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1. Autonomic computing

Requirements for AC systems
• Why autonomic computing in software 

engineering?
– Moore’s law: hardware speed doubles every 18 

months
– Lehman’s evolution law: software complexity is 

increasing
– Moore’s law versus Lehman’s law => 

increasing software maintenance cost comparing to 
the hardware cost

J. Kephart and D.M. Chess. “The vision of autonomic computing”.
IEEE Computer Journal. 36(1):41-50. 2003.
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Requirements of AC systems
Three basic ways to build such systems
• Designed to support all possible behaviors (our proposal)
• Delegating tasks to external agents (agent-oriented)
• To let evolution decides the better fits (evolutionary)

To model all possible behaviors, we need to analyze the 
requirements of the AC system to be built

An autonomic system requires:
• Adaptive: evolves like biology systems
• Intelligent: reasons like expert systems
• Self-awareness: senses the environment and self

what’s going on, what’s wrong, what’s better, what to change …
• Self-conduct: plans without intervention

what to do, how to change, …
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2. Goal-oriented RE
• Before designing a system, analyze the goals 

(intentions) of stakeholders
– divide and conquer: ask Why and How to establish solutions to 

the problem
– The solutions are result of AND/OR decomposition of the 

problem

• Functional requirements are hard goals
• Non-functional requirements (NFR) are soft goals

NFRs are used to model quality attributes associated 
with metrics

• The result of GORE process is a goal model: 
the causal dependencies among requirements

A. van Lamsweerde. “From systems goals to software architectures”. 
FSE. 2004.
L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-functional requirements 
in software engineering. Kluwer Academic Press. 1999.
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Meeting scheduler example
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3. Variability: more than one ways  
to attain a goal

• A key difference between autonomic systems design and 
traditional design: can the system adapt its behavior to 
the environmental changes?

• Alternative ways to solve a problem are captured by the 
OR goal decompositions 

• Alternatives in the goal model captures the variability in 
the problem domain
– Variability in problem domain must be reflected in the solution 

domain as alternative configurations, behaviors and structures
– The selection criteria for THE solution can be guided by 

softgoals in the goal model
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Toward high-variability designs

• Variability in problem domain must be reflected in the 
solution domain as alternative configurations, 
behaviors, structures, concerns, etc.

1. Configure variability: feature models in the product-
line family software

2. Behavioral variability: transitional systems typically 
statecharts

3. Structural variability: components compositions 
patterns in software architectures

4. Concerns variability: aspect-oriented compositions
5. … and so on so forth …
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Configuration variability

B. Hui et al. “Requirements analysis for customizable software: goals-
skills-preferences farmework”, RE’03.
S.Liaskos et al. “Configuring common personal software: a 
requirements-driven approach”. To appear, RE’05.
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you may not want to configure 
in more details
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3.1 Converting into feature model
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3.2 Converting into statecharts
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3.3 Converting into ADL
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Light-weight enrichments

• Goal models in the AND/OR graph form 
need to be enriched with design-specific 
information to transform into a design

• Keep it simple stupid: such enrichments 
are light-weight: minimal information to 
derive the design

• Keeping the traceability among the 
variabilities is crucial to the design of AC 
systems
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Enriching the goal models

1. Feature models? 
– Mandatory or Options: 

System/Non-System boundary 
– Inclusive or Alternatives: OR/XOR

2. Statecharts?
If one knows data dependencies among leaf goals, 
control is either sequential (;) or parallel (||).

3. Software architecture?
Data bindings for inputs and outputs (corresponds to 
goal topics)
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4. Towards AC systems

• Goal models + high-variability design patterns 
=> AC systems

• An autonomic 
manager element
(MAPE)
– Knowledge
– Monitor
– Analyze
– Plan
– Execute
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4.1 Goal models as the core 
knowledge

• Autonomic elements are full-fledged intelligent agents; 
Goal models represent the requirements of agents

• Goal models help autonomic elements:
– Monitor: goals-qualities-metrics (GQM) framework
– Analyze: NFR and GSP frameworks -- ranking alternatives 

through softgoals (quality criteria)
– Plan: Designing all alternatives and switching among them
– Execute: high-variability design translations from enriched goal 

models

• Thus, properly enriched goal models are the core 
knowledge for autonomic element
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4.2 Hierarchical 
Autonomic Architecture
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Advantages of the HAA

• Reduces complexity of AC systems
– Propagating high-level concerns to low-level concerns as guiding 

policies 
=> self-configuring

– Propagating low-level metrics to high-level attention only when 
necessary (localize the changes)
=> self-managing

– Monitoring costs of alternatives allows fast switching among 
them to reduce cost 
=> self-tuning

– Monitoring the satisfaction of alternatives allows fast detecting 
failures to invoke corrective tasks (modeled as delta-alternatives)
=> self-healing

• Supporting mechanisms:
Top-down and bottom-up qualitative and quantitative 
goal reasoning algorithms
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4.3 Goal-model-based 
autonomic behaviors

What do self-* behaviors mean for us in the 
MAPE feedback loops

• Self-configuration and reconfiguration
Choosing the better configurations with respect 
to historical statistical data

• Self-optimizing (self-tuning)
Monitoring NFR quality metrics with respect to 
the analytical data

• Self-repairing (self-healing)
Monitoring FR with respect to the analytical data
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5. Conclusion and future work
• Stakeholder requirements goals are the core knowledge of 

autonomic elements in order to make AC applications adapt for the 
better in users’ perspectives

• Autonomic systems cost less at run-time with high-variability designs
• A hierarchical autonomic architecture is proposed to reduces the

design-time complexity of AC systems
• Different autonomic behaviors are interpreted as different 

applications of goal models: goal monitoring, goal reasoning and
goal-to-design translations

Future work: 
• Implement the MAPE feedback loop with goal models
• Apply the goal-model based autonomic elements to AC software 

systems
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Questions



May 1-2, 2005

Backup slides

• References
• Enrichments
• Translating patterns
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3.1b For configuring variability
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3.2b For behavioral variability 
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3.3b For structural variability
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May 1-2, 2005

3.1c From goal to feature
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3.2c From goal to state

1. Defining states 3. Transforming hierarchies

2. Treating dependencies 4. Simplifying leaf statecharts
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3.3c From goal to interfaces


