
May 1-2, 2005

Towards Requirements-Driven
Autonomic Systems Design

Alexei Lapouchnian
Sotirios Liaskos
John Mylopoulos

Yijun Yu

May 1-2, 2005

Agenda

1. Autonomic computing
2. Goal-oriented requirements engineering
3. High-variability designs
4. Towards autonomic computing systems

1. From goals to autonomic systems

2. A hierarchical autonomic architecture
3. Goal model-based autonomic behaviors

5. Conclusion

May 1-2, 2005

1. Autonomic computing

Requirements for AC systems
• Why autonomic computing in software

engineering?
– Moore’s law: hardware speed doubles every 18

months
– Lehman’s evolution law: software complexity is

increasing
– Moore’s law versus Lehman’s law =>

increasing software maintenance cost comparing to
the hardware cost

J. Kephart and D.M. Chess. “The vision of autonomic computing”.
IEEE Computer Journal. 36(1):41-50. 2003.

May 1-2, 2005

Requirements of AC systems
Three basic ways to build such systems
• Designed to support all possible behaviors (our proposal)
• Delegating tasks to external agents (agent-oriented)
• To let evolution decides the better fits (evolutionary)

To model all possible behaviors, we need to analyze the
requirements of the AC system to be built

An autonomic system requires:
• Adaptive: evolves like biology systems
• Intelligent: reasons like expert systems
• Self-awareness: senses the environment and self

what’s going on, what’s wrong, what’s better, what to change …
• Self-conduct: plans without intervention

what to do, how to change, …

May 1-2, 2005

2. Goal-oriented RE
• Before designing a system, analyze the goals

(intentions) of stakeholders
– divide and conquer: ask Why and How to establish solutions to

the problem
– The solutions are result of AND/OR decomposition of the

problem

• Functional requirements are hard goals
• Non-functional requirements (NFR) are soft goals

NFRs are used to model quality attributes associated
with metrics

• The result of GORE process is a goal model:
the causal dependencies among requirements

A. van Lamsweerde. “From systems goals to software architectures”.
FSE. 2004.
L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-functional requirements
in software engineering. Kluwer Academic Press. 1999.

May 1-2, 2005

Meeting scheduler example

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

� 	
 � 	 �

� 	 �

May 1-2, 2005

3. Variability: more than one ways
to attain a goal

• A key difference between autonomic systems design and
traditional design: can the system adapt its behavior to
the environmental changes?

• Alternative ways to solve a problem are captured by the
OR goal decompositions

• Alternatives in the goal model captures the variability in
the problem domain
– Variability in problem domain must be reflected in the solution

domain as alternative configurations, behaviors and structures
– The selection criteria for THE solution can be guided by

softgoals in the goal model

May 1-2, 2005

Toward high-variability designs

• Variability in problem domain must be reflected in the
solution domain as alternative configurations,
behaviors, structures, concerns, etc.

1. Configure variability: feature models in the product-
line family software

2. Behavioral variability: transitional systems typically
statecharts

3. Structural variability: components compositions
patterns in software architectures

4. Concerns variability: aspect-oriented compositions
5. … and so on so forth …

May 1-2, 2005

Configuration variability

B. Hui et al. “Requirements analysis for customizable software: goals-
skills-preferences farmework”, RE’03.
S.Liaskos et al. “Configuring common personal software: a
requirements-driven approach”. To appear, RE’05.

May 1-2, 2005

you may not want to configure
in more details

May 1-2, 2005

3.1 Converting into feature model

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � ��� �
 �	 � �
 � 	 �
 � �� ���

� � ����
 �� � � 	 �

� ��
 �

� �� ���

� � � 	 �� � �� �

! �� � � �� �
 � �" 	 � � � 	 � ���� �
 �� � � � ��� #

! �� � � �� �
 � �" � ���� �
 ���� � �
 � � � �
 � #

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��� ���

���

May 1-2, 2005

3.2 Converting into statecharts

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

May 1-2, 2005

3.3 Converting into ADL
� ��
 � � ����������

� � � �
 � � � �
 �

� � ����
 � � �

� � ����

� � � �
 � � � �
 �

� �� ���

��� � ��

� � 	 	 �� � ��
 � � �

� � ����

���
 �� � �����
 � �

�������� � � �

�����������	�

� �� ���
 � � �
 �

� �
 � 	 �
 � ��

� � ����
 � � �

� � � �
 � � � �
 �

$ � � �
 �� $

�� �����	�
� ��	

�� �� �� � ��� ��� ��

� � �� � � ��� $ ��
�� �
�

% � � ��

� ��� �� �

� �� ���
 �

$ � �
 � �
 �

� �� � � � �

�� �� � 	�
� � �

� 	

� �� ���
 �

� � � ���

� 	 �

� 	

���� � � � �� ��� �� 	

� � � � � �
 �

� � � ��

� � � � �
 �	

& � � � ��� � �

� � � � 	 � ' �
 � � �

� � � � �
 �	

� � � � �� �
 �

� � � � 	 � ' �
 � � �

� � � � �
 �	

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

May 1-2, 2005

Light-weight enrichments

• Goal models in the AND/OR graph form
need to be enriched with design-specific
information to transform into a design

• Keep it simple stupid: such enrichments
are light-weight: minimal information to
derive the design

• Keeping the traceability among the
variabilities is crucial to the design of AC
systems

May 1-2, 2005

Enriching the goal models

1. Feature models?
– Mandatory or Options:

System/Non-System boundary
– Inclusive or Alternatives: OR/XOR

2. Statecharts?
If one knows data dependencies among leaf goals,
control is either sequential (;) or parallel (||).

3. Software architecture?
Data bindings for inputs and outputs (corresponds to
goal topics)

May 1-2, 2005

4. Towards AC systems

• Goal models + high-variability design patterns
=> AC systems

• An autonomic
manager element
(MAPE)
– Knowledge
– Monitor
– Analyze
– Plan
– Execute

May 1-2, 2005

4.1 Goal models as the core
knowledge

• Autonomic elements are full-fledged intelligent agents;
Goal models represent the requirements of agents

• Goal models help autonomic elements:
– Monitor: goals-qualities-metrics (GQM) framework
– Analyze: NFR and GSP frameworks -- ranking alternatives

through softgoals (quality criteria)
– Plan: Designing all alternatives and switching among them
– Execute: high-variability design translations from enriched goal

models

• Thus, properly enriched goal models are the core
knowledge for autonomic element

May 1-2, 2005

4.2 Hierarchical
Autonomic Architecture

May 1-2, 2005

Advantages of the HAA

• Reduces complexity of AC systems
– Propagating high-level concerns to low-level concerns as guiding

policies
=> self-configuring

– Propagating low-level metrics to high-level attention only when
necessary (localize the changes)
=> self-managing

– Monitoring costs of alternatives allows fast switching among
them to reduce cost
=> self-tuning

– Monitoring the satisfaction of alternatives allows fast detecting
failures to invoke corrective tasks (modeled as delta-alternatives)
=> self-healing

• Supporting mechanisms:
Top-down and bottom-up qualitative and quantitative
goal reasoning algorithms

May 1-2, 2005

4.3 Goal-model-based
autonomic behaviors

What do self-* behaviors mean for us in the
MAPE feedback loops

• Self-configuration and reconfiguration
Choosing the better configurations with respect
to historical statistical data

• Self-optimizing (self-tuning)
Monitoring NFR quality metrics with respect to
the analytical data

• Self-repairing (self-healing)
Monitoring FR with respect to the analytical data

May 1-2, 2005

5. Conclusion and future work
• Stakeholder requirements goals are the core knowledge of

autonomic elements in order to make AC applications adapt for the
better in users’ perspectives

• Autonomic systems cost less at run-time with high-variability designs
• A hierarchical autonomic architecture is proposed to reduces the

design-time complexity of AC systems
• Different autonomic behaviors are interpreted as different

applications of goal models: goal monitoring, goal reasoning and
goal-to-design translations

Future work:
• Implement the MAPE feedback loop with goal models
• Apply the goal-model based autonomic elements to AC software

systems

May 1-2, 2005

Questions

May 1-2, 2005

Backup slides

• References
• Enrichments
• Translating patterns

May 1-2, 2005

References (1)
• Autonomic Computing systems

– J. Kephart and D.M. Chess. “The vision of autonomic computing”. IEEE Computer Journal.
36(1):41-50. 2003.

• goal-oriented requirements engineering
– A. van Lamsweerde. “From systems goals to software architectures”. FSE. 2004.
– L. Chung, B.A. Nixon, E. Yu, J. Mylopoulos. Non-functional requirements in software

engineering. Kluwer Academic Press. 1999.
• goal-oriented software configuration

– B. Hui et al. “Requirements analysis for customizable software: goals-skills-preferences
farmework”, RE’03.

– S.Liaskos et al. “Configuring common personal software: a requirements-driven approach”.
To appear, RE’05.

• goal-oriented software tuning
– Y.Yu et al. “Software refactoring guided by multiple soft-goals”, REFACE@WCRE’03.

• quality-driven software reengineering
– Ladan Tahvildari, Kostas Kontogiannis, John Mylopoulos: “Quality-driven software re-

engineering”. Journal of Systems and Software 66(3): 225-239 (2003)
• quality-based software reuse

– J.C.Leite, et al. “Quality-based software reuse”, CAiSE’05.
• reverse engineering goal models

– Y.Yu, et al. “From goals to aspects: discovering aspects from requirements goal models”.
RE’04.

– Y.Yu et al. “Reverse engineering goals from source code”, to appear, RE’05.
– S.Liaskos et al. “Configuring common personal software: a requirements-driven approach”.

To appear, RE’05.

May 1-2, 2005

References (2)
On High-variability software design

• Feature model and product-line family:
– K.C. Kang et al. “Feature-oriented domain analysis (FODA) feasibility study”,

SEI. 1990.
– K. Czarnecki et al. Generative Programming: Methods, Tools, and Applications.

Addison-Wesley, 2000.
– D. Batory et al. “Scaling Stepwise Refinements”. ICSE 2003.

• Statecharts
– D. Harel. “The STATEMATE Semantics of Statecharts”. TOSEM 5(4):293—333.

• Software architectures and ADL
– L. Bass et al. Software Architecture in Practice, 2nd Ed. Addison-Wesley, 1998.

• Aspect-oriented programming
– G. Kiczales. “Aspect-oriented programming”. EOOP. 1997.
– C. Zhang et al. “Just-in-time middleware configuration using aspects”. AOSD’05.

May 1-2, 2005

3.1b For configuring variability

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	 � � � �� ��� � �
 � 	 �
 � �� ���

��� ��

� �� ���

� ���� � ��

� �� � � � � �

�� �� ����

� � � � � �

� � � � � �

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

����

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �
��

() �() � �

��� ���

���

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

May 1-2, 2005

3.2b For behavioral variability

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ��� � �� � � ��

� �������

� � �

� �� � � �

� � �

�� �
 �	
� � � �� ��� � �
 � 	 �
 � �� ���

��� ��

� �� ���

� ���� � ��

� �� � � � � �

�� ��
����

� � � � � �

� � � � � �

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

() �
() �

�

�

���

���

���

�
�

�

May 1-2, 2005

3.3b For structural variability

���������

	 ��
 � �

� � ����
 �

 � 	 �
 � � ���

� �� � � ��

� �������

� � �� �� � � � � � ��� �
 �	

� � � �� ��� � �
 � 	 �
 � �� ���

� � � � 	 � ��

�� � � �

� � ����
 � � � �

�� � � �

� �
 ��� � �

�� � � �

� � � ��� �� ��
 � �

� �������

� � � � 	 � ��

�� � � �� �
 �

� � � ��

� � �
 � �� � �
 � � �

��� ��

� �� ���

� ���� � ��

� �� � � � � �

��
��

��
��

� � �

� � �

� � �

� � �

� � � � � �

� � �

� � �

�

�

� �
��

�
�

� � ����
 �� � � 	 �

� � �� �

� � ����
 �� � � 	 �

� ��
 �

��
��

� ���� �
 �

� � � �
 � � � �
 �

� � � � 	 � �

 � �
 �� � � � ���

� �

��

���������

� ��
 � �

� �� ���
 �

� � � �
 � � � �
 �

� � ����
 �

� � � �
 � � � �
 �

� � �

��

�����
 ����

� � �

� �� ��

� � � �
 � � � ���

� � � �
 � � � �
 �

��
� ���� � ��

� � � �
 � � � �
 �

� � �

� � �� � � �
� � �

% � � ��� � �� �

� ��� �� �

� � �

� � 	 	 �� � ��
 ��

� �� ���

� � �

�

�

� �
 � 	 �
 � �� ��� * �

� � � �� 	 ��

� � � �� ���

��
��

� �
 �� � �� �

� �
 �$ �
 �� � � �

� � �
� � �
� �

�

� 	

�� � �

� � � � 	�
� ��
�� � �

� � � ����
 � �

	! 	���

�� � � 	�

� � � � � �
�		

" � �

�� � � � �
�		# �

� � � ����
 � �

� � � �

�� � � 	�
� ��#

� � � � ����
 � �

� � � ���	�
� ��� ��

�� � � 	�
#

� � � ����
 � �

� � � � 	�
���	�
� ��	

�� � � 	�
� ��#

� � � � ����
 � �

� � � ���	�
� ��� ��

�� � � 	�
� ��# � ����
 � �

� � � ���	�
� ��� ��

�� � ���	�
� ��� ��

� � � � ��� �� $ � �

�� � ���	�
� ��� ��

� � � � ��� �� $ � �

�� � �

� � � � ��� �� $ � ��� � �

� � � ����
 � �# � � 	�
� ��

� 	

$ � �
 � �

� �� � � � �

+ 	 � � �

��
��

�� � � � �
�		# � � �		� � �

� � � �
�� � � � �
�		# � � �		� � �

� � � �

� � � � � �
 � �

) � � ��
 ��

& � � � ���� � �
 �

� � � � 	 � ' �
 � � �

� � � � �� �
 �

� � � � 	 � ' �
 � � �

��

��

��

�� � ���	�
� ��� ��

� � � � ��� �� $ � �

�� � ���	�
� ��� ��

� � � � ��� �� $ � �

�� � ���	�
� ��� ��

� � � � ��� �� $ � �

� 	 �

� 	 �

�

�

�

May 1-2, 2005

3.1c From goal to feature

� ,

� - � .

� ,

� -

� ,

� - � .

� ,

� - � .

	 � � ��
 � � � � �
 � � � � � � �
 �� � �
 � � � � �

 ,

 - .

� � � � � �

 ,

 - () �

�� ��

 ,

 - .

�� ��

 ,

 - .

�� ��/

0 � 1 0 � 1 0 � 1 0 1

May 1-2, 2005

3.2c From goal to state

1. Defining states 3. Transforming hierarchies

2. Treating dependencies 4. Simplifying leaf statecharts

May 1-2, 2005

3.3c From goal to interfaces

