
Spring 2005 ECE450H1S Software Engineering II

Lecture 6

Software Quality
Measurements

Some materials are based on Fenton’s book

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering II

Last lecture and tutorial …

Software Refactoring

• We showed the use of refactoring
techniques on understanding software,
improving its maintainability

• We explained the relationship between
refactoring, tuning and restructuring

• Any questions related to design patterns
and refactoring so far?

• ……
• The result of such improvements can be

measured quantitatively

Spring 2005 ECE450H1S Software Engineering II

Today …

On Software Quality
Measurements

1. What are measurements?
2. Quality attributes and their metrics

– Performance metrics
– Complexity metrics

3. How do you use these numbers?
– Statistic Analysis to gain understanding on projects
– Management: Monitoring the evolution of software

development
4. Summary

References
N. Fenton and S. L. Pfleeger. “Software Metrics – A rigorous and practical approach”.
International Thompson Computer Press. 1996

Spring 2005 ECE450H1S Software Engineering II

1. What are measurements?

• A relation of the real world is “reflected” in
that of the math world
– If A is taller than B, B is taller than C, then A is

taller than C

• Preserve the relations in your metrics
• Software measurements

– Software size?
LOC
LOC – comments
LOC in Python vs. LOC in Fortran?

Spring 2005 ECE450H1S Software Engineering II

2. Quality that matters
• Company A beats company B, because of which reason

do you think?
(1) A deliver more features than B
(2) A has larger market share
(3) A deliver software with fewer bugs
(4) A is cheaper

• Killer applications
– Browser
– Chips
– Desktop
– Operating System
– Database Systems

• Andy Grove’s story in his book “Only paranoid can
survive”

Spring 2005 ECE450H1S Software Engineering II

A few more remarks
• Producing quality products has been

identified as a key factor in the long term
success (i.e. profitability) of organizations

• Quality doesn't happen by chance
• Quality control must be embedded into the

process.
• The quality movement

Spring 2005 ECE450H1S Software Engineering II

What is software quality?
• Software quality is defined as

– Conformance to explicitly stated functional
[correctness] and non-functional requirements
[performance, security, maintanability, usability, etc.]
i.e. Build the software described in the system
Requirements and Specifications

– Conformance to explicitly documented development
standards, i.e. Build the software the right way

– Conformance to implicit characteristics that are
expected of all professionally developed software, i.e.
Build software that meets the expectations of a
reasonable person: in law this is called the principle of
merchantability

Spring 2005 ECE450H1S Software Engineering II

Managing Software Quality
1. Define what quality means for large software

systems
2. Measure Quality of a complete or partial

system
3. Devise actions to improve quality of the

software
– Process improvements

• Process Performance improvements => Product
Productivity improvements

– Product improvements
4. Monitor Quality during development

– Software Quality Assurance - a team devoted to
encouraging and enforcing quality standards

Spring 2005 ECE450H1S Software Engineering II

Some quality attributes and metrics

• Performance
• Reliability
• Correctness
• Maintainability
• Security
• Interoperability
• Usability
• Extensibility
• Reusability
• -illities …

• Time, Space
• MTBF
• # Bugs / Size
• Size, Structureness
• Counter analysis
• Integration
• …
• …
• …
• …

Spring 2005 ECE450H1S Software Engineering II

2.1 Performance
It is h/w bound, but can be improved by s/w
• Moore’s Law = 2x speedup every 18 months
• Software improvement for most cases are also

possible (algorithms, optimizing compiler)
• It is sometimes more expensive to apply

hardware improvements, sometimes more
expensive to apply software improvements

• Advice: study the bottlenecks in your program
using a profiler
– parallelism
– locality

Spring 2005 ECE450H1S Software Engineering II

2.1.1 Moore’s law (Intel)
Itanium 2 processor 410,000,000
Cell processor 234,000,000

http://www.intel.com/research/silicon/mooreslaw.htm
Spring 2005 ECE450H1S Software Engineering II

2.1.2 Performance metrics
• Time, in relation to the input size

– CPU cycles, in relation to the input size
– Cache misses, in relation to the input size
– Network delay, system perf.

– Network throughput, system perf.

• Space, in relation to the input size
– Workload (memory footprint size), in relation

to the input size
– Network traffic, in relation to the input size

Spring 2005 ECE450H1S Software Engineering II

2.2 Software Complexity

• Software code base has increasing
complexity – Lehman’s Law #2.

• As a result, the code is harder to maintain
• This is the central theme of Software

Engineering
• Well-understood complexity metrics

– McCabe complexity

– Halstead complexity

• Advices: refactoring or restructuring
Spring 2005 ECE450H1S Software Engineering II

2.2.1 Lehman’s law on
software complexity

Spring 2005 ECE450H1S Software Engineering II

2.2.2 Complexity metrics
• Source size or compiled size

– Lines of code (LOC)
– McCabe's complexity

|V| + |E| - 2
for a control flow graph G=(V, E).

– Halstead's Software Science metrics
(N1 + N2) log (n1 + n2)
N1 = operands, N2 = operators
n1 = unique operands, n2 = unique operators

• OO Software Metrics
– Cohesion metrics in Packages, Classes, Methods
– Coupling metrics in Packages, Classes, Methods

Spring 2005 ECE450H1S Software Engineering II

3. How to use them in software
development process?

1. Modeling

2. Satisfiable?

3. Selection

4. Refactoring

5. Releasing

Claim soft-goal:
prioritization
(bottleneck),
metrics,
constraints,
rationale

Claim soft-goal:
refactoring
steps + label
propagation

++ + ---

++ +

Spring 2005 ECE450H1S Software Engineering II

A toy example
• Matrix Multiplication
real*8 A(512,512),B(512,512),C(512,512)
do i = 1 , M

do j = 1, L

do k = 1, N
C(i,k) = C(i,k) + A(i,j) * B(j,k)

• Quality goal: "speedup the program 20x
without sacrificing the code complexity 4x“

Spring 2005 ECE450H1S Software Engineering II

Some restructuring examples
Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)
do i = 1 , M

do j = 1, L
do k = 1, N, 4
C(i,k) = C(i,k) + A(i,j) * B(j,k)
C(i,k+1) = C(i,k+1) + A(i,j) * B(j,k+1)
C(i,k+2) = C(i,k+2) + A(i,j) * B(j,k+2)
C(i,k+3) = C(i,k+3) + A(i,j) * B(j,k+3)

Spring 2005 ECE450H1S Software Engineering II

Some restructuring examples
Loop tiling

do i = 1, M, B1
do j = 1, L, B2
do k = 1, N, B3
do ib = i, min(i+B1, M)
do jb = j, min(j+B2, L)
do kb = k, min(k+B3, N)
C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)

Spring 2005 ECE450H1S Software Engineering II

Some restructuring examples
Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)
do k = 1, N
do j = 1, L
do i = 1 , M
C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering II

Some restructuring examples
Array padding

real*8 A(515,515),B(515,515),C(515,515)
do k = 1, N
do j = 1, L
do i = 1 , M
C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering II

Problem
• Given the bunch of possible restructuring,

which one is applicable, which one is
profitable and which one is disastrous?

• How to represent and reuse the
knowledge in many different applications?

• How to apply the knowledge to a new
domain?

• Answer:
Qualitatively and quantitatively reasoning

Spring 2005 ECE450H1S Software Engineering II

3.1 Qualitative reasoning

Spring 2005 ECE450H1S Software Engineering II

INTENTION
[TOPIC]

INTENTION
[SUBTOPIC]

INTENTION
[TOPIC]

SUB-
INTENTION

[TOPIC]

operationalization

OPERATION-
ALIZED

SOFTGOAL

Contribution
interdependency

<label>

Spring 2005 ECE450H1S Software Engineering II

Decomposition of the performance soft-goal

Spring 2005 ECE450H1S Software Engineering II

! QUALITY
SOFTGOAL

CLIAM
SOFTGOAL

Correlation
interdependency

Spring 2005 ECE450H1S Software Engineering II Spring 2005 ECE450H1S Software Engineering II

Spring 2005 ECE450H1S Software Engineering II Spring 2005 ECE450H1S Software Engineering II

Some remarks
• Each operationalization (thick nodes) is a

restructuring (transformation) technique
• They contribute differently to their parent

goals. If you do not have the subject
(input), these rules generally encode the
experiences

• You must collect data to quantitatively
fine-tune the goal model

Spring 2005 ECE450H1S Software Engineering II

3.2 Quantitative reasoning
• When multiple criteria is concerned, the

pareto curve defines the “optimal”
solutions

g1

g2

p
t11

t12
t21

t31

x1

x2

t32

t41

g

x

Spring 2005 ECE450H1S Software Engineering II

Data collection

Experiment environment
• Hardware: Intel 1.2GHz Pentium 4

processor, with L1 cache (size=8KB,
line=64 bytes, associativity=4), L2 cache
(size=512KB, line=32 bytes,
associativity=8).

• Tools: Datrix for measuring code
complexity, VTune for measuring
performance through hardware counters

Spring 2005 ECE450H1S Software Engineering II

Metrics
• Time index = clockticks(t(p)) / clockticks(p)
• Complexity index = complexity(t(p))/complexity(p) where

complexity(p) =
v(g) ratio + length ratio + volume ratio

• ratio = (metric – metricmin) / (metricmax- metricmin)
• V(G) metric = e – n + 2

length metric = (N1+N2)
Volume metric = (N1+N2) log2 (n1+n2)

• e is the number of edges, n is the number of nodes in
the control flow graph
N1 = number of operators
N2 = number of operands
n1 =number of unique operators
n2 = number of unique operands

Spring 2005 ECE450H1S Software Engineering II

Data gathered

Spring 2005 ECE450H1S Software Engineering II

The multi-objective decision
making process

Spring 2005 ECE450H1S Software Engineering II

A real example
• Header restructuring project
• Considered one more metric:

functionalities
• The experience show that using a new

algorithm can dramatically improve the
performance (! Moore’s law)

• Also refactoring techniques when applied
can reduce the complexity
(! Lehman’s law)

Spring 2005 ECE450H1S Software Engineering II

Header restructuring metrics

Spring 2005 ECE450H1S Software Engineering II

Your exercise
• Monitor the evolution of your software

product by measuring its metrics
– Statically:

complexity metrics: LOC, Halstead, McCabe
– Dynamically:

Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
instruction, L1 data, L2 cache, etc., memory
footprint)

• Decide on which is the urgent non-
functional task

Spring 2005 ECE450H1S Software Engineering II

4. Summary
• The concepts of software measurements
• How to measure some quality metrics
• You need to know your software and

manage it by numbers
• Through these numbers, you will

know/improve your own capability too

Spring 2005 ECE450H1S Software Engineering II

Further readings
• N. Fenton and S. L. Pfleeger. Software Metrics

– A rigorous and practical approach.1996
• M.M. Lehman. “Laws of software evolution

revisited”, LNCS1126:108-120.1996.
• H. Dayani-Fard et al. “Quality-based software

release management”, PhD, 2004.
• H. Dayani-Fard et al. “Improving the build

architecture of C/C++ programs”, FASE, 2005.
• Y. Yu et al. “Software refactoring guided by

softgoals”, REFACE workshop in conjunction
with WCRE’03.

Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A Tutorial on software measuring tools

– How to measure performance?
– How to measure code complexity?
– How to measure your code in Eclipse?

