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Last lecture and tutorial …

Software Refactoring

• We showed the use of refactoring
techniques on understanding software,
improving its maintainability

• We explained the relationship between
refactoring, tuning and restructuring

• Any questions related to design patterns
and refactoring so far?

• ……
• The result of such improvements can be

measured quantitatively

Spring 2005 ECE450H1S Software Engineering II

Today …

On Software Quality
Measurements

1. What are measurements?
2. Quality attributes and their metrics

– Performance metrics
– Complexity metrics

3. How do you use these numbers?
– Statistic Analysis to gain understanding on projects
– Management: Monitoring the evolution of software

development
4. Summary

References
N. Fenton and S. L. Pfleeger. “Software Metrics – A rigorous and practical approach”.
International Thompson Computer Press. 1996

Spring 2005 ECE450H1S Software Engineering II

1. What are measurements?

• A relation of the real world is “reflected” in
that of the math world
– If A is taller than B, B is taller than C, then A is

taller than C

• Preserve the relations in your metrics
• Software measurements

– Software size?
LOC
LOC – comments
LOC in Python vs. LOC in Fortran?
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2. Quality that matters
• Company A beats company B, because of which reason

do you think?
(1) A deliver more features than B
(2) A has larger market share
(3) A deliver software with fewer bugs
(4) A is cheaper

• Killer applications
– Browser
– Chips
– Desktop
– Operating System
– Database Systems

• Andy Grove’s story in his book “Only paranoid can
survive”
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A few more remarks
• Producing quality products has been

identified as a key factor in the long term
success (i.e. profitability) of organizations

• Quality doesn't happen by chance
• Quality control must be embedded into the

process.
• The quality movement

Spring 2005 ECE450H1S Software Engineering II

What is software quality?
• Software quality is defined as

– Conformance to explicitly stated functional
[correctness] and non-functional requirements
[performance, security, maintanability, usability, etc.]
i.e. Build the software described in the system
Requirements and Specifications

– Conformance to explicitly documented development
standards, i.e. Build the software the right way

– Conformance to implicit characteristics that are
expected of all professionally developed software, i.e.
Build software that meets the expectations of a
reasonable person: in law this is called the principle of
merchantability
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Managing Software Quality
1. Define what quality means for large software

systems
2. Measure Quality of a complete or partial

system
3. Devise actions to improve quality of the

software
– Process improvements

• Process Performance improvements => Product
Productivity improvements

– Product improvements
4. Monitor Quality during development

– Software Quality Assurance - a team devoted to
encouraging and enforcing quality standards
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Some quality attributes and metrics

• Performance
• Reliability
• Correctness
• Maintainability
• Security
• Interoperability
• Usability
• Extensibility
• Reusability
• -illities …

• Time, Space
• MTBF
• # Bugs / Size
• Size, Structureness
• Counter analysis
• Integration
• …
• …
• …
• …
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2.1 Performance
It is h/w bound, but can be improved by s/w
• Moore’s Law = 2x speedup every 18 months
• Software improvement for most cases are also

possible (algorithms, optimizing compiler)
• It is sometimes more expensive to apply

hardware improvements, sometimes more
expensive to apply software improvements

• Advice: study the bottlenecks in your program
using a profiler
– parallelism
– locality
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2.1.1 Moore’s law (Intel)
Itanium 2 processor 410,000,000
Cell processor 234,000,000

http://www.intel.com/research/silicon/mooreslaw.htm
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2.1.2 Performance metrics
• Time, in relation to the input size

– CPU cycles, in relation to the input size
– Cache misses, in relation to the input size
– Network delay, system perf.

– Network throughput, system perf.

• Space, in relation to the input size
– Workload (memory footprint size), in relation

to the input size
– Network traffic, in relation to the input size
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2.2 Software Complexity

• Software code base has increasing
complexity – Lehman’s Law #2.

• As a result, the code is harder to maintain
• This is the central theme of Software

Engineering
• Well-understood complexity metrics

– McCabe complexity

– Halstead complexity

• Advices: refactoring or restructuring
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2.2.1 Lehman’s law on
software complexity
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2.2.2 Complexity metrics
• Source size or compiled size

– Lines of code (LOC)
– McCabe's complexity

|V| + |E| - 2
for a control flow graph G=(V, E).

– Halstead's Software Science metrics
(N1 + N2) log (n1 + n2)
N1 = operands, N2 = operators
n1 = unique operands, n2 = unique operators

• OO Software Metrics
– Cohesion metrics in Packages, Classes, Methods
– Coupling metrics in Packages, Classes, Methods
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3. How to use them in software
development process?

1. Modeling

2. Satisfiable?

3. Selection

4. Refactoring

5. Releasing

Claim soft-goal:
prioritization
(bottleneck),
metrics,
constraints,
rationale

Claim soft-goal:
refactoring
steps + label
propagation

++ + ---

++ +
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A toy example
• Matrix Multiplication
real*8 A(512,512),B(512,512),C(512,512)
do i = 1 , M

do j = 1, L

do k = 1, N
C(i,k) = C(i,k) + A(i,j) * B(j,k)

• Quality goal: "speedup the program 20x
without sacrificing the code complexity 4x“
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Some restructuring examples
Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)
do i = 1 , M

do j = 1, L
do k = 1, N, 4
C(i,k) = C(i,k) + A(i,j) * B(j,k)
C(i,k+1) = C(i,k+1) + A(i,j) * B(j,k+1)
C(i,k+2) = C(i,k+2) + A(i,j) * B(j,k+2)
C(i,k+3) = C(i,k+3) + A(i,j) * B(j,k+3)
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Some restructuring examples
Loop tiling

do i = 1, M, B1
do j = 1, L, B2
do k = 1, N, B3
do ib = i, min(i+B1, M)
do jb = j, min(j+B2, L)
do kb = k, min(k+B3, N)
C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)
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Some restructuring examples
Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)
do k = 1, N
do j = 1, L
do i = 1 , M
C(i,k) = C(i,k) + A(i,j) * B(j,k)
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Some restructuring examples
Array padding

real*8 A(515,515),B(515,515),C(515,515)
do k = 1, N
do j = 1, L
do i = 1 , M
C(i,k) = C(i,k) + A(i,j) * B(j,k)
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Problem
• Given the bunch of possible restructuring,

which one is applicable, which one is
profitable and which one is disastrous?

• How to represent and reuse the
knowledge in many different applications?

• How to apply the knowledge to a new
domain?

• Answer:
Qualitatively and quantitatively reasoning
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3.1 Qualitative reasoning
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INTENTION
[TOPIC]

INTENTION
[SUBTOPIC]

INTENTION
[TOPIC]

SUB-
INTENTION

[TOPIC]

operationalization

OPERATION-
ALIZED

SOFTGOAL

Contribution
interdependency

<label>
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Decomposition of the performance soft-goal
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! QUALITY
SOFTGOAL

CLIAM
SOFTGOAL

Correlation
interdependency
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Some remarks
• Each operationalization (thick nodes) is a

restructuring (transformation) technique
• They contribute differently to their parent

goals. If you do not have the subject
(input), these rules generally encode the
experiences

• You must collect data to quantitatively
fine-tune the goal model
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3.2 Quantitative reasoning
• When multiple criteria is concerned, the

pareto curve defines the “optimal”
solutions

g1

g2

p
t11

t12
t21

t31

x1

x2

t32

t41

g

x
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Data collection

Experiment environment
• Hardware: Intel 1.2GHz Pentium 4

processor, with L1 cache (size=8KB,
line=64 bytes, associativity=4), L2 cache
(size=512KB, line=32 bytes,
associativity=8).

• Tools: Datrix for measuring code
complexity, VTune for measuring
performance through hardware counters
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Metrics
• Time index = clockticks(t(p)) / clockticks(p)
• Complexity index = complexity(t(p))/complexity(p) where

complexity(p) =
v(g) ratio + length ratio + volume ratio

• ratio = (metric – metricmin) / ( metricmax- metricmin)
• V(G) metric = e – n + 2

length metric = (N1+N2 )
Volume metric = (N1+N2 ) log2 (n1+n2)

• e is the number of edges, n is the number of nodes in
the control flow graph
N1 = number of operators
N2 = number of operands
n1 =number of unique operators
n2 = number of unique operands
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Data gathered

Spring 2005 ECE450H1S Software Engineering II

The multi-objective decision
making process
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A real example
• Header restructuring project
• Considered one more metric:

functionalities
• The experience show that using a new

algorithm can dramatically improve the
performance ( ! Moore’s law)

• Also refactoring techniques when applied
can reduce the complexity
( ! Lehman’s law)
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Header restructuring metrics
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Your exercise
• Monitor the evolution of your software

product by measuring its metrics
– Statically:

complexity metrics: LOC, Halstead, McCabe
– Dynamically:

Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
instruction, L1 data, L2 cache, etc., memory
footprint)

• Decide on which is the urgent non-
functional task
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4. Summary
• The concepts of software measurements
• How to measure some quality metrics
• You need to know your software and

manage it by numbers
• Through these numbers, you will

know/improve your own capability too
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Further readings
• N. Fenton and S. L. Pfleeger. Software Metrics

– A rigorous and practical approach.1996
• M.M. Lehman. “Laws of software evolution

revisited”, LNCS1126:108-120.1996.
• H. Dayani-Fard et al. “Quality-based software

release management”, PhD, 2004.
• H. Dayani-Fard et al. “Improving the build

architecture of C/C++ programs”, FASE, 2005.
• Y. Yu et al. “Software refactoring guided by

softgoals”, REFACE workshop in conjunction
with WCRE’03.
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What’s next …
• A Tutorial on software measuring tools

– How to measure performance?
– How to measure code complexity?
– How to measure your code in Eclipse?


