
Spring 2005 ECE450H1S Software Engineering II

Lecture 3

Topics on
Requirements Engineering

Some material taken from the Tropos project at U of T

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering II

Course information

Let’s vote …
• Course Project/Final Exam

50-50
or 60-40?

• Midterm/Final Exam
15-35

or 0-50?
• Final Exam

Open notes
or Close notes
or Aid Sheet

Spring 2005 ECE450H1S Software Engineering II

Last tutorial …

Web Services
• Why we use Web Services?
• Key standards: SOAP, WSDL and UDDI
• Tomcat/Axis implementation of a legacy

OmniEditor web service
• Architectures of the OmniEditor
• Requirements specifications

Spring 2005 ECE450H1S Software Engineering II

Last lecture …

Software Reengineering
• Reasons to reengineering
• The horseshoe process model
• “Overloaded” words …

reengineering, reverse engineering,
restructuring and refactoring

• There is another RE*ING in SE:
Requirements engineering

Spring 2005 ECE450H1S Software Engineering II

Today …

Topics on Requirements Engineering

1. What are Software Requirements?
2. Why are they important?
3. How to engineer the requirements of a

software, …?
4. Why shall we do goal-oriented

requirements engineering? Goal
models

5. Summary

Spring 2005 ECE450H1S Software Engineering II

1. What are software requirements?
• Definition from Google: define:Software Requirements
• The set of functions, performance measures, and constraints that

software must satisfy.
• A more or less formal statement of what a software application

should do. Sometimes business analysts create requirements and
hand them to software developers. Other times software analysts
interview business people in order to determine the requirements for
a software application development effort. Business people
invariably define requirements less formally than necessary.
Business people tend to define requirements with written statements
or with process diagrams. Software developers are more likely to
define software requirements by means of Use Case Diagrams or
Class Diagrams, which often aren't that clear to business analysts.
Software Requirements constitute an important interface between
business managers and IT organizations. If the handoff isn't clear
and precise then the resulting system is likely to disappoint the
business people who requested it.

Spring 2005 ECE450H1S Software Engineering II

What are software requirements, then?

• Requirements are expectations of the system by
the environment: what problem is solved?
– Software refers to the software plus the

system/platform where it is running
• Requirements to the software product

– Functionalities: functional requirements
– Qualities: non-functional requirements

Reliability, Correctness, Usability, Performance, Security, Privacy, …

• Requirements to the software development
process
– Productivity: How fast you deliver functionalities?
– Maintainability, Understandability, Reusability, etc.:

How good you can maintain the product qualities?

Spring 2005 ECE450H1S Software Engineering II

Related Requirements
• System requirements specify the minimal

demands (dependency) to the environment
(hardware/software/people)
“Windows 3.1/95/98/NT/XP, 256MB, English”

“Platform independent”? …

• Stakeholder Requirements specify the
expectations from different agents in the world
Domain engineers, End-Users, Developers, Managers, Testers, HCI
designers, Administrators, Partners, Competitors, Lawyers, Artists,
you name it …

• Business Requirements
Market, ROI, Profit margin, Market share, Organizations

Spring 2005 ECE450H1S Software Engineering II

Example system requirements
not everyone can be an astraunaut

Spring 2005 ECE450H1S Software Engineering II

Requirements have dependencies
and Reengineering needs to know about the

Requirements

Spring 2005 ECE450H1S Software Engineering II

2. Why are requirements important?

The Waterfall process model

IT SAVES DOLLARS, IT SAVES LIFES

Spring 2005 ECE450H1S Software Engineering II

3. How to obtain requirements?

Rapid Prototyping process

Spring 2005 ECE450H1S Software Engineering II

3. How to specify FR?
• A functional requirement

– Goal: query [stock quote]
– Inputs: stock quote [string]
– Outputs: stock price [float]
– Precondition: stock quote is not empty
– Postcondition: stock price >=0 if the stock quote is found,

otherwise stock price = -1

• Relation to other requirements
– To make profit of investment (why?)
– To invoke an XMETHODS web service (how?)
– Investor (brokers), Stock analysts (who?)
– 9am – 5pm EST (when?)
– Stock portfolio (what?)
– Sometimes Helps, sometimes Hurts the profit goal (how much?)

Spring 2005 ECE450H1S Software Engineering II

An alternative requirement
• An alternative functional requirement

– Goal: query [stock name]
– Inputs: stock name [string]
– Outputs: stock price [float]
– Precondition: stock name is not empty
– Postcondition: stock price >=0 if the stock name is

found and unique, otherwise stock price = -1 if the
stock doesn’t exist, or stock price = -2 if more than
one stock is found

• Relate to other requirements
– To make profit of investment (why?)
– Do not need to remember the stock quote (why?)
– To invoke another XMETHODS web service (how?)

Spring 2005 ECE450H1S Software Engineering II

3. How to specify a NFR?
• A non-functional requirement

– Quality attribute: responsiveness [query]
– Metric: elapsed time to get response
– Satisfaction criteria: elapsed time < 1 second

• Another non-functional requirement
– Quality attribute: usability [query]
– Metric: time to memorizing the name
– Satisfaction criteria: memorizing the name < 1 second

• Quality attribute, metrics, satisficing criteria

Spring 2005 ECE450H1S Software Engineering II

3. How to obtain requirements?

Goal-oriented
requirements engineering

• What is a goal? Desired state of the system.
Captures intentions or objectives
– Either true (satisfied) or false (denied)
– Partially/Fully satisfied/denied? Soft-goal: Satisficed

• Reveal the rationale behind the requirements,
called “early requirements”
– Goal-oriented requirements elicitation (asking why,

how, who, what, when, where and how much …)
– Goal-oriented requirements specification: goal

modelling to define the inter-dependencies among
requirements

Spring 2005 ECE450H1S Software Engineering II

4. Representation issues:
Conceptual modelling

• Each functional requirement has an associated
goal, like the “@purpose” statement in the
Javadoc, which defines the function: What is the
acceptable input and what is the exceptional
input? What is the expected output?

• Each non-functional requirements has an
associated softgoal, and the contribution to the
satisficing of the softgoal through a criteria on a
threshold of the metric: Operationalization

• Dependencies among them
(AND/OR contributions and
HELPS/HURTS/MAKES/BREAKS correlations)

Spring 2005 ECE450H1S Software Engineering II

4. The goal model: a syntax

SoftGoal

Boolean isFullySatisficed()
Boolean isPartiallySatisficed()
Boolean isFullyDenied()
Boolean isPartiallyDenied()

Refinement

Goal

String getName()
Boolean isSatisfied() 1

0..n

+parent
1

subgoals

+children

0..n

0..n

1

0..n

1

AndOrRefinement

Boolean isAnd()
Boolean isOR()

OperationalizationRefinement

SoftGoal target()
Boolean isHelp()
Boolean isHurt ()
Boolean isMake()
Boolean isBreak()

Spring 2005 ECE450H1S Software Engineering II

4. Goal reasoning: the semantics

Text Editor SMTP

T: satisfied
F: denied

OR

AND

++: MAKE

Get Reliable
Reply

Get Reliable
Reply

Fully satisficed
Partially satisficed
Unknown
Partially denied
Fully denied
Conflict

+: HELP

Goal:
Contact a Friend

Goal:
Email a Friend

Goal:
Mail a Friend

Goal:
Call a Friend

--: BREAK

Spring 2005 ECE450H1S Software Engineering II

4. V-graph: the pragmatics of
a goal model

Spring 2005 ECE450H1S Software Engineering II

Consistent

root
goal

soft
goals

tasks

goals soft
goals

decompose

correlate

goals soft
goals

tasks

list objectives

No conflict

goals soft
goals

tasks

list
aspects

V model

aspects

resolve
conflict

Satisfied &
satisficed

correlation
decompose

decompose

Spring 2005 ECE450H1S Software Engineering II

5. Summary
• RE is getting more important
• FR and NFR are explained
• Goal models are used to model early requirements,

followed by software architectures, UML class diagrams,
design patterns, refactoring, etc.

• The syntax/semantics/pragmatics of a goal model are
explained, also with a process for goal oriented
requirements engineering

• Three related tutorials will further explore the topic:
– The OpenOME requirements engineering tool
– Aspect-oriented programming (AOP) and the use of goal model

to find aspects in the early requirements
– Quality metrics and software measuring tools

Spring 2005 ECE450H1S Software Engineering II

Further readings
• A. Dardenne, A. van Lamsweerde, S. Fickas: Goal-Directed

Requirements Acquisition. Science of Computer Programming, 20(1-2):
3-50 (1993).

• A. van Lamsweerde, L. Willemet. “Goal-Oriented Requirements
Engineering, A Guided Tour”, International Conference on Requirements
Engineering, 2001.

• L. Chung, B. A. Nixon, E. Yu and J. Mylopoulos. “Non-Functional
Requirements in Software Engineering”, Kluwer Academic Publishing,
1999.

• J. Mylopoulos, L. Chung, E. Yu. “From Object-Oriented to Goal-Oriented
Requirement Analysis”. Communications of the ACM. 42(1):31-37,
January 1999.

• P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. “Reasoning
with goal models”. LNCS, 2503:167--181, 2002.

• L. Liu, E. Yu, and J. Mylopoulos. “Security and privacy requirements
analysis within a social setting”. In RE 2003, pp. 151--161, 2003.

• Y. Yu, J.C. Leite, J. Mylopoulos. “From goals to aspects: discovering
aspects from goal models”. RE’04, 2004.

Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A Tutorial on a Requriements Engineering

tool: OpenOME
• Next lectures will explain design patterns

and refactoring techniques

