
Spring 2005 ECE450H1S Software Engineering II

Lecture 4 

Topics on 
Design Patterns

Copyright © Yijun Yu, 2005



Spring 2005 ECE450H1S Software Engineering II

Last tutorial …

OpenOME, a requirements engineering tool

• We explained the requirements, design and 
implementation of the tool. We also pointed out 
how to contribute to the tool.

• After the tutorial
– I posted the source code to the Sourceforge
– You can download the branch “ECE450-v1” from the 

CVS, you can also download the packed SDK

• The design of OpenOME has used some design 
patterns, such as Observer (MVC), Visitor, 
Command …

• Hope you can smell right places to apply the 
design patterns after the lecture …



Spring 2005 ECE450H1S Software Engineering II

Last lecture …

Reengineering Engineering
• Goal oriented requirements engineering 

leads to a better understanding of quality
• Design Patterns can be considered as the 

operationalization of the quality 
improvements
Two papers in the literature link 
requirements with patterns:

• Ladan Tahvildari, Kostas Kontogiannis: Improving design quality 
using meta-pattern transformations: a metric-based approach. 
Journal of Software Maintenance 16(4-5): 331-361 (2004) 

• Ladan Tahvildari, Kostas Kontogiannis, John Mylopoulos: “Quality-
driven software re-engineering”. Journal of Systems and Software 
66(3): 225-239 (2003)



Spring 2005 ECE450H1S Software Engineering II

Today …

Topics on Design Patterns
1. What are design patterns? 
2. How are they classified?
3. How to apply design patterns? 
4. How to identify design patterns? 
5. Which qualities are related to the design patterns?
6. Summary

Reference
The (Gang of Four) book:
Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. 
Design Patterns, Elements of Reusable Object-Oriented 
Software. 1995. 



Spring 2005 ECE450H1S Software Engineering II

1. What are design patterns?

What are the patterns?
• Patterns in the textile (cloths, tiles)
• Patterns in visualizations
It is a recurring phenomenon …

Y. Yu, K. Beyls, and E.H. D'Hollander. Visualizing the impact of the 
cache on program execution. In Proceedings of Fifth International 
Conference on Information Visualization, pages 336-341, London, 
England, July 2001. IEEE Computer Society. 



Spring 2005 ECE450H1S Software Engineering II

Patterns in cache behaviour



Spring 2005 ECE450H1S Software Engineering II

Patterns in Design
• Architect: Christopher Alexander
• A Pattern Language, and A Timeless Way 

of Building

Hanchow, China
Pisa tower
Pisa, Italy

Eiffel tower
Paris, France

CN Tower
Toronto, Canada

Pearl Tower
Shanghai, China



Spring 2005 ECE450H1S Software Engineering II

Design Patterns
• (Design) patterns are devices that allow 

programs to share knowledge about their 
design. It is reusable when the same kind 
of problem reoccur …

• When there are many reusable patterns, 
they must be classified in a common 
language to effectively apply the pattern to 
similar problems again …



Spring 2005 ECE450H1S Software Engineering II

2. Catalogue of design patterns
• Creational

Abstract Factory, Builder, Factory, Lazy 
Initialization, Prototype, Singleton, etc.

• Structural
Adapter, Bridge, Composite, Container, 
Decorator, Delegation, Extensibility, Façade, 
Flyweight, Interface, Pipes and filters, Proxy, etc.

• Behavioural
Chain of Responsibility, Command, Event 
Listener, Immutable, Interpreter, Iterator, 
Mediator, Memento, Observer, State, Strategy, 
Template Method, Visitor, etc.



Spring 2005 ECE450H1S Software Engineering II

A pattern language
• Pattern language: “the pattern of patterns”

provides a template for patterns
– The motivation or context that this pattern applies to. 
– Prerequisites that should be satisfied before deciding 

to use a pattern. 
– A description of the program structure that the pattern 

will define. 
– A list of the participants needed to complete a pattern. 
– Consequences of using the pattern...both positive and 

negative. 
– Examples! 



Spring 2005 ECE450H1S Software Engineering II

The GOF pattern language
• Pattern Name and Classification: Every pattern should have a descriptive and unique name that 

helps in identifying and referring to it. Additionally, the pattern should be classified according to a 
classification such as the one described earlier. This classification helps in identifying the use of 
the pattern. 

• Intent: This section should describe the goal behind the pattern and the reason for using it. It 
resembles the problem part of the pattern. 

• Also Known As: A pattern could have more than one name. These names should be 
documented in this section. 

• Motivation: This section provides a scenario consisting of a problem and a context in which this 
pattern can be used. By relating the problem and the context, this section shows when this pattern 
is used. 

• Applicability: This section includes situations in which this pattern is usable. It represents the 
context part of the pattern. 

• Structure: A graphical representation of the pattern. Class diagrams and Interaction diagrams
can be used for this purpose. 

• Participants: A listing of the classes and objects used in this pattern and their roles in the design. 
• Collaboration: Describes how classes and objects used in the pattern interact with each other. 
• Consequences: This section describes the results, side effects, and trade offs caused by using 

this pattern. 
• Implementation: This section describes the implementation of the pattern, and represents the 

solution part of the pattern. It provides the techniques used in implementing this pattern, and 
suggests ways for this implementation. 

• Sample Code: An illustration of how this pattern can be used in a programming language 
• Known Uses: This section includes examples of real usages of this pattern. 
• Related Patterns: This section includes other patterns that have some relation with this pattern, 

so that they can be used along with this pattern, or instead of this pattern. It also includes the 
differences this pattern has with similar patterns. 



Spring 2005 ECE450H1S Software Engineering II

3. How to apply design patterns? Example

Factory method
• Constructing objects based on some input

such that functions inside the objects 
depend upon the input. 

• Consider as an example a class to read 
image files and make thumbnails out of 
them 
– A bad example

– An improved one
– The Use of the pattern



Spring 2005 ECE450H1S Software Engineering II

Bad one
1. public class ImageReader {
2. private int fileType;
3. private String fileContents;
4. private byte[] decodedImage;
5. public ImageReader( InputStream in ) {
6. // Figure out what type of file this input stream represents
7. // (eg gif, jpeg, png, tif, etc )
8. this.fileType = fileType;
9. decodeFile();
10. }
11. private void decodeFile() {
12. switch( fileType ) {
13. case ImageReader.GIF:
14. // do gif decoding (many lines)
15. break;
16. case ImageReader.JPEG:
17. // do jpeg decoding (many lines)
18. break;
19. case ImageReader.PNG:
20. // do png decoding (many lines)
21. break;
22. // etc...
23. }
24. }
25. }



Spring 2005 ECE450H1S Software Engineering II

Improved
1. public Interface ImageReader {
2. public DecodedImage getDecodedImage();
3. }

4. public class GifReader implements ImageReader {
5. public GifReader( InputStream in ) {
6. // check that it's a gif, throw exception if it's not, then if it is
7. // decode it.
8. }
9. public DecodedImage getDecodedImage() {
10. return decodedImage;
11. }
12. }

13. public class JpegReader implements ImageReader {
14. //...
15. }

16. // Then you would use them as:
17. public class MyProg {

18. public static void main( String[] args ) {
19. String filename = args[0];
20. ImageReader out;
21. if( endsInDotGif( filename )) {
22. out = (ImageReader)new GifReader( fileInputStream );
23. }
24. if( endsInDotJpeg( filename )) {
25. out = (ImageReader)new JpegReader( fileInputStream );
26. }
27. printOut( out.getDecodedImage );
28. }
29. }



Spring 2005 ECE450H1S Software Engineering II

Factory pattern applied
1. public class ImageReaderFactory {
2. public static ImageReader getImageReader( InputStream is ) {
3. int ImageType = figureOutImageType( is );
4. switch( ImageType ) {
5. case ImageReaderFactory.GIF:
6. GifReader r = new GifReader( is );
7. return( (ImageReader)r );
8. break;
9. case ImageReaderFactory.JPEG:
10. JpegReader r = new JpegReader( is );
11. return( (ImageReader)r );
12. break;
13. // etc.
14. }
15. }
16.}



Spring 2005 ECE450H1S Software Engineering II

Why Abstract Factory pattern?
• As the factory only returns an abstract 

object, the client code (which requested 
the object from the factory) does not know 
- and is not burdened by - the actual 
concrete type of the object which was just 
created. 

• Adding new concrete types is done by 
modifying the client code to use a different 
factory…. the Abstract Factory pattern



Spring 2005 ECE450H1S Software Engineering II

Abstract Factory
GraphFactory

+ createElement()
+ createLink()

GoalModelFactory EntityRelationshipFactory

+ createElement()
+ createLink()

+ createElement()
+ createLink()



Spring 2005 ECE450H1S Software Engineering II

4. How to identify design patterns
1. Convert code into visual forms, such as UML diagrams 

through reverse engineering tools
2. Recognize patterns in the diagrams either through 

naked eyes, or automated tools
– Computer games such as CHESS, GO

• Design recovery (still hot topic)
– If both are automated, you can rely on internal program 

representation such as Abstract Syntax Tree to reveal 
structural patterns

– Behaviour patterns recovery could, however, rely on 
semantics rather than syntax

References
• C. Krämer and L. Prechelt. “Design recovery by automated search 

for structural design patterns in object-oriented software”. 
WCRE’96

• Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar
Wendehals. “Towards Pattern-Based Design Recovery”. ICSE, 
2002.



Spring 2005 ECE450H1S Software Engineering II

5. What qualities are associated 
with design patterns?

• Understandability
• Maintainability
• Reusability
• Flexibility and Extensibility

and so on …

• Consider object-oriented metrics, correctly applying 
design patterns leads to better design: modularity (less 
coupling, high cohesion)

References
• Ladan Tahvildari, Kostas Kontogiannis: Improving design quality 

using meta-pattern transformations: a metric-based approach. 
Journal of Software Maintenance 16(4-5): 331-361 (2004) 



Spring 2005 ECE450H1S Software Engineering II

6. Summary
• Design patterns collect a set of reusable 

solutions to common recurring problems in the 
design of (object-oriented) software

• To effectively reuse them, you need to classify 
them into catalogues and express them in a 
pattern language

• The recognition of design patterns can be 
assisted by reverse engineering tools

• The effects of design patterns can be known by 
measuring the OO structural metrics of the 
software product



Spring 2005 ECE450H1S Software Engineering II

Further readings
• Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides. 

Design Patterns, Elements of Reusable Object-Oriented Software. 
1995. 

• C. Krämer and L. Prechelt. “Design recovery by automated search 
for structural design patterns in object-oriented software”. 
WCRE’96

• Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar
Wendehals. “Towards Pattern-Based Design Recovery”. ICSE, 
2002.

• Ladan Tahvildari, Kostas Kontogiannis: “Improving design quality 
using meta-pattern transformations: a metric-based approach”. 
Journal of Software Maintenance 16(4-5): 331-361 (2004) 

• Ladan Tahvildari, Kostas Kontogiannis, John Mylopoulos: 
“Quality-driven software re-engineering”. Journal of Systems and 
Software 66(3): 225-239 (2003)



Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A Tutorial on more Design Patterns

• Next lectures will explain refactoring
techniques


