial goals and softgoals

B0
B

-~
Frant [shop] =
Front [shop] ——_ N i
St E- .
~
Rdsponsiveness ReEsponsivencgs
transactioy transactioy

TO T1
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Inconsistent decomposition
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Resolving inconsistency

G

= =

OppIng
[shop]

Managing
[shap]

Informing
[ghap]
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And

shapping
Ishop]
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Resolving Conflicts

)
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Result candidate EB?spects

nnnnnnnnn
cccccc

ssssss
cccccc

atin » *4}
' SN
4 {can) /‘@ \"‘_/ \
Yy ) Yty &_Q'

epotin
::::::

Goal Aspects

goal aspect Responsiveness[transaction] {
pointcut transaction():
Preparing[cart,product]) ||
CheckingOut[cart, product, account, stock]);
required () by: transaction() {
SessionCookie[transaction]();
}
¥
» AspectJ-like syntax

» Allow weaving the operationalized tasks with goals
specified in the pointcut
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Your exercise

» Reverse Engineering
Identify some aspects in the OpenOME

— Clone-detection or Callgraph extraction
— Goal analysis

» Forward Engineering
— Implement some new NFR through AspectJ
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4, Summary

» The concepts of aspect-orientation

* The practise of AOP, AOSD, AORE,
AOSR

» A Case study of AORE
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Further readings

[AOP] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. lrwin.
“Aspect oriented programming”. LNCS,
1241:220--242, Oct. 1997.

[AORefactoring] C. Zhang, H.-A. Jacobsen.
“Refactoring Middleware with Aspects”. TPDS
14(1):1058-1073. 2003

[AOMining] C. Zhang, H.-A. Jacobsen. “PRISM is
research in Aspect Mining”. OOPSLA, 2004.

[AORE] Y. Yu, J.C. Leite, J. Mylopoulos. “From
goals to aspects: discovering aspects from
goal models”. RE’04, 2004.
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What's next ...

A tutorial on aspect-oriented programming
tools

— Aspectd
— Eclipse/AJDT
— Visualizing Aspects
— Aspect mining tool
» A lecture on (aspect-oriented) Software
Reuse
— Q7 in the OpenOME
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