Lecture 6

Software Quality
Measurements

Some materials are based on Fenton’s book

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering Il

Last lecture and tutorial ...

Software Refactoring

* \We showed the use of refactoring
technigues on understanding software,
Improving its maintainability

* \We explained the relationship between
refactoring, tuning and restructuring

* Any questions related to design patterns
and refactoring so far?

* The result of such improvements can be
measured quantitatively

Spring 2005 ECE450H1S Software Engineering Il

Today ...

On Software Quality
Measurements

1. What are measurements?

2. Quality attributes and their metrics
— Performance metrics
— Complexity metrics

3. How do you use these numbers?
— Statistic Analysis to gain understanding on projects

— Management: Monitoring the evolution of software
development

4., Summary

References

N. Fenton and S. L. Pfleeger. “Software Metrics — A rigorous and practical approach”.
International Thompson Computer Press. 1996

Spring 2005 ECE450H1S Software Engineering Il

1. What are measurements?

e A relation of the real world is “reflected” In
that of the math world

— If A is taller than B, B Is taller than C, then A Is
taller than C

* Preserve the relations in your metrics

e Software measurements

— Software size?

L OC

_OC — comments

_OC in Python vs. LOC In Fortran?

Spring 2005 ECE450H1S Software Engineering Il

2. Quality that matters

« Company A beats company B, because of which reason
do you think?
(1) A deliver more features than B
(2) A has larger market share
(3) A deliver software with fewer bugs
(4) A is cheaper
 Killer applications
— Browser
— Chips
— Desktop
— Operating System
— Database Systems
 Andy Grove’s story in his book “Only paranoid can
survive”

Spring 2005 ECE450H1S Software Engineering Il

A few more remarks

* Producing quality products has been
identified as a key factor in the long term
success (l.e. profitability) of organizations

e Quality doesn't happen by chance

o Quality control must be embedded into the
process.

 The guality movement

Spring 2005 ECE450H1S Software Engineering Il

What Is software quality?

o Software guality is defined as

— Conformance to explicitly stated functional
[correctness] and non-functional requirements
[performance, security, maintanability, usability, etc.]
l.e. Build the software described in the system
Requirements and Specifications

— Conformance to explicitly documented development
standards, i.e. Build the software the right way

— Conformance to implicit characteristics that are
expected of all professionally developed software, I.e.
Build software that meets the expectations of a
reasonable person: in law this is called the principle of
merchantability

Spring 2005 ECE450H1S Software Engineering Il

Managing Software Quality

1. Define what quality means for large software
systems

2. Measure Quality of a complete or partial
system

3. Devise actions to improve guality of the
software

— Process improvements

* Process Performance improvements => Product
Productivity improvements

— Product improvements

4. Monitor Quality during development

— Software Quality Assurance - a team devoted to
encouraging and enforcing quality standards

Spring 2005 ECE450H1S Software Engineering Il

Some gquality attributes and metrics

e Performance
* Reliability

e Correctness

« Maintainability
e Security
 Interoperability
e Usability

o Extensibility

* Reusability

o -lllities ...

Spring 2005 ECE450H1S

Time, Space

MTBF

Bugs / Size

Size, Structureness
Counter analysis
Integration

Software Engineering Il

2.1 Performance

It is h/w bound, but can be improved by s/w
 Moore’s Law = 2x speedup every 18 months

o Software improvement for most cases are also
nossible (algorithms, optimizing compiler)

e |t IS sometimes more expensive to apply
nardware improvements, sometimes more
expensive to apply software improvements

e Advice: study the bottlenecks in your program
using a profiler
— parallelism
— locality

Spring 2005 ECE450H1S Software Engineering Il

2.1.1 Moore’s law (Intel)

Itanium 2 processor 410,000,000
Cell processor 234,000,000
transistors

MOORE'S LAW Intel Itanium® 2 Procossor, | 1,000,000,000

Inteln itaniumS Procsssor
INtel® Pentium 4 Processor 100,000,000
Intel® Pentivm® Il Processor
Intal® Pontiom® | Processor 10,000,000
Intel® Pantiumf Procossor

Intal488™ Procossor [

=4 1,000,000

Intal386™ Procassor
F 100,000
A
4 10,000
o
8008 i]
4004 £ t“" “‘,ﬂ"l
1,000

1970 1975 1980 1985 1 BIBG 1 BEI 5 Eﬂl‘.‘lﬂ 2005
http://www.intel.com/research/silicon/mooreslaw.htm

Spring 2005 ECE450H1S Software Engineering Il

2.1.2 Performance metrics

 Time, In relation to the input size
— CPU cycles, in relation to the input size
— Cache misses, in relation to the input size
— Network delay, system perf.
— Network throughput, system pert.

e Space, In relation to the input size

— Workload (memory footprint size), in relation
to the input size

— Network traffic, in relation to the input size

Spring 2005 ECE450H1S Software Engineering Il

2.2 Software Complexity

« Software code base has increasing
complexity — Lehman’s Law #2.

e As aresult, the code Is harder to maintain

 This is the central theme of Software
Engineering

 Well-understood complexity metrics

— McCabe complexity
— Halstead complexity

« Advices: refactoring or restructuring

Spring 2005 ECE450H1S Software Engineering Il

sa|ue weitboid jo Jaquinu

papnjoul siapeay jo Jlaquinu abelaae

L
4
4
L = [
2 4
d
P
-
3 1
[+1]
E
|4 m E
£
>~ = g
t g 3
1]
o
9 =2
n e 3
o > 3 N 3
— ™~
T
W - — /
© O < y
N X
S o o o o o o o O o o o o
~ oJ o [+0] w =t [8V] o [+0] w =t [8V]
F T < = e e
- m T 8§ 8 &§ |§ © g =© ° spuesnoy 1
a O SpaipunH sjusuodwos
C sy weJboid jo Jequinu Buowe salouspuadap-1a1ul Jo Jsqunu
=)] .
L)
c "
(D) i
— [~y
W .
J— 4
wy
d N] 3
_) | S £
T
e |]
]) Q
O ° E :
QN X = g
N [
= S 5 g J =
= o E— =
c = o
S 2 3
[&] o
c
=
L
= i]
T _ _ T 1
e [a] [an] e [an] [a] o [a] [an]
[(s] =t o (] a0 w <t ol |
o o o o o o o o o
spuesnoyl g &€ 8 & & £ = v

2.2.2 Complexity metrics

e Source size or compiled size
— Lines of code (LOC)

— McCabe's complexity
V[+ |E[- 2
for a control flow graph G=(V, E).
— Halstead's Software Science metrics

(N; + Ny) log (n; +ny)
N, = operands, N, = operators
n, = unique operands, n, = unique operators
OO Software Metrics
— Cohesion metrics in Packages, Classes, Methods

— Coupling metrics in Packages, Classes, Methods

Spring 2005 ECE450H1S Software Engineering Il

3. How to use them In software
development process?

Quality soft-goal: %
, intention [topic] *+ N
@Odd@ taxonomy[i

l Claim soft-goal:
prioritization
2. Satisfia@ (bottleneck), N\
\ metrics,

— _ l constraints,
Q. Releasing rationale
Claim soft-goal: ++ I

refactoring

steps + label

(Refact@ propagation

Spring 2005 ECE450H1S Software Engineering Il

A toy example

e Matrix Multiplication
real*8 A(512,512),B(512,512),C(512,512)
doi=1,M

doj=1,L

dok=1,N

C(i,k) = C(i,k) + A(,j) * B(j,k)

e Quality goal: "speedup the program 20x

without sacrificing the code complexity 4x

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples
Loop unrolling

real*8 A(512,512),B(512,512),C(512,512)
doi=1,M
doj=1,L
dok=1,N,4
C(i,k) = C(i,k) + A(i,)) * B(j,k)
C(,k+1) = C(i,k+1) + A(i,)) * B(},k+1)
C(1,k+2) = C(i,k+2) + A(i,)) * B(},k+2)
C(1,k+3) = C(i,k+3) + A(i,)) * B(},k+3)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples

Loop tiling
doi=1, M, B1
doj=1,L,B2
dok=1,N, B3

doib =1, min(i+B1, M)
do jb =, min(J+B2, L)
do kb =k, min(k+B3, N)
C(ib,kb) = C(ib,kb)+A(ib,jb)*B(jb,kb)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples
Loop interchanging

real*8 A(512,512),B(512,512),C(512,512)
dok=1, N
doj=1,L

doi=1, M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering Il

Some restructuring examples

Array padding

real*8 A(515,515),B(515,515),C(515,515)
dok=1, N
doj=1,L

doi=1, M

C(i,k) = C(i,k) + A(i,j) * B(j,k)

Spring 2005 ECE450H1S Software Engineering Il

Problem

* Given the bunch of possible restructuring,
which one Is applicable, which one Is
orofitable and which one Is disastrous?

 How to represent and reuse the
Knowledge in many different applications?

 How to apply the knowledge to a new
domain?

e Answer:
Qualitatively and quantitatively reasoning

Spring 2005 ECE450H1S Software Engineering Il

3.1 Qualitative reasoning

soft-goal:
Intention
[Topic]

INTENTION
[TOPIC]

OPERATION-
ALIZED
SOFTGOA

Topic taxonomy

INTENTION
[SUBTOPIC]

INTENTION
[TOPIC]

Intention taxonomy

SUB-
INTENTION
[TOPIC]

Pipelire]

Perfarmance
[Swstarm]

Performange

[Software Performance

FPerformance [Architecturs

And

Performance

[&lgorithrn Performance

Storage

Herformanoe

Performance
[Memory

Freguency
[processon

Ferformance
[Loop,
Processor

Performance
[Frogram,
Storage]

Ferfarmance
[Program,
Processor

Make

i<s [Program,
Cache]

And

Parallelizm
[Loop,
ultiprocessd

FOL =W
Operaktions
[Program,

Associativik

Permut.ation
[Loop]

ache, Size

Selection

Performance
[Swstam]

Claim [Don't
change H e
sigoriim] _. o QUALITY
~ SOFTGOAL
. Performange
s Clainn [Mok I [Software
muc . g A
instructions] A
, / - - -—-
s Performance emea” TG > e
Breale [&lgorithrn _‘, S
F Ferformance ’: CLIAM o ’:1
) ~—
*Clairn [Can nok ¢ I % SOFTGOAL)
use assenmbily] - a a2 ‘<___>\ ’,u_,‘

Performance
[Frogram,
Storage]

Ferformance
[Loop,
Processor

—»—

(=T

Pipelire] o
i<s [Program,
Cache]

Parallelizm

£ Clairm [Single [Loog, -~
cPU] ultiprocessad -
Fin =
- Operations
[Program,

:CTalm [Most aré
capacity and
conflict]

rray Reducing

Claim [There is = = Perrrut.ation
ro dead code] [Loop]

-~
— o e T lairn [Most tire
Ml is spent inloops]

ake__“"_

& Clairm [Single
loop nest]

Performance
[Swstam]

Cost [Systeqn]

Claim [Don't *
change Help - =
algorithm] o — il T
-— = -~
-) - w*

« Zlaimn [Mok

muc|
instructions]

Performance
[&lgorithrn

*Clairn [Can nok
use assenmbily]

Ferrarmance

FErf ormance

[Locp, [Frogram,
Processor Storage]
ake =2
Break, ==
Pipelire] -

i<s [Program,
Cache]

Parallelizm

& Clairm [Single [Loop,
cPU] ultlproce;s 5
o e
- Operations [~
[Program, -~
Processgr :.jenm [Most are

capacity and

conflict] rray Reducing

Permut.ation
[Loop]

Claim [There is = =
no dead code]

™ Claim [Mast ke
is spent inloops]

usion [Loop,

-

& Clairm [Single
loop nest]

Performance
[Swstam]

Claim [Don't *
change Help _ — =
algarithim] - o Ff'l,’“’

« Zlaimn [Mok

muc|
instructions]

Performance
[Algarithira

*Clairn [Can nok
use assenmbily]

Performance
[Frogram,
Storage]

Ferformance
[Loop,
Processor

Pipeline] ——

i<s [Program,
Cache]

Parallelizm
[Loop,

& Clairm [Single
ZPU] ultiprocessd

:CTalm [Most aré
capacity and
conflict]

rray Reducing

Permut.ation
[Loop]

Claim [There is = =
no dead code]

Tiling [Loop,

Cache, Siza -]

& Clairm [Single
loop nest]

Perfarmance
[Swstarm]
Claim [Don't
change -
algorithirn] ‘ = Hurt.

~

“Ereak
Performance
[Architecture

-~
g At

Performance
[Algarithira

Perfarmance
Storage

Performance

"Clairm [Can nok
[Merory |

use assenmbily]
eak Freguency
[processon

JHake

Ferformance
[Loop,
Processor

Performance
[Frogram,
Storage]

Aissociakivity
[Cache]

i<s [Program,
Cache]

Parallelizm
[Loop,

:CTalm [Most aré
capacity and
conflict]

Claim [There is = =

Permut.ation
no dead code] [Loop]

— laim [Mast ke
is spent inloops]

& Clairm [Single
loop nest]

Some remarks

 Each operationalization (thick nodes) is a
restructuring (transformation) technique

* They contribute differently to their parent
goals. If you do not have the subject
(input), these rules generally encode the
experiences

* You must collect data to quantitatively
fine-tune the goal model

Spring 2005 ECE450H1S Software Engineering Il

3.2 Quantitative reasoning

 \WWhen multiple criteria Is concerned, the
pareto curve defines the “optimal”
solutions

X5

P

. g o Xy
Spring 2005 ECE450H1S Oftware Engineering Il

Data collection

Experiment environment

 Hardware: Intel 1.2GHz Pentium 4

orocessor, with L1 cache (size=8KB,

Ine=64 bytes, associativity=4), L2 cache
(size=512KB, line=32 bytes,
associativity=8).

e Tools: Datrix for measuring code
complexity, VTune for measuring
performance through hardware counters

Spring 2005 ECE450H1S Software Engineering Il

Metrics

Time index = clockticks(t(p)) / clockticks(p)

Complexity index = complexity(t(p))/complexity(p) where
complexity(p) =
v(g) ratio + length ratio + volume ratio

ratio = (metric — metric,,,) / (metric,,,- metric
V(G) metric=e—-n+ 2

length metric = (N;+N,,)

Volume metric = (N;+N,) log, (n;+n,)

e is the number of edges, n is the number of nodes In
the control flow graph

N, = number of operators

N, = number of operands

n, =number of unigue operators
n, = number of unique operands

min)

Spring 2005 ECE450H1S Software Engineering Il

Data gathered

R time CPI L1 L2 V len- vol-

(sec.) (10 | (10%) | (G) | gth | ume
1 | 63.91 | 649 | 2579 | 1855 4 | 96 | 462
2 | 19.06 | 204 | 786 | 71.8 4 | 235 | 1164
3 4.92 | 3.36 | 307.8 1.7 7 | 185 | 964
4 154 | 1.33 | 129.1 47.8 4 | 96 | 462
5 545 | 6.30 | 265.6 | 12.5 4 | 96 | 462
6 1.11 | 1.23 | 123.9 | 44.8 4 | 96 | 462
7 3.30 | 4.28 | 324.1 2.1 7 | 312 | 1682
8 0.89 | 0.89 | 81.3 3.0 7 | 312 | 1682

Spring 2005

ECE450H1S

Software Engineering Il

The multi-objective decision

making process

-
sunrolling ij Multiple goal metrics
y changed by transformations
2.5~
2L

pareto curve

@ tunrolling j ®
F

log(complexity)

+unrolling loop k

't 1 HEY=

+unrolling loop k

3Dltiling unrolling i unrolling loop k
®
— . ® dot prod. i . .
0.5 PD tiling Orlglnal
° . program
namic
on M‘W /
0 @ I }

-5 p - -2 -1 0
log(time)

OpIy £Uvo coC4o0uUrilo Sulwwale crigirieeriy i

A real example

e Header restructuring project

e Considered one more metric:
functionalities

 The experience show that using a new
algorithm can dramatically improve the
performance (! Moore’s law)

* Also refactoring technigues when applied
can reduce the complexity
(! Lehman’s law)

Spring 2005 ECE450H1S Software Engineering Il

relative
scale

10

Header restructuring metrics

initial
complexity increases when
new functionality introduced
9 ;
performance improved when
tuning is applied
8
refactoring is applied to -
control the complexity

7

productivity is concerned to

provide larger coverage
. another round of

HEADER RESTRUCTURING PROJECT performance tunin
- | Lasted one year and a half
21 4 Milestones
based on GCC 3.4.0
4 | works on 7.2 MLOC
/wef algorithm
3
IBM coMonent

2

VIM 6.1 Vim 6.2 I/
1

1/3 of VIM 6.1

1 2 3 4 2 6 7 3 9 10 11 12

An example of evolution through measured attributes

—e—complexity
—— performance

functions

used

versions

Your exercise

* Monitor the evolution of your software
product by measuring its metrics

— Statically:
complexity metrics: LOC, Halstead, McCabe

— Dynamically:
Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
Instruction, L1 data, L2 cache, etc., memory
footprint)
* Decide on which Is the urgent non-
functional task

Spring 2005 ECE450H1S Software Engineering Il

4. Summary

 The concepts of software measurements
« How to measure some quality metrics

* You need to know your software and
manage it by numbers

 Through these numbers, you will
know/improve your own capabillity too

Spring 2005 ECE450H1S Software Engineering Il

Further readings

« N. Fenton and S. L. Pfleeger. Software Metrics
— A rigorous and practical approach.1996

e M.M. Lehman. “Laws of software evolution
revisited”, LNCS1126:108-120.1996.

« H. Dayani-Fard et al. “Quality-based software
release management”, PhD, 2004.

« H. Dayani-Fard et al. “Improving the build
architecture of C/C++ programs”, FASE, 2005.

Y. Yu et al “Software refactoring guided by
softgoals”, REFACE workshop in conjunction
with WCRE’03.

Spring 2005 ECE450H1S Software Engineering Il

What's next ...

* A Tutorial on software measuring tools
— How to measure performance?
— How to measure code complexity?
— How to measure your code in Eclipse?

Spring 2005 ECE450H1S Software Engineering Il

