Lecture 10
Topics in Configuration
Managements

1. Componentization
2. Product-line family

Spring 2005 ECE450H1S Software Engineering Il

Last lecture ...

1. Sign a contract

2. Design by contract
Three kinds of design contracts

3. Programming by contract
Three kinds of programming
practices by contract

Spring 2005 ECE450H1S Software Engineering Il

Today ...

1. Problems in legacy software
development
2. Componentization
1. Redundancy removal
2. Header Restructuring
3. Clustering (repackaging)
3. Feature oriented programming

4. Summary

Spring 2005 ECE450H1S Software Engineering Il

1. Problems facing SE

» Software are getting more complex
— Code size getting larger, more dependencies
— More developers are involved
— More users and stakeholders
— Understandability, productivity are dropping

« Thus, _ _ is the central theme of
software engineering

« How to improve so that people can develop in
parallel and incrementally? Sync-and-Stabilize
or “Daily build” approach

« Componentization and Software Product-line
family are good solutions to the problem

Spring 2005 ECE450H1S Software Engineering Il

2. Components

* Modules have high and low

» To support parallel development, ideally,
components can be compiled
and tested

« A component has an (set of

operations) through which other
components can interact

A web service is a component that has a
interface and
regardless of programming languages

Spring 2005 ECE450H1S Software Engineering Il

Legacy software

» Legacy software typically contains large set of
program files, but not well modularized

* Redundancy: the interfaces of “components” in
legacy software are bloated
— A prolonged fresh build time

» False dependencies: including unnecessary
program units for the component
— Too complex to be understood
— A prolonged incremental build time

* We will show C/C++ as an example, but the
problem exists for other PL as well

Spring 2005 ECE450H1S Software Engineering Il

Example 1. Hello world

#include <stdio.h>
void main () {

printf (“’Hello, world!””);
by

 How many LOC after inclusion?
gcc -E -P hello.c -0 hello.o
wc hello.o

« How many LOC is needed? 4
gcc -E -P -fdump-program-unit hello.c

* The #include shall expand to a single line:

int __attribute__ ((_cdecl_)) printf(const char*,...);

Spring 2005 ECE450H1S Software Engineering Il

2.1 Componentization

» Restructuring by removing unnecessary units in the
program
» A restructuring unit is a statement declaring, or a
defining of the user-defined symbols, such as
, etc.

. _ _ _ are not
considered as a restructuring unit because removing
them may affect the semantic of the program

* What is the difference between declaration and
definition? Throughout the program can
occur multiple times, can only occur once.

* Preserving semantics: (1) maintain the
such that compiler won’t complain about undefined
symbols; (2) make sure are kept in
the compilation units

Spring 2005 ECE450H1S Software Engineering Il

2.2 Redundancy removal

Example 2. Removing
redundancies along parsing

As shown in previous example, redundancy 2 shruct noder 1/ PUG 1 or var d: node@
. 3. typedef struct node /1 PU@B type:list@
happens when some program declaration are @ ?foattval v (I styf’g_ct o
unnecessary ? }st:lu::ftA{ ;;PU@ struct: A
How to tell this? o ""NNBER val ue: " < P
. 10. } u; 11l
In GCC 3.4.0, we change its parser such that a ey y
symbol dependent by the R S /1 A
definitions will be kept in the precompiled 15 e 11 enumerator:Satisfi ed@
program i; |}nt nai n(argc, argv) ;;PU@ funcdef : mai n@
.. - 19. int argc; char **argv; 11
Very efficient and beneficial o 00 T T e
compilation time + precompilation time < original A N e A
Comp”a'non Ume gg:) return (int) Satisfied; H < PUG
Spring 2005 ECE450H1S Software Engineering Il Spring 2005 ECE450H1S Software Engineering Il
2.3 Header restructuring Example 3. False dependency
Configuration management: to maintain the #include “foo.h”
software when changes happens void foo(); I
: i int main() {
For example: CVS void bar(); f0o();
Removing redundancies in the preprocessed . b)
program does not solve the problem for foo.h = ~smainc | /7 File
Changes true ., boundary
A compilation unit does not need to e foo — ‘ ' @ z
when its dependent symbols are Declare < v R NREELL " NS
not changed at all Unit s L
. . - — alse ’ .
Such unnecessary recompilations are caused by . \ Dﬁme
Spring 2005 ECE450H1S Software Engineering Il Spring 2005 ECE450H1S Software Engineering Il

The removal of false dependencies

* |dentify dependencies

 Partition the definition and declaration
units into separate files, replacing
dependencies with “#include”

» Grouping the declarations into larger
headers, if

» The code generation process can be done
efficiently

Spring 2005 ECE450H1S Software Engineering Il

h
h, h3 h,
h, hl h,
h, CZ C,
C, 2

{Cs}

(b) The implicit light-weight PUDG

(a) Program unit sequences after redundancy removal
where h; is the i-th global declaration and C; is the
sequence of definitions in the j-th compilation unit

H, = <h3>
{Cl,Cz,C3}
Ho Ho Ho
H,=<h1,h2> H,=<h4> H, H, H,
C, C, C,
(c) The partitioning lattice (d) Generating ordered header inclusions
Spring 2005 ECE450H1S Software Engineering Il

2.4 Clustering

* Problem: too many headers are generated,
because we get rid of all false dependencies

» Tradeoff: Can we tolerate some false
dependency for smaller number of headers, that
IS, to group them further into larger files?

» Clustering is to group related things together,
the technique is often used in data mining and
machine learning

» We want to cluster generated headers use the
hints of dependencies

Spring 2005 ECE450H1S Software Engineering Il

LIMBO clustering

* LIMBO is a clustering technique to minimizing
information loss in dependency graphs

* Group A, B into a cluster does not have
information loss if both depends on same
entities, e.g.

A depends on Al, A2
B depends on Al, A2

* Group A, B into a cluster has information loss if
they depends on different entities, e.g.
A depends on Al, A2
B depends on B1, B2

* The idea is to quantify the information loss and
rank them so that minimal loss is the priority

Spring 2005 ECE450H1S Software Engineering Il

Example 4. VIM 6.2

* We have removed around 70%
redundancies in LOC

» We have removed all false dependencies,
which generates 952 headers

» Using dependencies and the LIMBO
clustering, we got only 3 clusters
(corresponds to the MVC architectural
pattern) and 5 headers

Spring 2005 ECE450H1S Software Engineering Il

Experiment: fresh build time

80 Doriginal

. . M precompiled
Compilation Time
70 Orestructured -

60 M

40 I | H I

Time (secs)

Spring 2005 ECE450H1S

Software Engineering Il

Experiment: fresh build speedups

[precompiled
Net speedup Mrestructured
Ocomponentized

4 i il g

%,

S D,
& g

%, %%

Spring 2005 ECE450H1S

Software Engineering Il

Second

Experiment: incremental build time

25
estimated incremental recompilation time —
—e—original
—=—precompiled
2 T restructured
componentized
1.5
1
kD VLVW‘*\‘_/
0 FEASE e SRV SV M R A = s i
> . > o o o & & S o e & & > e & & S * 2 > ¢ N Y
& «A“& @‘é\ '5@@ ¢ wb o')(Q :P(@o @*9@\\ 4 @@&\\0 s s ¢ MR & & & a 5‘&0 @@é\\ é‘“’&Q ¢ \&OQ
compilation units
Spring 2005 ECE450H1S Software Engineering Il

2.5 More code removal?

 Dead code elimination
int add(int x, inty) {
intrl =x+vy;
intr2 =x*y;
return rl;

}

» Unused fields and methods
class A {
double value;
int getValue() { return value; }
public static void main(String args[]) {
printf(*Hello world!”);

}
|8

Spring 2005 ECE450H1S Software Engineering Il

3. Variability in Product-line Family

» Consider Daimler Chrisler (car manufacturer),
every product out of the product-line is different
from each other —- [Czarnecki]

* Why? Because the factory produces software
with in every of the car

* Can we do the same in software industry? SAP’s
approach:

» Feature models capture variability in the
space, whereas goal models capture variability
in the space

Spring 2005 ECE450H1S Software Engineering Il

3.1 Feature model

£ Captain Feature 0.1 - C\vesearch!goal-model\customization'software,captainfeature!datalcar &
File

Blspacstmnner i e TR

= exampla
¢ 1 madel
o [META
¢ [CIMODEL
% bal
B car

E body

| engine |

[traiter coupi

B engine

B combustion
&l electrical

& transmission

B automatic ‘ combustion | ‘ electrical ‘ | i | | by hand ‘
E by hand i
& trailer caupling

H Kl il

CaptainFeature is a feature modeling tool [Czarnecki]
A feature is either Mandatory, Optional, Alternative or (Inclusive) Or.

Spring 2005 ECE450H1S Software Engineering Il

Example from Batory’s tutorial

il .
5 — AXAX2 VaAriants

-

Spring 2005 ECE450H1S Software Engineering Il

Software Feature Model

s A SOﬂware System |S Pse\lealules\’.’
composed of features S e 20 oz

(CJ[org.eclipse.cdt_source_2.0.1]
(CJ[org.eclipse.cdt_2.0.1]
* Features can be o A
(CJforg.eclipse.emf.ecore.sdo.doc_2.0.0]
H H (CJ[org.eclipse.emf.ecore_sdo_source_2.0.1]
organ ized as a hierarc hy e e o e e
CJlorg.eclipse.emf.sdk_2.0.1]
(CJlorg.eclipse.emf.source_2.0.1]
(J[org.eclipse.emf_2.0.1]
* Example Rl e g a1y
(CJ[org.eclipse.gef. source_3.0.1]
H (Clorg.eclipse.gef_3.0.1]
eclipse/features/feature.xml =gsEizssil.o,
(C[org.eclipse.jdt_3.0.1]
(CJ[org.eclipse.pde_source_3.0.1]
e (CJ[org.eclipse.pde_3.0.1]
| . / I . / I . I %[I]lg.Eclipse.plal'ulm.suulce_3.ﬂ.1]
[org.eclipse_platform_3.0.1]
eC Ipse p uglngs p ugln Xm e (Clorg eclipse sdk_3.0.1]
(CJlorg.eclipse.uml2_1.0.1]
(CJlorg.eclipse.xsd.doc_2.0.0]
(CJlorg.eclipse.xsd.source_2.0.1]
(CJ[org.eclipse.xsd_2.0.1]
[Fnet sourceforge.metrics_1.3.5

Spring 2005 ECE450H1S Software Engineering Il

3.2 Feature-oriented programming

» Supported by the

| Program Synthesis Paradigm

AHEAD tOOl SUIte . Emtr:'weach‘I
d Key |dea |S tO multiple classes
represent a feature Programp = featureZ » featureY « featureX
as a layer of the
incremental pleceS class1 class2 class3 class4
Of mOdU|eS featureX H
— In Hyper/J, this is feature¥
called “concern featureZ
graph”
—In ASpeCtJ, |t iS By composing features, packages of fully-formed classes are synthesized

called aspect
crosscutting

e FOP versus AOP? s

Spring 2005 ECE450H1S Software Engineering Il

Example

class A {
datal; nethodl;
dat a2; nethod2;
dat a3; net hod3;

b
class A {}; ...Core prg. as a constant ¢
class A { datal; nmethodl; }; ...Feature as a functioni
class A { data2; nethod2; }; ...Feature as a function |
class A { data3; nethod3; }; ...Feature as a function k

» Mixing them k(j(i(c)))

¢ Advantages:
Incremental and parallel development
Step-wise refinement

* Risk:))) .
How to guarantee the semantics and information hiding?

Spring 2005 ECE450H1S Software Engineering Il

3.3 Generative programming

* Templates in C++: stack<int>

* Templates in code generators (Eclipse)
Generating class, method, test cases, etc.

» Generated code in the Visual programming
Visual Studio, Visual Editor, etc. Generating GUI code

+ What else does generative programming do? Derives a
configuration from the feature model. Each configuration
leads to one variant of the product
— #if engine==COMBUSTION

#endif
— make -Dengine=COMBUSTION
— CaptainFeature -> Configuration (XML)
* You may apply the variability configuration at compile-
time, deploy-time, run-time

Spring 2005 ECE450H1S Software Engineering Il

Spring 2005 ECE450H1S

3.4 Industrial practice:

Partial classes
.NET framework 2.0 (ASP.NET magazine)
Implemented in the CLI: C#, C++, VB

Proposed to solve problem for mixing generated
code (visual programming) and user code

Now a class definition can scatter over multiple
files as long as there is a “partial” modifier

partial class A { datal; nethodl; };
partial class A { data2; nethod2; };
partial class A { data3; nethod3; };

The “weaving” is done by the .NET compiler

Software Engineering Il

Spring 2005 ECE450H1S

4. Your exercise

Consider componentization of your modules:
minimize the interface

Each component is a module that implements
part of a feature, they can be organized into a
(layered) feature model, and converting the
program into a set of features (FOP)

Create a feature model to show the
distinctiveness of your product over other
teams? ----- bonus J

Use feature model to know whether you can
produce a generic software as a product line
family, to integrate with other team’s various
products

Software Engineering Il

Spring 2005 ECE450H1S

5. Summary

Why componentization is important?

How can you turn legacy software into
components?

How can you decompose components into
features and assemble them back?

What's the relation among CBSE (COTYS),
FOP and AOP?

Software Engineering Il

Spring 2005 ECE450H1S

Further readings

R. Adams, W. Tichy, A. Weinert. “The cost of selective recompilation and
environment processing”, ACM Trans. on Software Engineering
Methodologies, 3, 3-28. 1994.

D. Batory, J. N. Sarvela, A. Rauschmayer. “Scaling step-wise refinements”,
IEEE Trans. On Software Engineering. 30(6):355-371. 2004.

K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, Reading, MA, USA, 2000.

H. Dayani-Fard, Y. Yu, J. Mylopoulos, P. Andritsos. “Improving the build
architecture of legacy C/C++ software systems”, Fundametal Approaches in
Software Engineering. 2005.

Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, J.C.S.P. Leite. “From
stakeholder goal models to high variability design”, Technical report CSRG-
509. 2005.

Y. Yu, H. Dayani-Fard, J. Mylopoulos, P. Andritsos. “Reducing build time
through precompilations for large-scale software”. Technical report CSRG-
504. 2004

Y. Yu, H. Dayani-Fard, J. Mylopoulos. “Remove false code dependencies to
speedup up build process”, CASCON'03.

Software Engineering Il

