Lecture 6
Software Quality
Measurements

Some materials are based on Fenton’s book

Copyright © Yijun Yu, 2005

Last lecture and tutorial ...

Software Refactoring

We showed the use of refactoring
techniques on understanding software,
improving its maintainability

We explained the relationship between
refactoring, tuning and restructuring

Any questions related to design patterns
and refactoring so far?

The result of such improvements can be
measured quantitatively
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Today ...
On Software Quality 1. What are measurements?
Measurements

1. What are measurements?
2. Quality attributes and their metrics
— Performance metrics
—  Complexity metrics
3. How do you use these numbers?
— Statistic Analysis to gain understanding on projects

— Management: Monitoring the evolution of software
development

4. Summary

References

N. Fenton and S. L. Pfleeger. “Software Metrics — A rigorous and practical approach”.
International Thompson Computer Press. 1996
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» A relation of the real world is “reflected” in
that of the math world

— If Ais taller than B, B is taller than C, then A is
taller than C
» Preserve the relations in your metrics

o Software measurements
— Software size?
LOC
LOC — comments
LOC in Python vs. LOC in Fortran?

Spring 2005 ECE450H1S Software Engineering Il




2. Quality that matters

« Company A beats company B, because of which reason
do you think?
(1) A deliver more features than B
(2) A has larger market share
(3) A deliver software with fewer bugs
(4) A'is cheaper
» Killer applications
— Browser
— Chips
— Desktop
— Operating System
— Database Systems
* Andy Grove’s story in his book “Only paranoid can
survive”
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A few more remarks

Producing quality products has been
iIdentified as a key factor in the long term
success (i.e. profitability) of organizations

Quality doesn't happen by chance

Quality control must be embedded into the
process.

The quality movement
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What is software quality?

» Software quality is defined as

— Conformance to explicitly stated functional
[correctness] and non-functional requirements
[performance, security, maintanability, usability, etc.]
i.e. Build the software described in the system
Requirements and Specifications

— Conformance to explicitly documented development
standards, i.e. Build the software the right way

— Conformance to implicit characteristics that are
expected of all professionally developed software, i.e.
Build software that meets the expectations of a
reasonable person: in law this is called the principle of
merchantability
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Managing Software Quality

1. Define what quality means for large software
systems

2. Measure Quality of a complete or partial
system

3. Devise actions to improve quality of the
software

— Process improvements

» Process Performance improvements => Product
Productivity improvements

— Product improvements
4. Monitor Quality during development

— Software Quality Assurance - a team devoted to
encouraging and enforcing quality standards
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Some quality attributes and metrics

» Performance « Time, Space

* Reliability + MTBF

» Correctness « # Bugs / Size

* Maintainability * Size, Structureness
« Security » Counter analysis
« Interoperability * Integration

» Usability *

« Extensibility )

« Reusability )

. -ilities ... )
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2.1 Performance

It is h/w bound, but can be improved by s/w

* Moore’s Law = 2x speedup every 18 months

» Software improvement for most cases are also
possible (algorithms, optimizing compiler)

* Itis sometimes more expensive to apply

hardware improvements, sometimes more
expensive to apply software improvements

» Advice: study the bottlenecks in your program
using a profiler
— parallelism
— locality
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2.1.1 Moore’s law (Intel)
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2.1.2 Performance metrics

* Time, in relation to the input size
— CPU cycles, in relation to the input size
— Cache misses, in relation to the input size
— Network delay, system perf.
— Network throughput, system perf.

» Space, in relation to the input size

— Workload (memory footprint size), in relation
to the input size

— Network traffic, in relation to the input size
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2.2 Software Complexity

Software code base has increasing
complexity — Lehman’s Law #2.

As a result, the code is harder to maintain
This is the central theme of Software
Engineering

Well-understood complexity metrics

— McCabe complexity

— Halstead complexity

Advices: refactoring or restructuring
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2.2.1 Lehman’s law on
software complexity
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2.2.2 Complexity metrics

» Source size or compiled size
— Lines of code (LOC)
— McCabe's complexity
VI +|E| - 2
for a control flow graph G=(V, E).
— Halstead's Software Science metrics
(N; + Ny) log (n; +ny)
N, = operands, N, = operators
n, = unique operands, n, = unique operators
» OO Software Metrics
— Cohesion metrics in Packages, Classes, Methods
— Coupling metrics in Packages, Classes, Methods
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3. How to use them in software
development process?

2.

A

Satis@

4. Refactoring
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Quality soft-goal:

intention [topic] +%_
taxonomy

Claim soft-goal:
prioritization -
(bottleneck),
metrics,

constraints,
rationale

Claim soft-goal:
refactoring
steps + label
propagation
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A toy example

» Matrix Multiplication
real*8 A(512,512),B(512,512),C(512,512)
doi=1,M

doj=1,L

dok=1,N
C(i,k) = C(i,K) + A(i,j) * B(j,K)

* Quality goal: "speedup the program 20x

without sacrificing the code complexity 4x
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Some restructuring examples
Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)
doi=1,M
doj=1,L
dok=1,N,4
C(i,k) = C(i,k) + A(i,j) * B(j,k)
C(i,k+1) = C(i,k+1) + A(i,)) * B(j,k+1)
C(i,k+2) = C(i,k+2) + A(i,j) * B(j,k+2)
C(i,k+3) = C(i,k+3) + A(i,j)) * B(j,k+3)
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Some restructuring examples

Loop tiling
doi=1,M,B1
doj=1,L,B2
dok=1,N, B3

do ib =i, min(i+B1, M)
do jb =}, min(j+B2, L)
do kb =k, min(k+B3, N)
C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)
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Some restructuring examples
Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)
dok=1,N
doj=1,L

doi=1,M

C(i,k) = C(i,k) + A(i,j) * B(j,k)
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Some restructuring examples

Array padding

real*8 A(515,515),B(515,515),C(515,515)
dok=1,N
doj=1,L

doi=1,M

C(i,k) = C(i,k) + A(i,j) * B(j,k)
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Problem

» Given the bunch of possible restructuring,
which one is applicable, which one is
profitable and which one is disastrous?

* How to represent and reuse the
knowledge in many different applications?

* How to apply the knowledge to a new
domain?

e Answer:
Qualitatively and quantitatively reasoning

Spring 2005 ECE450H1S Software Engineering Il

3.1 Qualitative reasoning

soft-goal:
Intention
[Topic]

INTENTION
[TOPIC]

INTENTION

[SUBTOPIC]

INTENTION
[TOPIC]

SUB-
INTENTION
[TOPIC]

OPERATION-
ALIZED
SOFTGOAL

Topic taxonomy

Intention taxonomy
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Some remarks

» Each operationalization (thick nodes) is a
restructuring (transformation) technique

* They contribute differently to their parent
goals. If you do not have the subject
(input), these rules generally encode the
experiences

* You must collect data to quantitatively
fine-tune the goal model
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3.2 Quantitative reasoning

* When multiple criteria is concerned, the
pareto curve defines the “optimal”
solutions

Xz

9,

X
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Data collection

Experiment environment

» Hardware: Intel 1.2GHz Pentium 4
processor, with L1 cache (size=8KB,
line=64 bytes, associativity=4), L2 cache
(size=512KB, line=32 bytes,
associativity=8).

e Tools: Datrix for measuring code
complexity, VTune for measuring
performance through hardware counters
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Metrics

Time index = clockticks(t(p)) / clockticks(p)

Complexity index = complexity(t(p))/complexity(p) where
complexity(p) =
v(g) ratio + length ratio + volume ratio
ratio = (metric — metric,,;,) / ( metric,,,,- metric,,)
V(G) metric=e—-n+2
length metric = (N,+N, )
Volume metric = (ll\ll+ﬁ|2 ) log, (n;+ny)
e is the number of edges, n is the number of nodes in
the control flow graph
N, = number of operators
N, = number of operands
n, =number of unique operators
n, = number of unique operands
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Data gathered

R time CPI L1 L2 Vv len- vol-

(sec.) (10% | (10% | (@) | gth | ume
1 | 6391 | 64.9 | 257.9 | 1855 4| 96 | 462
2 | 1906 | 204 | 786 | 718 4 | 235 | 1164
3 492 | 336 | 307.8 1.7 7 | 185 | 964
4 1.54 | 1.33 | 129.1 47.8 4| 96 | 462
5 545 | 6.30 | 2656 | 12.5 4| 96 | 462
6 111 | 123 | 1239 | 448 4| 96 | 462
7 3.30 | 4.28 | 324.1 2.1 7 | 312 | 1682
8 0.89 | 0.89 | 813 3.0 7 | 312 | 1682

Spring 2005 ECE450H1S Software Engineering Il

The multi-objective decision
making process

+++++ ling i, Multiple goal metrics
b changed by transformations
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A real example

» Header restructuring project

e Considered one more metric:
functionalities

* The experience show that using a new
algorithm can dramatically improve the
performance (! Moore’s law)

 Also refactoring techniques when applied
can reduce the complexity
(! Lehman’s law)
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Header restructuring metrics

. initial
relative

scale S
complexity increases when

new functionality introduced

performance improved when
tuning is applied

N

refactoring is applied to ]
control the complexity

productivity is concerned to
provide larger coverage
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An example of evolution through measured attributes

Your exercise

» Monitor the evolution of your software
product by measuring its metrics
— Statically:
complexity metrics: LOC, Halstead, McCabe
— Dynamically:
Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
instruction, L1 data, L2 cache, etc., memory
footprint)
» Decide on which is the urgent non-
functional task
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4, Summary

* The concepts of software measurements
* How to measure some quality metrics
* You need to know your software and

manage it by numbers

» Through these numbers, you will

know/improve your own
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capability too
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Further readings

N. Fenton and S. L. Pfleeger. Software Metrics
— A rigorous and practical approach.1996

« M.M. Lehman. “Laws of software evolution
revisited”, LNCS1126:108-120.1996.

 H. Dayani-Fard et al. “Quality-based software
release management”, PhD, 2004.

 H. Dayani-Fard et al. “Improving the build
architecture of C/C++ programs”, FASE, 2005.

* Y. Yu et al. “Software refactoring guided by
softgoals”, REFACE workshop in conjunction
with WCRE'03.
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What's next ...

» A Tutorial on software measuring tools
— How to measure performance?
— How to measure code complexity?
— How to measure your code in Eclipse?
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