
Spring 2005 ECE450H1S Software Engineering II

Lecture 5

Topics on Refactoring
Some materials are based on Martin Fowler’s book

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering II

Last lecture and tutorial …

Design patterns

• We showed the structures of all the classic
design patterns

• We explained some of them and their
applications in OpenOME, Protégé and Eclipse

• For your exercise
– Explain the MVC and plug-in patterns using the

classic design patterns
– Find more cases in OpenOME that can apply the

design patterns

• The application of design patterns, can be called
“refactoring”

Spring 2005 ECE450H1S Software Engineering II

Today …

Topics on Refactorings

1. What is refactoring? Why?
2. How to classify refactorings
3. How to apply refactorings
4. Compare with tuning and design patterns
5. Refactor source code into requirements
6. Summary

References
Martin Fowler. Refactoring – improve the design of existing code.
http://www.refactoring.com
Tom Mens et al. “A survey of software refactoring”. TSE 30(2),

2004.

Spring 2005 ECE450H1S Software Engineering II

1. What is refactoring?

• It is a new English word, can be used
in part of speech for a noun
(countable or uncountable), a verb …

• Its origin = Factoring

Spring 2005 ECE450H1S Software Engineering II

Factoring
• In mathematics, factorization or

factoring is the decomposition of an
object into an expression of smaller
objects, or factors, which multiplied
together give the original

• For example, the number 15 factors into
primes as 3 5; and the polynomial x2 - 4
factors as (x - 2)(x + 2)

Spring 2005 ECE450H1S Software Engineering II

Refactoring
• Refactoring is the process of rewriting written

material to improve its readability or structure,
with the explicit purpose of keeping its meaning
or behavior.

• The term is by analogy with the factorization of numbers and
polynomials. For example, x2 - 1 can be factored as (x + 1)(x
- 1), revealing an internal structure that was previously not
visible (such as the two zeroes at +1 and -1). Similarly, in
software refactoring, the change in visible structure can often
reveal the "hidden" internal structure of the original code.

• Extracting common descriptions
20 + 20 + 20 = (1 + 1 + 1) x 20 = 3 x 20

Spring 2005 ECE450H1S Software Engineering II

Software Refactoring

• Software refactoring = “Restructuring
existing code by altering its internal
structure without changing its external
behavior”
– adapted from Martin Fowler’s book

• To avoid duplications
A. Hunt, and D. Thomas. Pragmatic Programmer,
Addison Wesley,1999.
Martin Fowler, Avoid Repetition, IEEE Software, Jan/Feb
2001 pp.97—99.

Spring 2005 ECE450H1S Software Engineering II

More on definitions
Are the following activities refactorings?
• Adding new functionalities
• Fixing correctness bugs
• Tuning performance
• Patching security holes

Spring 2005 ECE450H1S Software Engineering II

When to apply refactorings
“Any fool can write code that a computer can
understand. Good programmers write code that human
can understand”

Bad code smells:
• Duplicate code (clones): feature envy
• Complex control, Long method

use Hammock graph: single entry/single exit
– Comments signal semantic distance
– Conditional and loops

• Complex data, Long parameter list
• OO specific: large class, switch statements, parallel

inheritance, middle man, message change, temporary
fields, data class, etc.

Spring 2005 ECE450H1S Software Engineering II

The refactoring rhythms
• Development =

(Adding features, Refactoring)*
• Refactoring = (Testing, Small Steps) *
• Small Steps = one of the refactoring types

Spring 2005 ECE450H1S Software Engineering II

2. Type of refactorings
“Putting things together when changes are
together”

• Extract Methods
• Move Methods
• Rename Methods
• Replace Temp with Query
• Replace conditionals with polymorphism
• Replace Type code with State/Strategy
• Self Encapsulate Field
• ……

Spring 2005 ECE450H1S Software Engineering II

3. Applications
• We use three examples to explain some basic

refactorings
– Extract method:

• signalled by comments
• single-entry, single-exit
• increase the level of indirection
• reduce the length of a method
• increase the chance of reuse

– Move method:
• Place method together with the object, Putting things

together when changes are together

– Replace conditions with polymorphism
• Switches are “hard code”, polymorphism is better for

extensibility in OO

Spring 2005 ECE450H1S Software Engineering II

Example 1 – Extract method
void f() {

...
// Compute score

score = a * b + c;
score -= discount;

}

void f() {
...
computeScore();

}

void computeScore() {
score = a * b + c;

score -= discount;
}

Spring 2005 ECE450H1S Software Engineering II

Example 2 – Move method
class Jar {

...

}

class RoboPacker {
private bool isFragile(Jar foo) {

switch(foo.material) {

case GLASS: return true;
case WOOD: return true;

case TIN: return false;

}
}

}

class Jar {
bool isFragile() {

switch(material) {

case GLASS: return true;
case WOOD: return true;

case TIN: return false;

} } }
class RoboPacker {

private bool isFragile(Jar foo) {

return foo.isFragile();
}

}

Spring 2005 ECE450H1S Software Engineering II

Example 3 – Replace conditionals
with polymorphism

class Jar {
bool isFragile() {

switch(material) {

case GLASS:
// complex glass calculation

case WOOD:

// complex wood calculation
case TIN:

// complex tin calculation

} } }

class Jar {
bool isFragile() {

return material.isFragile();

} }

interface Material { ... }

class GlassMaterial:Material { ... }
class WoodMaterial:Material { ... }

class TinMaterial:Material { ... }

Spring 2005 ECE450H1S Software Engineering II

4. Refactoring versus Tuning
• Refactoring aims at improve understandability

and maintainability
• Tuning aims at improve performance
• They are both non-functional (no new features),

but they are different
– Refactoring can be harmful to performance
– Tuning can be harmful to maintainability

• You need to know where are the bottlenecks
• Y. Yu et al. “Software refactorings guided by

softgoals”, REFACE workshop in conjunction
with WCRE’03.

Spring 2005 ECE450H1S Software Engineering II

The header restructuring project

Spring 2005 ECE450H1S Software Engineering II

Your exercise
• Monitor the evolution of your software

product by measured its metrics
– Statically:

complexity metrics: LOC, Halstead, McCabe
– Dynamically:

Performance metrics: time (clockticks,
#instructions), space (cache misses, L1
instruction, L1 data, L2 cache, etc., memory
footprint)

• Decide on which is the urgent non-
functional task

Spring 2005 ECE450H1S Software Engineering II

5. Refactoring into Requirements

Motivation to recover requirements from
source code

• Requirements are lost in documentations,
sadly, it is very common in the software
development practices

• Legacy software code are not explained in
documentation

• Mismatch between implementations and
requirements

Spring 2005 ECE450H1S Software Engineering II

Huge gap in abstractions
REQUIREMENTS

Intentions

Architectures

Functions

Source Code

…
…

LEGACY CODE

STATECHARTS

GOAL MODEL

Reverse engineering

GOAL MODEL

SOA

Web services

customizable
architecture

components

Forward engineering

Spring 2005 ECE450H1S Software Engineering II

A semi-automatic process

Spring 2005 ECE450H1S Software Engineering II

Example. Columba Refactoring
• Search “Java email client” in Google, you

will find this software
• It is open-source
• It has 140 KLOC in Java
• It also has plug-in patterns
• First thing, we modify the code base to fit

Eclipse development (moving packages,
i.e., move all “src” subdirectories including
plug-in projects under the same “src”
directory)

Spring 2005 ECE450H1S Software Engineering II

A screenshot

Spring 2005 ECE450H1S Software Engineering II

Where to look at first?
• Secondly, we look for the main routine

from the manifest in the JAR file

Manifest-Version: 1.0
Ant-Version: Apache Ant 1.6.2
Created-By: 1.4.2_06-b03 (Sun Microsystems Inc.)
Main-Class: org.columba.core.main.Main
Sealed: false
Class-Path: lib/usermanual.jar lib/junit.jar lib/lucene-1.3-final.jar
lib/commons-cli-1.0.jar lib/jwizz-0.1.2.jar lib/plastic-1.2.0.jar li
b/jhall.jar lib/forms-1.0.4.jar lib/ristretto-1.0_RC2.jar lib/jscf-0.
2.jar lib/macchiato-1.0pre1.jar lib/frapuccino-1.0pre1.jar lib/winpac
k.jar lib/jniwrap-2.4.jar lib/jdom.jar lib/jpim.jar lib/je.jar ${lib.
jdic}

Spring 2005 ECE450H1S Software Engineering II

The Main routine
public static void main(String[] args) {

Main.getInstance().run(args);
}
Thus we look at “run” routine, which has
81 lines of code

Spring 2005 ECE450H1S Software Engineering II

The Run routine
public void run(String args[]) {
1 ColumbaLogger.createDefaultHandler();
2 registerCommandLineArguments();
3 // handle commandline parameters
4 if (handleCoreCommandLineParameters(args)) {
5 System.exit(0);
6 }
7 // prompt user for profile
8 Profile profile = ProfileManager.getInstance().getProfile(path);
9 // initialize configuration with selected profile

10 new Config(profile.getLocation());
11 // if user doesn't overwrite logger settings with commandline arguments
12 // just initialize default logging
13
14 ColumbaLogger.createDefaultHandler();
15 ColumbaLogger.createDefaultFileHandler();
16
17 for (int i=0; i<args.length; i++) {
18 LOG.info("arg["+i+"]="+args[i]);
19 }
20 …

Spring 2005 ECE450H1S Software Engineering II

The Run routine refactored
public void run(String args[]) {

ColumbaLogger.createDefaultHandler();
registerCommandLineArguments();
ComponentPluginHandler handler = register_plugins();
handler.registerCommandLineArguments();
handle_commandline_parameters(args);
Profile profile = prompt_user_for_profile();
initialize_configuration_with_selected_profile(profile);
initialize_default_logging(args);
SessionController.passToRunningSessionAndExit(args);
enable_debugging_repaint_manager_for_swing_gui_access();
StartUpFrame frame = show_splash_screen();
register_protocol_handler();
load_user_customized_language_pack();
initialize_plugins(handler);
load_plugins();
set_look_and_feel();
init_font_configurations();
set_application_wide_font();
hide_splash_screen(frame);
handle_commandline_arguments_of_the_modules(handler);
restore_frames_of_last_session();
ensure_native_libraries_initialized();
post_startup_of_the_modules(handler);

}

Spring 2005 ECE450H1S Software Engineering II

Identify NFR and introducing softgoals
public boolean usability = false;
public boolean usability_language_customization = false;
public boolean usability_assured_progress = false;
public boolean usability_look_and_feel = false;
public boolean usability_font_configuration = false;
public boolean extensibility = false;
public boolean maintainability_debugging = false;
public boolean maintainability_logging = false;
public void run(String args[]) {

if (maintainability_logging) ColumbaLogger.createDefaultHandler();
registerCommandLineArguments();
ComponentPluginHandler handler = register_plugins();
handler.registerCommandLineArguments();

if (extensibility) handle_commandline_parameters(args);
Profile profile = prompt_user_for_profile();
initialize_configuration_with_selected_profile(profile);
if (maintainability_logging) initialize_default_logging(args);
SessionController.passToRunningSessionAndExit(args);
if (maintainability_debugging) enable_debugging_repaint_manager_for_swing_gui_access();

StartUpFrame frame = null;
if (usability_assured_progress) { frame = show_splash_screen(); }
register_protocol_handler();
if (usability_language_customization) load_user_customized_language_pack();
initialize_plugins(handler);
if (extensibility) load_plugins();
if (usability_look_and_feel) set_look_and_feel();
init_font_configurations();
if (usability_font_configuration) set_application_wide_font();
if (usability_assured_progress) hide_splash_screen(frame);
if (extensibility) handle_commandline_arguments_of_the_modules(handler);
restore_frames_of_last_session();
if (extensibility) ensure_native_libraries_initialized();
if (extensibility) post_startup_of_the_modules(handler);

}

Spring 2005 ECE450H1S Software Engineering II

The system without the NFRs

Spring 2005 ECE450H1S Software Engineering II

6. Summary
• The concepts of refactoring
• The relation to restructuring, reengineering,

design patterns, performance tuning, and
requirements are explained

• Refactoring is not limited to OO software, that’s
the major different from the design patterns

• Refactoring is not aiming at all quality attributes,
they are mainly for maintenance

• Refactoring is used to reveals new structures,
thus it can be used to increase the level of
abstraction gradually, leading to even
requirements

• A lot research is coming …

Spring 2005 ECE450H1S Software Engineering II

Further readings
• Martin Fowler. Refactoring – improve the

design of existing code.
• Martin Fowler, Avoid Repetition, IEEE

Software, Jan/Feb 2001 pp.97—99.
• Tom Mens et al. “A survey of software

refactoring”. TSE 30(2), 2004.
• Y. Yu et al. “Software refactorings guided by

softgoals”, REFACE workshop in conjunction
with WCRE’03.

• Y. Yu et al. “Refactor source code into goal
models”, Technical report.

Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A Tutorial on more refactoring practices

– How to use refactoring in Eclipse?

– How to use statecharts to represent the
refactorings for unstructured code (Web-
based software) For example, Squirrel Mail.

