Lecture 6
Software Quality
Measurements

Some materials are based on Fenton’s book

Copyright © Yijun Yu, 2005

Last lecture and tutorial ...

Software Refactoring

We showed the use of refactoring
techniques on understanding software,
improving its maintainability

We explained the relationship between
refactoring, tuning and restructuring

Any questions related to design patterns
and refactoring so far?

The result of such improvements can be
measured quantitatively

Spring 2005 ECE450H1S Software Engineering Il Spring 2005 ECE450H1S Software Engineering Il
Today ...
On Software Quality 1. What are measurements?
Measurements

1. What are measurements?
2. Quality attributes and their metrics
— Performance metrics
— Complexity metrics
3. How do you use these numbers?
— Statistic Analysis to gain understanding on projects

— Management: Monitoring the evolution of software
development

4. Summary

References

N. Fenton and S. L. Pfleeger. “Software Metrics — A rigorous and practical approach”.
International Thompson Computer Press. 1996

Spring 2005 ECE450H1S Software Engineering Il

» A relation of the real world is “reflected” in
that of the math world

— If Ais taller than B, B is taller than C, then A is
taller than C
» Preserve the relations in your metrics

o Software measurements
— Software size?
LOC
LOC — comments
LOC in Python vs. LOC in Fortran?

Spring 2005 ECE450H1S Software Engineering Il

2. Quality that matters

« Company A beats company B, because of which reason
do you think?
(1) A deliver more features than B
(2) A has larger market share
(3) A deliver software with fewer bugs
(4) A'is cheaper
» Killer applications
— Browser
— Chips
— Desktop
— Operating System
— Database Systems
* Andy Grove’s story in his book “Only paranoid can
survive”

Spring 2005 ECE450H1S Software Engineering Il

A few more remarks

Producing quality products has been
iIdentified as a key factor in the long term
success (i.e. profitability) of organizations

Quality doesn't happen by chance

Quality control must be embedded into the
process.

The quality movement

Spring 2005 ECE450H1S Software Engineering Il

What is software quality?

» Software quality is defined as

— Conformance to explicitly stated functional
[correctness] and non-functional requirements
[performance, security, maintanability, usability, etc.]
i.e. Build the software described in the system
Requirements and Specifications

— Conformance to explicitly documented development
standards, i.e. Build the software the right way

— Conformance to implicit characteristics that are
expected of all professionally developed software, i.e.
Build software that meets the expectations of a
reasonable person: in law this is called the principle of
merchantability

Spring 2005 ECE450H1S Software Engineering Il

Managing Software Quality

1. Define what quality means for large software
systems

2. Measure Quality of a complete or partial
system

3. Devise actions to improve quality of the
software

— Process improvements

» Process Performance improvements => Product
Productivity improvements

— Product improvements
4. Monitor Quality during development

— Software Quality Assurance - a team devoted to
encouraging and enforcing quality standards

Spring 2005 ECE450H1S Software Engineering Il

Some quality attributes and metrics

» Performance « Time, Space

* Reliability + MTBF

» Correctness « # Bugs / Size

* Maintainability * Size, Structureness
« Security » Counter analysis
« Interoperability * Integration

» Usability *

« Extensibility)

« Reusability)

. -ilities ...)

Spring 2005 ECE450H1S Software Engineering Il

2.1 Performance

It is h/w bound, but can be improved by s/w

* Moore’s Law = 2x speedup every 18 months

» Software improvement for most cases are also
possible (algorithms, optimizing compiler)

* Itis sometimes more expensive to apply

hardware improvements, sometimes more
expensive to apply software improvements

» Advice: study the bottlenecks in your program
using a profiler
— parallelism
— locality

Spring 2005 ECE450H1S Software Engineering Il

2.1.1 Moore’s law (Intel)

Itanium 2 processor 410,000,000
Cell processor 234,000,000
transistors
MOORE'S LAW Intel® itanium® 2 Processor. 1,000,000,000
Intel® itanium® Processor ’(
Inteln Pantiumi 4 Processor 100,000,000
Intel® Pentium®a M Processyj
It um® Il Processor 10,000,000
Inteln Pont o / |
Intel486™ Pro: ’ (’,?/ 1,000,000
Intel386™ Processor ";“'
286
100,000
BO86 * af L
/ B o
8008 .
a00a &0
p ! i 1,000
1970 1975 1980 1985 1990 1995 2000 2008
http://www.intel.com/research/silicon/mooreslaw.htm
Spring 2005 ECE450H1S Software Engineering Il

2.1.2 Performance metrics

* Time, in relation to the input size
— CPU cycles, in relation to the input size
— Cache misses, in relation to the input size
— Network delay, system perf.
— Network throughput, system perf.

» Space, in relation to the input size

— Workload (memory footprint size), in relation
to the input size

— Network traffic, in relation to the input size

Spring 2005 ECE450H1S Software Engineering Il

2.2 Software Complexity

Software code base has increasing
complexity — Lehman’s Law #2.

As a result, the code is harder to maintain
This is the central theme of Software
Engineering

Well-understood complexity metrics

— McCabe complexity

— Halstead complexity

Advices: refactoring or restructuring

Spring 2005

ECE450H1S Software Engineering Il

2.2.1 Lehman’s law on
software complexity

8
H
160 g
2 B
g 140 | H
88, 0000000 2 2m ™ g O
£ £ 120 1 | 8
i £ i
R e B--ame e R =
s 5
E wlpm || E L WMAASAAN
3 s
2 5
5 i N . . 2
: 60 ¥ o
€ 401 §
2 SRR
20
° 3 T A A A S
builds over time 0
builds ime
400 w 220
£ 200
)
- el R
] g g
3 300 - = 160 T
2 2
8 250 = 140
b 8 /
2 §8 120
5 200 §3
4 32 100 /
£
‘g’ 150 P g8 80
s e 60 {— /
2 100 2
g E 40
£
5 H
50 20 ./
0 0

2.2.2 Complexity metrics

» Source size or compiled size
— Lines of code (LOC)
— McCabe's complexity
VI +|E| - 2
for a control flow graph G=(V, E).
— Halstead's Software Science metrics
(N; + Ny) log (n; +ny)
N, = operands, N, = operators
n, = unique operands, n, = unique operators
» OO Software Metrics
— Cohesion metrics in Packages, Classes, Methods
— Coupling metrics in Packages, Classes, Methods

Spring 2005 ECE450H1S Software Engineering Il

3. How to use them in software
development process?

2.

A

Satis@

4. Refactoring

Spring 2005

ECE450H1S

Quality soft-goal:

intention [topic] +%_
taxonomy

Claim soft-goal:
prioritization -
(bottleneck),
metrics,

constraints,
rationale

Claim soft-goal:
refactoring
steps + label
propagation

Software Engineering Il

A toy example

» Matrix Multiplication
real*8 A(512,512),B(512,512),C(512,512)
doi=1,M

doj=1,L

dok=1,N
C(i,k) = C(i,K) + A(i,j) * B(j,K)

* Quality goal: "speedup the program 20x

without sacrificing the code complexity 4x

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples
Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)
doi=1,M
doj=1,L
dok=1,N,4
C(i,k) = C(i,k) + A(i,j) * B(j,k)
C(i,k+1) = C(i,k+1) + A(i,)) * B(j,k+1)
C(i,k+2) = C(i,k+2) + A(i,j) * B(j,k+2)
C(i,k+3) = C(i,k+3) + A(i,j)) * B(j,k+3)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples

Loop tiling
doi=1,M,B1
doj=1,L,B2
dok=1,N, B3

do ib =i, min(i+B1, M)
do jb =}, min(j+B2, L)
do kb =k, min(k+B3, N)
C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples
Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)
dok=1,N
doj=1,L

doi=1,M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples

Array padding

real*8 A(515,515),B(515,515),C(515,515)
dok=1,N
doj=1,L

doi=1,M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering Il

Problem

» Given the bunch of possible restructuring,
which one is applicable, which one is
profitable and which one is disastrous?

* How to represent and reuse the
knowledge in many different applications?

* How to apply the knowledge to a new
domain?

e Answer:
Qualitatively and quantitatively reasoning

Spring 2005 ECE450H1S Software Engineering Il

3.1 Qualitative reasoning

soft-goal:
Intention
[Topic]

INTENTION
[TOPIC]

INTENTION

[SUBTOPIC]

INTENTION
[TOPIC]

SUB-
INTENTION
[TOPIC]

OPERATION-
ALIZED
SOFTGOAL

Topic taxonomy

Intention taxonomy

Performance

Ty § ey
- lam foon': - -
change Help _ =
algerithn] = il QUALITY
k] g p SOFTGOAL
Performance. 4y Performance 3= 4
Claim [Mot Software
e ettty —— — i ' [T
instrisnons] D
cop, Ced
Performance - Sty o Performance -

[Algorithm;

ororage] [Algorithm;

Performance Claim [Can not
— TMemory] Use assembly]
<ffomagee

(L=

Brecke”
&

-4 cuam X
- SOFTGOAL --*

[processon

[Proram, -

- RS

[Proaram,
Storage]

. Lrics .‘ [pricessen
e

Claimn [Single ~
s [Program, Jele Fay Aigrwerl P ~ iss [Program, Jelp ray Alignmeng
A oche. LineSme gt Prag o . A oche. Line g i s
Tperations Tperations
[Program, o [Program, . e
o : 2 oi [Most aré .
lake capacity and lake
Ty Reducing p ray Reduong
b [Pviogpi, [Program [Program:
arv[;LFﬂnnatm
jeiproces Bresk ~
P it St -— > P i sk
- = o Thore s o T < =
[Program; 1 = = = = o g
Y gl spent 1 oops,
g 4 [Program, ke, o
' 4 Cache, Size)
et on [Loge: K5 Padding e st [Loop Rrray Paccing
o : p — :
ache, 3] Remapping N g p= 2ot Sl Remapping - iy
Program, ~ - Program, e
e N ’ s eregs _ R y¥ "
- S ' - - s ~
Ping ([Loop, .4 = -
B - - -
Cache, 5 v P 4 ki Help — - >
v v, e e ek o= Clam [single
s - e - Hurt loop nest]
N 3 s - A P
¥ Operation: # Branches
(Program Trogam
ode Complexit;
Torooe am)
o foont o foont
change Change
algorithm] algarithm]
~ ~
“areak —
Clai [Mot ‘Claimn [tk [# ' [Software:
muc mud an
instriceians] instriceiens] . g
/s
erformance .
Tigonthm [r—e [igorthm
Claim [Can not Claim [Can not
Use assembiv] Use assembiv]
Claim [Single
s ios (Program, "o Ahameny Vs [Program, Jelb g
o0 o b

Operations

hS

é— [Fragram
ake

Tay Reducing
[Program:
ey
e ma e g, 2 0 floop]
[Frogram; L = == = Elaim [Most time,
PPRT eFchina. is spent in loops],

[Program,s
2o Most or . P (Mot or? ‘
capacky and ™)
conflict]

confiict]

ray Reducng
[Frogram:

Permut ation
[Loop]

Claim [There i< =

Clain [There is i == =
o dead code]

o dead code]

Be2d Code
Elinatior
rogram.

~
e B

!

= haim [Most tirne:

D is spent in loops]
[Program, 4 [Program, ~
Cache, Sz 7 Coche, i3
e > Padcing i ston [Loap, frr= Padcing
s - ! ’ o - 1t o
b " R[ENSDDW & - ache, Si2d »}emawng - ol
Program, - Frogram, -
bcang— V 2 oo e S =
s - ’ LA - et ~
3 » Mk - - iling [Looy
sepl o - - N sl o - ache. o -
¥’ Break . = s - rt ¥ >, Bresk = e P Cache, Si -
i b, = e ol S X ! i ot ¢, o= ot S
‘. - - & Tt io0p nest] N Ve - - - Hurt
g - P il B A

. - - o
Branches. # Branches.
Teragram Trrogram

e Complesci:

e Complext
[Program

[Program

Some remarks

» Each operationalization (thick nodes) is a
restructuring (transformation) technique

* They contribute differently to their parent
goals. If you do not have the subject
(input), these rules generally encode the
experiences

* You must collect data to quantitatively
fine-tune the goal model

Spring 2005 ECE450H1S Software Engineering Il

3.2 Quantitative reasoning

* When multiple criteria is concerned, the
pareto curve defines the “optimal”
solutions

Xz

9,

X
Spring 2005 ECE450H1S Sware Engineering Il 1

Data collection

Experiment environment

» Hardware: Intel 1.2GHz Pentium 4
processor, with L1 cache (size=8KB,
line=64 bytes, associativity=4), L2 cache
(size=512KB, line=32 bytes,
associativity=8).

e Tools: Datrix for measuring code
complexity, VTune for measuring
performance through hardware counters

Spring 2005 ECE450H1S Software Engineering Il

Metrics

Time index = clockticks(t(p)) / clockticks(p)

Complexity index = complexity(t(p))/complexity(p) where
complexity(p) =
v(g) ratio + length ratio + volume ratio
ratio = (metric — metric,,;,) / (metric,,,,- metric,,)
V(G) metric=e—-n+2
length metric = (N,+N,)
Volume metric = (ll\ll+ﬁ|2) log, (n;+ny)
e is the number of edges, n is the number of nodes in
the control flow graph
N, = number of operators
N, = number of operands
n, =number of unique operators
n, = number of unique operands

Spring 2005 ECE450H1S Software Engineering Il

Data gathered

R time CPI L1 L2 Vv len- vol-

(sec.) (10% | (10% | (@) | gth | ume
1 | 6391 | 64.9 | 257.9 | 1855 4| 96 | 462
2 | 1906 | 204 | 786 | 718 4 | 235 | 1164
3 492 | 336 | 307.8 1.7 7 | 185 | 964
4 1.54 | 1.33 | 129.1 47.8 4| 96 | 462
5 545 | 6.30 | 2656 | 12.5 4| 96 | 462
6 111 | 123 | 1239 | 448 4| 96 | 462
7 3.30 | 4.28 | 324.1 2.1 7 | 312 | 1682
8 0.89 | 0.89 | 813 3.0 7 | 312 | 1682

Spring 2005 ECE450H1S Software Engineering Il

The multi-objective decision
making process

+++++ ling i, Multiple goal metrics
b changed by transformations

25

pareto curve

+unrolling loop k
@ +unrolling j °

log(complexity)

unrolling loop k
L]
051 original

i program
nnnnn

-2 1 [} ‘;
log(time)

DpPIINY £uUd coE40uUrilo Svinware chyieernny i

A real example

» Header restructuring project

e Considered one more metric:
functionalities

* The experience show that using a new
algorithm can dramatically improve the
performance (! Moore’s law)

 Also refactoring techniques when applied
can reduce the complexity
(! Lehman’s law)

Spring 2005 ECE450H1S Software Engineering Il

Header restructuring metrics

. initial
relative

scale S
complexity increases when

new functionality introduced

performance improved when
tuning is applied

N

refactoring is applied to]
control the complexity

productivity is concerned to
provide larger coverage

HEADER RESTRUCTURING PROJECT
Lasted one year and a half

another round of ;}
n

performance tuni —e—complexity

2 774 Milestones
based on GCC 3.4.0
| works on 7.2 MLOC

—#— performance

/ r__’o functions

/ﬂe// algorithm jused

VIM 6.1

IBM coMonent
Vim 6.2

1 4h»_>§ 1/3 of VIM 6.1
= e N
04 i i T i ‘4.1 : I I

1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 :
versions

An example of evolution through measured attributes

Your exercise

» Monitor the evolution of your software
product by measuring its metrics
— Statically:
complexity metrics: LOC, Halstead, McCabe
— Dynamically:
Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
instruction, L1 data, L2 cache, etc., memory
footprint)
» Decide on which is the urgent non-
functional task

Spring 2005 ECE450H1S Software Engineering Il

4, Summary

* The concepts of software measurements
* How to measure some quality metrics
* You need to know your software and

manage it by numbers

» Through these numbers, you will

know/improve your own

Spring 2005 ECE450H1S

capability too

Software Engineering Il

Further readings

N. Fenton and S. L. Pfleeger. Software Metrics
— A rigorous and practical approach.1996

« M.M. Lehman. “Laws of software evolution
revisited”, LNCS1126:108-120.1996.

 H. Dayani-Fard et al. “Quality-based software
release management”, PhD, 2004.

 H. Dayani-Fard et al. “Improving the build
architecture of C/C++ programs”, FASE, 2005.

* Y. Yu et al. “Software refactoring guided by
softgoals”, REFACE workshop in conjunction
with WCRE'03.

Spring 2005 ECE450H1S Software Engineering Il

What's next ...

» A Tutorial on software measuring tools
— How to measure performance?
— How to measure code complexity?
— How to measure your code in Eclipse?

Spring 2005 ECE450H1S Software Engineering Il

