
Spring 2005 ECE450H1S Software Engineering II

Lecture 2 

Software Re-engineering
Some material is based on the CSER projects at U of T

Covers almost all concepts of the course
Detail explanations to come …

Copyright © Yijun Yu, 2005

Spring 2005 ECE450H1S Software Engineering II

Last lecture …

General Information
• Instructor: Yijun Yu yijun@cs.toronto.edu

• Office: BA7200 (Bahen Center, 7th floor), 
946-8530

• Office hours: Wed 5pm – 6pm, Fri 2pm-3pm

• TA: Alexia Giannoula alexia@comm.utoronto.ca

Clark Merchant Clark.Merchant@utoronto.ca
Mazen Almaoui mazen@dsp.utoronto.ca

• Class homepage: 
http://www.cs.toronto.edu/~yijun/ece450h

Spring 2005 ECE450H1S Software Engineering II

Marking Scheme adjusted
• No midterm
• Final Exam 50% (Exam week)
• Course Project 50%

– Assignment 1 (15%): Feb 11

– Assignment 2 (15%): Feb 25
– Assignment 3 (20%): April 8

Spring 2005 ECE450H1S Software Engineering II

Our Course Project
• This is a “brand-new” software reengineering 

project, emphasizing on reusing, restructuring, 
refactoring large-scale software systems, and 
team work ! 
– A1: Understanding the architecture of a legacy 

system (OpenOME, OmniEditor) (15%)
– A2: Design OmniGraphEditor web service (15%)
– A3: Reengineering OpenOME to use 

OmniGraphEditor web service of other teams (20%)

• Tutorials will cover detailed approaches and 
tools to help you with the project



Spring 2005 ECE450H1S Software Engineering II

Today …
1. Review SE process
2. Discuss Reengineering Concepts
3. Go over some case studies, a road map to our 

lectures and tutorials:
VIM: componentization, reveal architectures
osCommerce: aspect elicitation, reveal requirements
SquirrelMail: goal elicitation from refactored code

4. Your exercise is to use the learnt knowledge to 
study two other legacy software systems:
OpenOME and OmniEditor

5. Summary

Spring 2005 ECE450H1S Software Engineering II

1. Software Engineering Process

The Waterfall process model

Spring 2005 ECE450H1S Software Engineering II

1. Software Engineering Process

Rapid Prototyping process

Spring 2005 ECE450H1S Software Engineering II

1. Software Engineering Process

Spiral (incremental) process



Spring 2005 ECE450H1S Software Engineering II

2. Reengineering concepts
• Why Software Reengineering?

– Legacy software are increasing 
(Software vs. Hardware)

– New technology appearing 
(Moore’s law)

– Successful ratio of projects increasing 
(IBM internal history)

– Companies are more competing 
(now we have the “open-source” movement and free-software 
foundation)

– Quality attributes are demanding 
(That’s the selling point)

– People are changing 
(developers joining and leaving, customers are changing)

– Software maintenance are pressing
(Largest cost in software development lifecycle >60%)

Spring 2005 ECE450H1S Software Engineering II

2. Reengineering concepts
What is software reengineering?

To a large extent, it involves maintenance activities:
– Understanding (predictive)
– Repairing (corrective)
– Improving (perfective)
– Evolving (adaptive)

• Related topics
– Quality-driven software engineering (-ilities, quality attributes)
– Requirements engineering (goals, non-functional requirements)
– Software architectures (architectural views: components, 

statecharts, features, …)
– Model-driven development (MOF, UML, EMF)
– Design patterns (structural, behavioural)
– Software refactoring (the code smells)
– Performance tuning (trade-offs, multi-criteria optimizations)
– Paradigms: Object-oriented, Goal-oriented, Agent-oriented, 

Aspect-oriented…

Spring 2005 ECE450H1S Software Engineering II

2. Reengineering concepts
The Horseshoe model

Spring 2005 ECE450H1S Software Engineering II

The Reengineering Horseshoe
REQUIREMENTS

Intentions

Architectures

Functions

Source Code

…
…

LEGACY CODE

STATECHARTS

GOAL MODEL

Reverse engineering

GOAL MODEL

SOA

Web services

customizable
architecture

components

Forward engineering



Spring 2005 ECE450H1S Software Engineering II

Reading assignments 
on software architectures

• Previous lecture note for ECE450H1S: 
“What is software architecture?”
“How to represent it?”
– D. Penny. “Introduction to software 

architecture”: 
http://www.cs.toronto.edu/~chechik/courses00
/ece450/lectures/penny.2up.pdf

– M. Chechnik. “ADL and Darwin”. 
http://www.cs.toronto.edu/~chechik/courses00
/ece450/lectures/Marsha-Darwin.pdf

Spring 2005 ECE450H1S Software Engineering II

Further readings
• Martin Fowler. “The Refactoring

homepage”: http://www.refactoring.com/
• CMU SEI: “Software architecture”. 

http://www.sei.cmu.edu/ata/ata_init.html
• KMLab. “On goal oriented software 

engineering”. 
http://www.cs.utoronto.ca/km/goal_oriente
d

Spring 2005 ECE450H1S Software Engineering II

Case Study I. VIM
• VIM stands for Vi-IMproved

http://www.vim.org
• Are you a VIMer?
• Current version 6.3
• Bram Moolenaar
• Developed in C
• 172 KLOC

Spring 2005 ECE450H1S Software Engineering II

Understanding 
the architecture of VIM

• Lee’s initial VIM architecture



Spring 2005 ECE450H1S Software Engineering II

• Vim 5.3

John Tran et al. “Architectural Repair of Open 
Source Software”, IWPC 2000.

Spring 2005 ECE450H1S Software Engineering II

G. Murphy, et al. “Software Reflexion Models: Bridging the gap 
between design and implementation”, IEEE Trans. On Software 

Engineering 27(4):364-380, 2001.

• Reflexion model (jRMTool)
• High-level model (HLM) 

multi-graph
• Source model (SM) multi-

graph (source code or trace)
• Mapping from SM to HLM is 

defined by regular 
expressions

• Identify three kinds of edges:
– Convergence
– Divergence
– Absence

Spring 2005 ECE450H1S Software Engineering II

H. Dayani-Fard, Y. Yu, J. Mylopoulos, P. Andritsos. “Improving the 
build architecture of legacy C/C++ software systems”, Fundamental 

Approaches to Software Engineering, April 2005. to appear

• http://www.cs.toronto.edu/~yijun/literature/
paper/dayani-fard05fase.pdf 

• VIM 6.2

Spring 2005 ECE450H1S Software Engineering II

Restructuring headers
• Components provides and uses interfaces
• In C/C++, such as VIM, interfaces are written in Headers
• “Abstraction and information hiding” is a good principle in 

SE, thus we should do the componentization …
• “Large-cohesion and Low coupling” is the modularity 

principle of SE
• The inclusion of the headers may violate this principle

– Too much entities included leads to redundancies, and also
– False dependencies

• It is an advanced topic to show how to restructure the 
program to remove all false dependencies

• And also componentize the program to minimize the 
number of interfaces. 

• Implementation in the adapted version of GCC 3.4.0
• Applications to IBM database product and potentially a 

Wind River product



Spring 2005 ECE450H1S Software Engineering II

Motivation: Decaying metrics of an industrial product

Spring 2005 ECE450H1S Software Engineering II

Build performance results

Spring 2005 ECE450H1S Software Engineering II

Quality-driven software refactoring
• Refactoring is a technique to reveal hidden structure of the system. 

It helps maintainability by reducing complexity, but may hurt 
performance…

Spring 2005 ECE450H1S Software Engineering II

Case Study II. osCommerce



Spring 2005 ECE450H1S Software Engineering II

Motivation
• PHP, 65 KLOC
• It is an parallel implementation of the 

Media Shop, an information system 
example in Goal-oriented Requirements 
Engineering

• It has been studied by clone detection
• We want to show the connection of goal 

models with aspect elicitation
Y. Yu, J.C. Leite, J. Mylopulos. “From Goals to 
Aspects: Discovering Aspects from Requirements 
Goal Models”, RE 2004. 38-47.

Spring 2005 ECE450H1S Software Engineering II

Aspect-Orientation changes the 
way of thinking

Spring 2005 ECE450H1S Software Engineering II

Source Files

SHOPPING_CART

PRIVACY_INFO

To right

PAGE LAYOUT

CHECK_OUT

ACCOUNT_MGMT

PRODUCT_INFO

LOGIN/OUT

ADVANCED_SEARCH

SSL

Spring 2005 ECE450H1S Software Engineering II

Case Study III. Squirrel Mail
• It is a web-based email system used by 

the CS department
• We will explore the steps on how to 

refactor it to reveal the intention of 
developers: Code -> Statechart -> Goals

• The research is on-going on building the 
tool support. It will be associated with a 
tutorial on Eclipse tools



Spring 2005 ECE450H1S Software Engineering II

The appearance of the system

SquirrelMail 1.5.0
Open source
70 KLOC
PHP + HTML

Spring 2005 ECE450H1S Software Engineering II

A result of the refactoring

Spring 2005 ECE450H1S Software Engineering II

A result goal model

Spring 2005 ECE450H1S Software Engineering II

Summary
• Reengineering is a hot topic in the software 

engineering research
• Case studies show some ways to understand a 

legacy software
• We will use several tutorials to explore further on 

individual case studies, explaining advanced 
topics on:
– The concepts of software architecture (components, 

service-oriented architecture, build architecture), 
aspect-oriented paradigm, software refactoring

– The software engineering tools for these tasks, 
including code fact extraction, reflexion model, 
Eclipse, aspectJ etc.

– How to apply them to our course project



Spring 2005 ECE450H1S Software Engineering II

What’s next …
• A Tutorial on Web Services
• Next lecture will give you some examples 

of requirement specifications and project 
documents

• Do we cover the material you want to 
learn? If no, please send me email and 
see whether the course can motivate your 
study …


