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Lecture 2 

Software Re-engineering
Some material is based on the CSER projects at U of T

Covers almost all concepts of the course
Detail explanations to come …

Copyright © Yijun Yu, 2005
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Last lecture …

General Information
• Instructor: Yijun Yu yijun@cs.toronto.edu

• Office: BA7200 (Bahen Center, 7th floor), 
946-8530

• Office hours: Wed 5pm – 6pm, Fri 2pm-3pm

• TA: Alexia Giannoula alexia@comm.utoronto.ca

Clark Merchant Clark.Merchant@utoronto.ca
Mazen Almaoui mazen@dsp.utoronto.ca

• Class homepage: 
http://www.cs.toronto.edu/~yijun/ece450h
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Marking Scheme adjusted
• No midterm
• Final Exam 50% (Exam week)
• Course Project 50%

– Assignment 1 (15%): Feb 11

– Assignment 2 (15%): Feb 25
– Assignment 3 (20%): April 8
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Our Course Project
• This is a “brand-new” software reengineering 

project, emphasizing on reusing, restructuring, 
refactoring large-scale software systems, and 
team work ! 
– A1: Understanding the architecture of a legacy 

system (OpenOME, OmniEditor) (15%)
– A2: Design OmniGraphEditor web service (15%)
– A3: Reengineering OpenOME to use 

OmniGraphEditor web service of other teams (20%)

• Tutorials will cover detailed approaches and 
tools to help you with the project
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Today …
1. Review SE process
2. Discuss Reengineering Concepts
3. Go over some case studies, a road map to our 

lectures and tutorials:
VIM: componentization, reveal architectures
osCommerce: aspect elicitation, reveal requirements
SquirrelMail: goal elicitation from refactored code

4. Your exercise is to use the learnt knowledge to 
study two other legacy software systems:
OpenOME and OmniEditor

5. Summary
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1. Software Engineering Process

The Waterfall process model
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1. Software Engineering Process

Rapid Prototyping process
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1. Software Engineering Process

Spiral (incremental) process
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2. Reengineering concepts
• Why Software Reengineering?

– Legacy software are increasing 
(Software vs. Hardware)

– New technology appearing 
(Moore’s law)

– Successful ratio of projects increasing 
(IBM internal history)

– Companies are more competing 
(now we have the “open-source” movement and free-software 
foundation)

– Quality attributes are demanding 
(That’s the selling point)

– People are changing 
(developers joining and leaving, customers are changing)

– Software maintenance are pressing
(Largest cost in software development lifecycle >60%)
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2. Reengineering concepts
What is software reengineering?

To a large extent, it involves maintenance activities:
– Understanding (predictive)
– Repairing (corrective)
– Improving (perfective)
– Evolving (adaptive)

• Related topics
– Quality-driven software engineering (-ilities, quality attributes)
– Requirements engineering (goals, non-functional requirements)
– Software architectures (architectural views: components, 

statecharts, features, …)
– Model-driven development (MOF, UML, EMF)
– Design patterns (structural, behavioural)
– Software refactoring (the code smells)
– Performance tuning (trade-offs, multi-criteria optimizations)
– Paradigms: Object-oriented, Goal-oriented, Agent-oriented, 

Aspect-oriented…
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2. Reengineering concepts
The Horseshoe model
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The Reengineering Horseshoe
REQUIREMENTS

Intentions

Architectures

Functions

Source Code

…
…

LEGACY CODE

STATECHARTS

GOAL MODEL

Reverse engineering

GOAL MODEL

SOA

Web services

customizable
architecture

components

Forward engineering
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Reading assignments 
on software architectures

• Previous lecture note for ECE450H1S: 
“What is software architecture?”
“How to represent it?”
– D. Penny. “Introduction to software 

architecture”: 
http://www.cs.toronto.edu/~chechik/courses00
/ece450/lectures/penny.2up.pdf

– M. Chechnik. “ADL and Darwin”. 
http://www.cs.toronto.edu/~chechik/courses00
/ece450/lectures/Marsha-Darwin.pdf
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Further readings
• Martin Fowler. “The Refactoring

homepage”: http://www.refactoring.com/
• CMU SEI: “Software architecture”. 

http://www.sei.cmu.edu/ata/ata_init.html
• KMLab. “On goal oriented software 

engineering”. 
http://www.cs.utoronto.ca/km/goal_oriente
d

Spring 2005 ECE450H1S Software Engineering II

Case Study I. VIM
• VIM stands for Vi-IMproved

http://www.vim.org
• Are you a VIMer?
• Current version 6.3
• Bram Moolenaar
• Developed in C
• 172 KLOC
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Understanding 
the architecture of VIM

• Lee’s initial VIM architecture
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• Vim 5.3

John Tran et al. “Architectural Repair of Open 
Source Software”, IWPC 2000.
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G. Murphy, et al. “Software Reflexion Models: Bridging the gap 
between design and implementation”, IEEE Trans. On Software 

Engineering 27(4):364-380, 2001.

• Reflexion model (jRMTool)
• High-level model (HLM) 

multi-graph
• Source model (SM) multi-

graph (source code or trace)
• Mapping from SM to HLM is 

defined by regular 
expressions

• Identify three kinds of edges:
– Convergence
– Divergence
– Absence
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H. Dayani-Fard, Y. Yu, J. Mylopoulos, P. Andritsos. “Improving the 
build architecture of legacy C/C++ software systems”, Fundamental 

Approaches to Software Engineering, April 2005. to appear

• http://www.cs.toronto.edu/~yijun/literature/
paper/dayani-fard05fase.pdf 

• VIM 6.2
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Restructuring headers
• Components provides and uses interfaces
• In C/C++, such as VIM, interfaces are written in Headers
• “Abstraction and information hiding” is a good principle in 

SE, thus we should do the componentization …
• “Large-cohesion and Low coupling” is the modularity 

principle of SE
• The inclusion of the headers may violate this principle

– Too much entities included leads to redundancies, and also
– False dependencies

• It is an advanced topic to show how to restructure the 
program to remove all false dependencies

• And also componentize the program to minimize the 
number of interfaces. 

• Implementation in the adapted version of GCC 3.4.0
• Applications to IBM database product and potentially a 

Wind River product
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Motivation: Decaying metrics of an industrial product
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Build performance results
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Quality-driven software refactoring
• Refactoring is a technique to reveal hidden structure of the system. 

It helps maintainability by reducing complexity, but may hurt 
performance…
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Case Study II. osCommerce
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Motivation
• PHP, 65 KLOC
• It is an parallel implementation of the 

Media Shop, an information system 
example in Goal-oriented Requirements 
Engineering

• It has been studied by clone detection
• We want to show the connection of goal 

models with aspect elicitation
Y. Yu, J.C. Leite, J. Mylopulos. “From Goals to 
Aspects: Discovering Aspects from Requirements 
Goal Models”, RE 2004. 38-47.
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Aspect-Orientation changes the 
way of thinking
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Source Files

SHOPPING_CART

PRIVACY_INFO

To right

PAGE LAYOUT

CHECK_OUT

ACCOUNT_MGMT

PRODUCT_INFO

LOGIN/OUT

ADVANCED_SEARCH

SSL
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Case Study III. Squirrel Mail
• It is a web-based email system used by 

the CS department
• We will explore the steps on how to 

refactor it to reveal the intention of 
developers: Code -> Statechart -> Goals

• The research is on-going on building the 
tool support. It will be associated with a 
tutorial on Eclipse tools
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The appearance of the system

SquirrelMail 1.5.0
Open source
70 KLOC
PHP + HTML
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A result of the refactoring
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A result goal model
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Summary
• Reengineering is a hot topic in the software 

engineering research
• Case studies show some ways to understand a 

legacy software
• We will use several tutorials to explore further on 

individual case studies, explaining advanced 
topics on:
– The concepts of software architecture (components, 

service-oriented architecture, build architecture), 
aspect-oriented paradigm, software refactoring

– The software engineering tools for these tasks, 
including code fact extraction, reflexion model, 
Eclipse, aspectJ etc.

– How to apply them to our course project
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What’s next …
• A Tutorial on Web Services
• Next lecture will give you some examples 

of requirement specifications and project 
documents

• Do we cover the material you want to 
learn? If no, please send me email and 
see whether the course can motivate your 
study …


