
Spring 2005 ECE450H1S Software Engineering II

Lecture 10
Topics in Configuration

Managements
1. Componentization
2. Product-line family

Spring 2005 ECE450H1S Software Engineering II

1. Sign a contract
2. Design by contract

Three kinds of design contracts
3. Programming by contract

Three kinds of programming
practices by contract

Last lecture …

Spring 2005 ECE450H1S Software Engineering II

1. Problems in legacy software
development

2. Componentization
1. Redundancy removal
2. Header Restructuring
3. Clustering (repackaging)

3. Feature oriented programming
4. Summary

Today …

Spring 2005 ECE450H1S Software Engineering II

1. Problems facing SE
• Software are getting more complex

– Code size getting larger, more dependencies
– More developers are involved
– More users and stakeholders
– Understandability, productivity are dropping

• Thus,______________ is the central theme of
software engineering

• How to improve so that people can develop in
parallel and incrementally? Sync-and-Stabilize
or “Daily build” approach

• Componentization and Software Product-line
family are good solutions to the problem

Spring 2005 ECE450H1S Software Engineering II

2. Components
• Modules have high _____ and low ______
• To support parallel development, ideally,

components can be _________ compiled
and tested

• A component has an ________ (set of
operations) through which other
components can interact

• A web service is a component that has a
__________ interface and __________
regardless of programming languages

Spring 2005 ECE450H1S Software Engineering II

Legacy software
• Legacy software typically contains large set of

program files, but not well modularized
• Redundancy: the interfaces of “components” in

legacy software are bloated
– A prolonged fresh build time

• False dependencies: including unnecessary
program units for the component
– Too complex to be understood
– A prolonged incremental build time

• We will show C/C++ as an example, but the
problem exists for other PL as well

Spring 2005 ECE450H1S Software Engineering II

Example 1. Hello world
#i ncl ude <st di o. h>
voi d mai n () {

pr i nt f (‘ ’ Hel l o, wor l d! ’ ’) ;
}

• How many LOC after inclusion? _______
gcc - E - P hel l o. c - o hel l o. o
wc hel l o. o

• How many LOC is needed? 4
gcc - E - P - f dump- pr ogr am- uni t hel l o. c

• The #include shall expand to a single line:
i nt __at t r i but e__((__cdecl __)) pr i nt f (const char * , . . .) ;

Spring 2005 ECE450H1S Software Engineering II

2.1 Componentization
• Restructuring by removing unnecessary units in the

program
• A restructuring unit is a statement declaring, or a

defining of the user-defined symbols, such as
___________________________________, etc.

• _____________________________________ are not
considered as a restructuring unit because removing
them may affect the semantic of the program

• What is the difference between declaration and
definition? Throughout the program ___________ can
occur multiple times, ___________ can only occur once.

• Preserving semantics: (1) maintain the ___________
such that compiler won’t complain about undefined
symbols; (2) make sure ________________ are kept in
the compilation units

Spring 2005 ECE450H1S Software Engineering II

2.2 Redundancy removal
• As shown in previous example, redundancy

happens when some program declaration are
unnecessary

• How to tell this?
• In GCC 3.4.0, we change its parser such that a

symbol ___________ dependent by the
definitions will be kept in the precompiled
program

• Very efficient and beneficial
compilation time + precompilation time < original
compilation time

Spring 2005 ECE450H1S Software Engineering II

Example 2. Removing
redundancies along parsing

1. t ypedef i nt NUMBER; / / PU@1
2. st r uct node; / / PU@2 f or war d: node@2
3. t ypedef st r uct node { / / PU@3 t ype: l i s t @3
4. f l oat val ue; / / st r uct : node@3
5. st r uct node* next ; / / <- PU@3, PU@2
6. } * l i s t ; / /
7. st r uct A { / / PU@4 st r uct : A
8. uni on { / /
9. NUMBER val ue; / / <- PU@1
10. } u; / /
11. } ; / /
12. ext er n i nt / /
13. pr i nt f (char * f or mat , . . .) ; / / PU@5 f uncdcl : pr i nt f @5
14. enum { / / PU@6 enum: <anonymous>@6
15. Sat i sf i ed, / / enumer at or : Sat i s f i ed@6
16. Deni ed, / / enumer at or : Deni ed@6
17. } ; / /
18. i nt mai n(ar gc, ar gv) / / PU@7 f uncdef : mai n@7
19. i nt ar gc; char * * ar gv; / /
20. { / /
21. l i s t l , n; / / <- PU@3
22. f or (n = l ; n; n=n- >next) / /
23. pr i nt f (" f " , n- >val ue) ; / / <- PU@5
24. r et ur n (i nt) Sat i s f i ed; / / <- PU@6
25. } / /

Spring 2005 ECE450H1S Software Engineering II

2.3 Header restructuring
• Configuration management: to maintain the

software when changes happens
For example: CVS

• Removing redundancies in the preprocessed
program does not solve the problem for
____________ changes

• A compilation unit does not need to
___________ when its dependent symbols are
not changed at all

• Such unnecessary recompilations are caused by

Spring 2005 ECE450H1S Software Engineering II

Example 3. False dependency

Spring 2005 ECE450H1S Software Engineering II

The removal of false dependencies

• Identify dependencies
• Partition the definition and declaration

units into separate files, replacing
dependencies with “#include”

• Grouping the declarations into larger
headers, if _____________________

• The code generation process can be done
efficiently

Spring 2005 ECE450H1S Software Engineering II

h2

C1

C2

C3h4

h3

{C1, C2}

h1

{C1, C2}

{C3}

{C1, C2, C3}

{C1,C2,C3}

{C1, C2} {C3}

{ }

H0 = <h3>

H1=<h1,h2> H2=<h4>
H0
H1
C1

H0
H1
C2

H0
H2
C3

(a) Program unit sequences after redundancy removal
where hi is the i-th global declaration and Cj is the
sequence of definitions in the j-th compilation unit (b) The implicit light-weight PUDG

(c) The partitioning lattice (d) Generating ordered header inclusions

h1
h3
h2
C1

h3
h1
h2
C2

h3
h4
C3

Spring 2005 ECE450H1S Software Engineering II

2.4 Clustering
• Problem: too many headers are generated,

because we get rid of all false dependencies
• Tradeoff: Can we tolerate some false

dependency for smaller number of headers, that
is, to group them further into larger files?

• Clustering is to group related things together,
the technique is often used in data mining and
machine learning

• We want to cluster generated headers use the
hints of dependencies

Spring 2005 ECE450H1S Software Engineering II

LIMBO clustering
• LIMBO is a clustering technique to minimizing

information loss in dependency graphs
• Group A, B into a cluster does not have

information loss if both depends on same
entities, e.g.
A depends on A1, A2
B depends on A1, A2

• Group A, B into a cluster has information loss if
they depends on different entities, e.g.
A depends on A1, A2
B depends on B1, B2

• The idea is to quantify the information loss and
rank them so that minimal loss is the priority

Spring 2005 ECE450H1S Software Engineering II

Example 4. VIM 6.2
• We have removed around 70%

redundancies in LOC
• We have removed all false dependencies,

which generates 952 headers
• Using dependencies and the LIMBO

clustering, we got only 3 clusters
(corresponds to the MVC architectural
pattern) and 5 headers

Spring 2005 ECE450H1S Software Engineering II

Experiment: fresh build time

Spring 2005 ECE450H1S Software Engineering II

Experiment: fresh build speedups

Spring 2005 ECE450H1S Software Engineering II

Experiment: incremental build time

Spring 2005 ECE450H1S Software Engineering II

2.5 More code removal?
• Dead code elimination

int add(int x, int y) {
int r1 = x + y;
int r2 = x * y;
return r1;

}
• Unused fields and methods

class A {
double value;
int getValue() { return value; }
public static void main(String args[]) {

printf(“Hello world!”);
}

};

Spring 2005 ECE450H1S Software Engineering II

3. Variability in Product-line Family

• Consider Daimler Chrisler (car manufacturer),
every product out of the product-line is different
from each other –-- [Czarnecki]

• Why? Because the factory produces software
with _________ in every ______ of the car

• Can we do the same in software industry? SAP’s
approach:_________________

• Feature models capture variability in the ______
space, whereas goal models capture variability
in the _______ space

Spring 2005 ECE450H1S Software Engineering II

3.1 Feature model

CaptainFeature is a feature modeling tool [Czarnecki]

A feature is either Mandatory, Optional, Alternative or (Inclusive) Or.

Spring 2005 ECE450H1S Software Engineering II

Example from Batory’s tutorial

4x4x2 variants

Spring 2005 ECE450H1S Software Engineering II

Software Feature Model
• A software system is

composed of features
• Features can be

organized as a hierarchy
• Example

eclipse/features/feature.xml
…
eclipse/plugings/plugin.xml…

Spring 2005 ECE450H1S Software Engineering II

3.2 Feature-oriented programming
• Supported by the

AHEAD tool suite
• Key idea is to

represent a feature
as a layer of the
incremental pieces
of modules
– In Hyper/J, this is

called “concern
graph”

– In AspectJ, it is
called aspect
crosscutting

• FOP versus AOP?

Spring 2005 ECE450H1S Software Engineering II

Example
cl ass A {

dat a1; met hod1;
dat a2; met hod2;
dat a3; met hod3;

} ;

c l ass A { } ; …Core prg. as a constant c
cl ass A { dat a1; met hod1; } ; …Feature as a function i
cl ass A { dat a2; met hod2; } ; …Feature as a function j
cl ass A { dat a3; met hod3; } ; …Feature as a function k

• Mixing them k(j(i(c)))
• Advantages:

Incremental and parallel development
Step-wise refinement

• Risk:
How to guarantee the semantics and information hiding?

Spring 2005 ECE450H1S Software Engineering II

3.3 Generative programming
• Templates in C++: st ack<i nt >
• Templates in code generators (Eclipse)

Generating class, method, test cases, etc.
• Generated code in the Visual programming

Visual Studio, Visual Editor, etc. Generating GUI code
• What else does generative programming do? Derives a

configuration from the feature model. Each configuration
leads to one variant of the product
– #i f engi ne==COMBUSTI ON

. . .
#endi f

– make - Dengi ne=COMBUSTI ON
– CaptainFeature -> Configuration (XML)

• You may apply the variability configuration at compile-
time, deploy-time, run-time

Spring 2005 ECE450H1S Software Engineering II

3.4 Industrial practice:
Partial classes

• .NET framework 2.0 (ASP.NET magazine)
• Implemented in the CLI: C#, C++, VB
• Proposed to solve problem for mixing generated

code (visual programming) and user code
• Now a class definition can scatter over multiple

files as long as there is a “partial” modifier
par t i al c l ass A { dat a1; met hod1; } ;
par t i al c l ass A { dat a2; met hod2; } ;
par t i al c l ass A { dat a3; met hod3; } ;

• The “weaving” is done by the .NET compiler

Spring 2005 ECE450H1S Software Engineering II

4. Your exercise
• Consider componentization of your modules:

minimize the interface
• Each component is a module that implements

part of a feature, they can be organized into a
(layered) feature model, and converting the
program into a set of features (FOP)

• Create a feature model to show the
distinctiveness of your product over other
teams? ----- bonus J

• Use feature model to know whether you can
produce a generic software as a product line
family, to integrate with other team’s various
products

Spring 2005 ECE450H1S Software Engineering II

5. Summary
• Why componentization is important?
• How can you turn legacy software into

components?
• How can you decompose components into

features and assemble them back?
• What’s the relation among CBSE (COTS),

FOP and AOP?

Spring 2005 ECE450H1S Software Engineering II

Further readings
• R. Adams, W. Tichy, A. Weinert. “The cost of selective recompilation and

environment processing”, ACM Trans. on Software Engineering
Methodologies, 3, 3-28. 1994.

• D. Batory, J. N. Sarvela, A. Rauschmayer. “Scaling step-wise refinements”,
IEEE Trans. On Software Engineering. 30(6):355-371. 2004.

• K. Czarnecki and U. Eisenecker. Generative Programming: Methods, Tools,
and Applications, Addison-Wesley, Reading, MA, USA, 2000.

• H. Dayani-Fard, Y. Yu, J. Mylopoulos, P. Andritsos. “Improving the build
architecture of legacy C/C++ software systems”, Fundametal Approaches in
Software Engineering. 2005.

• Y. Yu, J. Mylopoulos, A. Lapouchnian, S. Liaskos, J.C.S.P. Leite. “From
stakeholder goal models to high variability design”, Technical report CSRG-
509. 2005.

• Y. Yu, H. Dayani-Fard, J. Mylopoulos, P. Andritsos. “Reducing build time
through precompilations for large-scale software”. Technical report CSRG-
504. 2004

• Y. Yu, H. Dayani-Fard, J. Mylopoulos. “Remove false code dependencies to
speedup up build process”, CASCON’03.

