» Stress Analysis of a Software Project [long]

Jerry Leichter <leichter @Irw.com>
Tue, 26 Apr 94 08:42:32 EDT

The following, which clains to be an internal Silicon G aphics nmeno, has

al ready seen fairly broad network distribution. | have no way of verifying
that it is what it clains to be, but (a) I’'mtold by sonmeone with cl ose
dealings with SG@ that it fits with what he’s heard; (b) if it's a fake,
soneone put a huge anount of effort into producing it.

| forward it to RISKS as a wonderful record of what goes wong with |arge
software projects, and why. It would be as useful if all the nanes, including
t he conpany and product nanes, were renoved. This menp should not be seen as
an indictnent of SE@, which is hardly unique. There is good evidence that

Sun, for exanple, had very simlar problens in producing Solaris; and

wat ched the same thing happen with the |late, unlamented DEC Professiona

series of PC's, and sonething like it alnost happen with firmware for DEC
term nal s a nunber of years back.

| hope that Tom Davis’'s position hasn't been badly hurt by the broad
distribution of his menp - but based on the traditional reaction to bearers of

bad news, especially when the bad news becomes wi dely known, | can't say |I'm
sangui ne about it.
-- Jerry

------- Begi n Docunent -------

Software Usability I
Cct ober 5, 1993
Tom Davi s

Last May, | published nmy first report on software usability, which
Rocky Rhodes and | presented to at Tom Jernol uk’s staff nmeeting (with
Ed, but without Ton). Subsequently, | nade it available to quite a few
ot her peopl e.

This sequel is to satisfy all those people who have urged ne to bring
it up to date. | begin with a summary; details foll ow.

Pl ease read at | east the sumary.
SUMVARY

Rel ease 5.1 is a disappointnent. Performance for conmon operations has
dropped 40% from 4.0.5, we shipped with 500 priority 1 and 2 bugs, and
a base Indy is much nore sluggish than a Maci ntosh. Di sk space

requi renents have increased dranmatically.

The primary cause is that we attenpted far too much in too little
time. Managerment would not cut features early, so we were forced to
make massive cuts in the final weeks of the rel ease.

What shall we do now? Let’'s not |ook for scapegoats, but |earn from
our m stakes and do better next tinme.

A Decenber release of 5.1.2 is too early to fix much -- we’'ll spend
much nmore tine on the release process than fixing things. Allow enough
time for a solid release so we don't get: 5.1.2.1, 5.1.2.2, 5.1.2.3,



Let’s decide ahead of tine exactly what features are in 5.1.2. If we
pi ck a reasonable set we'll avoid enmergency feature cuts at the end.

Nobody knows what’'s wong -- opinions are as conmon as seni or

engi neers. The software environment is so convoluted that at tines it
seens to rival the US econony for conplexity and unpredictability. |
propose massi ve code wal k-t hroughs and design reviews to analyze the
software. W' ||l be forced to | ook closely at the code, and fresh
reviewers can provide fresh insights.

For the long term let’s change the way we do things so that the
contents and scheduling of releases are better planned and execut ed.
Make sure narketing and engi neering expectations are in agreenent.

I NTRODUCTI ON

W' ve addressed sone of the problens presented in the original My
report, but not enough. Mst of the report’s warnings and predictions
have cone true in 5.1. |If we keep doing the exact sanme thing, we'l
keep getting the exact same results.

|"mpreparing this report in ASCII to nake it widely available. It’'s
easy to distribute via news and mail, and everyone can read it.

An ASCI| version of the May 12 report can be found in:
bedl am asd: /usr/tnp/report.text

The included quotations are not verbatim Al though the wordings
are inexact, | believe they capture the spirit of the originals.

BLOAT UPDATE

"Do you want to be a bloat detective? It’'s easy;
just pick any executable. There! You found sone!"

-- Rolf van Wdenfelt

In the May report, | listed a bunch of executable sizes, and pointed
out that they were unacceptable if we intended to run wi thout serious
pagi ng problens on a 16 negabyte system Between May and the 5.1

rel ease, many have grown even larger. IR X went up from 4.8 negabytes
to 8.1 nmegabytes, and has a nmenory |l eak that causes it to grow. Wthin
a week, my newl y-booted 5.1 IRI X was |l arger than 13.8 negabytes -- a
big chunk of a 16 negabyte system It’s wong to require our users to
reboot every week.

There are too nany daenons. In a vanilla 5.1 installation with Toto,
there are 37 background processes.

DSCs were supposed to reduce physical nmenory usage, but have had j ust
t he opposite effect, and their indirection has reduced perfornance.

Prograns |ike Roger Chickering' s "Bloatview' based on Wltse
Carpenter’s work nake sonme probl ens obvious. The news reader "xrn"
starts out small, but |eaks nmenory so badly that within a week or so it
grows to 9 or 10 negabytes, along with plenty of other |arge prograns.
But what’'s really enbarrassing is that even the kernel |eaks nenory
that can’t be recovered except by rebooting!

Showcase grew from 3.2 negabytes to 4.0 negabytes, and the naster and



status giznos which are run by default occupy another 1.7 negabytes.
Much of this happened sinply by reconpiling under 5.1 -- not because of
addi ti onal code.

The wi ndow system (Xsgi + 4Dmm is up from3.2 MBto 3.6 MB, and

the m scell aneous stuff has grown as well. As | type now, | have the
default non-toto environment plus a single shell and a single text
editor, jot. The total physical nenory usage is 21.9 negabytes, and
only because | rebooted IRl X yesterday evening to reduce the kerne
size. Luckily, I"'mon a 32 negabyte systemw thout Toto, or |I'd be
swanped by pagi ng.

Much of the problem seens to be due to DSGCs that |oad whole libraries
i nstead of individual routines. WMany SG@ applications link with 20 or
so large DSOs, virtually guaranteei ng enornmous execut abl es.

In spite of the DSGs, | arge chunks of Mtif prograns remai n unshared,
and duplicated in all Mtif applications.

PERFORMANCE UPDATE

"I'ndy: an Indigo without the 'go

-- Mark Hughes (?)

"X and Motif are the reasons that UNI X deserves to die."
-- Larry Kapl an

The performance story is just as bad. | was tenpted to wite sinply,
"Try to do sonme real work on a 16 negabyte Indy. Case closed.", but
I"I'l include sone details.

In May, | listed sone unacceptable Motif perfornmance nmeasurenents.
Just before 5.1 MR soneone reran ny tests and discovered that the
performance had gotten even worse. Sonme effort was expended to tune
the software so that instead of being intolerable, it was back to
ner el y unaccept abl e performance.

We no | onger report benchmark results on our standard system The
benchnarks are not done with the DSO |libraries; they are all conpiled
non- DSO so that the perfornance in 5.1 has not declined too nuch.

Before | upgraded from4.0.5 to the MR version of 5.1, | ran sone
timngs of some everyday activities to see what woul d happen. These
timngs were all nade with the wall clock, so they represent precisely

what our users will see. | run a 32 negabyte R4000 El an
Test 4.0.5 5.1 % change
C conpi |l e of a 25 sec 35 sec 40%

snmal | application

C++ compile of a 68 sec 105 sec 54%
smal | application

Showcase startup, 13 sec 18 sec 38%
May report file

Start a shell <2 sec ~3 sec ~50%



Jot 2 MBfile <2 sec ~3 sec ~50%

VWhat's nost frightening about the 5.1 performance is that nobody knows
exactly where it went. |If you start asking around, you get plenty of
finger-pointing and theories, but few facts. |In the May report, |
proposed a "5%theory", which states that each little thing we add
(Motif, internationalization, drag-and-drop, DSGCs, multiple fonts, and
so on) costs roughly 5% of the machine. After 15 or 20 of these,

nost of the performance is gone.

Bl oating by itself causes problens. There's heavy paging, there's so
much code and it’'s so scattered that the cache nay as well not be
there. The w ndow nanager and X and Toto are so tangl ed that many

m nor operations like nmoving the nmouse or deleting a file wake up al

t he processes on the machi ne, causing additional paging, and perhaps
graphi cs context swaps.

But bloat isn't the whole story. Rocky Rhodes recently ran a smal
application on an Indy, and noticed that when he held the nmouse button
down and slid it back and forth across the nenu bar, the (snall) pop-up
nmenus got as much as 25 seconds behind. He subnitted a bug, which was
di sm ssed as paging due to lack of nenmory. But Rocky was running with
160 nmegabytes of menory, so there was no paging. The probl emturned
out to be Mdtif code nodified for the SG@ |ook that is even nore
sluggi sh than regular Motif. Perhaps the problemis sinply due to the
huge nunber of context swaps necessary for all the daenmons we're

shi ppi ng.

The conplexity of our system software has surpassed the ability of
average SA programrers to understand it. And perhaps not just average
programmers. Get a roomfull of 10 of our best software people, and
you' Il get 10 different opinions of what's causing the | ousy
performance and bloat. Wat’'s wong is that the software has sinmply
become too conplicated for anyone to understand.

WHAT VENT WRONG IN 5. 1?

The one sentence answer is: we bit off nore than we could chew. As a
conpany, we still don't understand how difficult software is.

We planned to make maj or changes in everything -- a new operating
system new conpilers, a new user environment, new tools, and |lots of
new features in the nulti-nedia area. Not only that, but the new stuff
was promsed to do everything the old software had done, and with ngjor
enhancenents. (Early warning: version 6.0 pronises to be even nore

di sruptive.)

About 9 nonths ago, Rocky and | pointed out the inpossibility of what
we were attenpting. Rather than reduce the scope of the projects, a
deci sion was made to hire a couple of contractors (who know not hi ng
about our systen) to handle the worst user interface problens in the
Roxy project. In addition, pronises were obtained fromvarious
executives that a significant effort woul d be nade to inprove software
per f or mance.

Managenent was basically afraid to cut any features, so we continued to
work on a project that was far too large. The desperate attenpt to do
everyt hing caused programmers to cut corners, with disastrous effects
on the bug count. And the bug count was high sinply because 5.1 was so
bi g.



Only when the situation was beyond hope of repair did we start to do
sonet hing. Features and entire products were renoved whol esal e from

t he

rel ease, and hundreds of high-priority bugs were classified as
exceptions, so that we could ship with "no priority 1 and 2 bugs". W
did, however, ship with over 500 "exceptions". The release was deened
too crummy to push to all our nachines, but was restricted to the

I ndys, the high-end machi nes, and a few ot hers where new hardware
required the new software. Due to the nassive bug count, virtually no
performance tuning was done.

VWhen the schedule is inmpossible as it was in 5.1, the rel ease process
itself can get in the way. The schedul e i nposes a code freeze | ong
before the software is stable, and fixing things beconmes nuch nore
difficult. If you know you're going to be late, slip before the code
freeze, not after. W' re trying to wap up the box before the stuff
inside is finished, and then trying to fix things inside the box

wi t hout undoing the wapping -- it has to be less efficient.

Managenment |ssues:

There was never an overall software architect, and there still is not,
and until Way Ting was given the job near the end, there was no manager
in charge of the 5.1 rel ease, either.

| wote a note in sgi.bad-attitude about the "optim st effect”, which
believe is nostly true. In condensed form

Optimsts tend to be prompted, so the higher up in the organization
you are, the nore optimstic you tend to be. |f one nanager says
"I can do that in 4 nonths", and another only promses it in 6
nmont hs, the 4 nonth guy gets the job. Wen the software is 4

nont hs
late, the overall systemconplexity nakes it easy to assign bl ane
el sewhere, so there’s no way to judge nis-managenent when it’'s tinme
for pronotions.

To |l ook good to their boss, npbst people tend to put a positive spin
on their reports. Wth many | evels of nmanagenment and i ncreasing
optimsmall the way up, the information reaching the VPs is very
filtered, and always filtered positively.

The problemis that the highly filtered estinmates are conpletely out of
line with reality (at least in recent software plans here at Sd@), and
there are no reality checks back fromthe VPs to the engineers on the
bottom | think it's great to have aggressive schedul es where you try
to get things out 20% or so faster than you' d expect. The problemis
that in 5.1, the engineers were expected to get things out 80%faster
and it was clearly inpossible, so many just gave up

We certainly didn’t win any norale prizes anong the engineers with

5.1. It’s the first release here at SG@ where nost of the engineers |
talked to are ashaned of the product. There are always a few, but this
time there were many. Wen engi neers were asked to conme in over the
weekends before the 5.1 release to fix show stopper bugs, | heard a
comment |ike: "Why bother? SG's going to release it anyway, whether
they're fixed or not."

I’ m not blanming the engi neers. Mst of themworked their hearts out
for 5.1, and did the best they could, given the circunstances. They’l
be happy to buy into a plan where there’'s a 20% stretch, but not where



there’s an 80% stretch. They figure: "It's hopeless, and I'l| be late
anyway, and |'mnot going to get rewarded for that, so why Kil

nysel f ?"

Mar ket i ng - Engi neeri ng D sconnect

"Marketing -- where the rubber neets the sky."

-- Unknown
There’'s a di sconnect between engi neering and narketing. It’s not
surprising -- marketing wants all the whiz-bang features, it wants to

run in 16 negabytes, and it wants it yesterday. Al though engineering
would Iike the sane things, it is faced with the reality of tine
limts, fixed costs, and the | aws of nature.

It’s great to have pressure frommarketing to do a better job, but at
Sd, we often seemto have deadl ocks that are sinply not resol ved.
Marketing insists that Indy will work in 16 negabytes and engi neering
insists that it won't, but both continue to nake their plans w thout
resolving the conflict, so today we're shipping virtually useless 16 MB
systems. Simlarly for feature lists, reliability requirenents, and
deadl i nes.

Vel l, at |east we net the deadline.
WHAT TO DO -- SHORT TERM (5. 1. 2)

"W should sell '"bloat credits’, the way the governnent
sells pollution credits. Everybody’'s assigned a certain
amount of bloat, and if they go over, they have to purchase
bl oat credits from sonme other group that’s been nore
careful ."

-- Bent Hagenark

There are problens in both performance and bugs, and we’'d like to fix
both. In addition, the first thing we should do is decide exactly
what's going into release 5.1. 2.

If we are serious about a Decenber all-platforns rel ease, there may be
very little we can do other than keep stunbling along as we have been
Three nonths isn’t nuch time to do anything, considering the overhead
of a release, where perhaps half of the time will be spent in "code
freeze". After 5.1, many engineers are exhausted, and it’'s
unreasonabl e to expect themto start hard work i mediately. 500
outstanding priority 1 and 2 bugs is a huge list, and we haven't even
begun to hear about customer problens yet.

What Should be in Rel ease 5.1.2:

I"mafraid the answer is going to be "everything that didn't nake it
into 5.1". | know that won't be the case, but | hope that we wll
careful ly select what goes in now, rather than hack things out in a
panic in Decenber. The default should be "not included", and we shoul d
require a good reason to include things. Let’'s make sure that there’'s
a mnimal, solid, working set before we start adding frills.

| nprovi ng Perfornance:

"SA@ software has a cracked engi ne block, and we're trying



to fix it with a tune-up.”
-- Mark Segal

As stated above, we don’t even know exactly what’'s wong. W probably
never will, but we should start doing things that will have as nuch of
an inmpact on the problemas possible. | don’'t think we have tine to
study the problemin detail and then decide what to do -- we’ve got to
m x the research with doi ng sonmething about it.

Bef ore we begin, we should have definite performance goals -- |ose |ess
than 5% wall-clock time on conpiles of some known program over 4.0.5,
have shells cone up as fast as in 4.0.5, or whatever.

Sone people claimthat we need new software debugging tools to | ook at
the problem and that may be true, but it’'s not a short-term solution
and it runs the risk of causing us to spend all our tine designing
performance neasurenent tools, rather than fixing performance.

In fact, | don't really believe that sinple "tuning”" will nake a
large dent. To get things to run significantly faster, we' ve got
to make significant changes. And we can’'t beat the "5%rule" by just

speeding up all the systens by 5%-- if everything is exactly 5%
faster,

the overall systemw ||l be exactly 5%  faster

There’'s a strong tendency to | ook for the "quick fix". "Get the code

re-arranger to work", or "Put all the non-nodifiable strings in shared
code space", for exanple. These ideas are attractive, since they

prom se to speed up all the code, and they should probably be pursued,
but | think we're not going to make a lot of progress until we identify
the major software architectural problens and do sone massive
sinmplification. Renenber that DSCs were the last "quick fix".

There’'s got to be nore to it than tuning; there nust be sone anmazingly
bad software architecture -- froma novice's point of view a 4 MB
Maci ntosh runs a far nore efficient, interesting systemthan a 16 MB
Indy. The Mark Segal quote above suns it up

Code wal k-t hroughs and design reviews are in order for nost of our
software. The attendees should include not only people working in the
sanme area, but a small cross-section of experienced engineers from
other areas. GCet a pool of, say, 20 experienced engi neers and

perhaps 3 at a time would sit in on code reviews together with the

ot her people working in that area

Code reviews will help in many ways -- the engi neer presenting the code
will have to understand it thoroughly to present it, others will learn
about it, and outside observers will provide different ways to | ook at

t he probl ens.

The npst inmportant thing should be the focus -- we're trying to nake
the code better and faster, not to nake it nore general, or have new
features, or be nore reusable, or better structured.

For conpl ex probl ens, the wal k-t hrough should al so i nclude sonme genera
design review. Are these daenons really necessary? Do we really need
this feature? And so on.

Fi xi ng Bugs:



The code wal k-t hroughs will obviously tend to turn up sone bugs, so
they' Il serve a dual purpose.

Wth 500 or so priority 1 and 2 bugs, we rnust prioritize these as

well. A bug that causes a systemcrash only on nmachines with sone rare
hardware configuration is properly classified priority 1, but it’'s
probably less inportant than a bug in a popular programlike Showcase

t hat causes you to |ose your file every tenth tine, which would
normally rank as priority 2. The effort involved in the fix should

al so be taken into account. For bugs of equal frequency of occurrence,
it’'s probably better to fix 20 priority 2 bugs than 1 priority 1 bug if
the priority 2 bugs are 20 times easier to fix.

A bunch of bugs can be elimnated by getting rid of features. Let’'s
have the courage to cut sone of the fat.

WHAT TO DO -- LONG TERM
"Software quality is not a crine."

-- Unknown (seen on a poster in building 7)

It’s easy to go on forever here, but I'll try tolimt it to a few key
ideas. We don’t have to do all these at once, but we’d better start.

Have an overall SGE software plan.

Let’s get an architect, or at least a small group of highly
techni cal people, not just nanagers, to agree on plans for

rel eases. In fact, since the release is a conpany-w de project,

t here ought to be company-w de participation in the decisions of
what’'s in a release. The group should include narketing,
docunent ati on, engi neering, and managenent and should conme up with
a conpromi se that's reasonable to all.

In every case, sone attenpt nmust be made to check reasonabl eness
all the way to the bottom There's a |long series of excuses,
"Well, that’s what nmy junior VPs told ne.", or "That's what ny
di rect or s/ managers/| ead engi neers/engineers told ne." W get
killed by the optinist effect, and a disinclination to listen
seriously to anyone but our direct reports. Try to inagine the
guts it takes for an engineer to go to his director and say: "MW

manager’s out of his mnd -- | can’'t possibly do what he's

prom sed. "

Let’s try to concentrate on performance and quality, not on new
features, especially for the 5.1.2 release. | know from my own
experience that when | wite good code, | spend 10% of the tine
addi ng features, and 90% debuggi ng and tuning them |It’'s the only
way to make quality software. In SGE’'s recent rel eases, the
opposite proportions are often the rule. 1t’s much easier to add

100 really neat features that don’t work than to speed up
performance by 1%

Aimfor sinplicity in design, not conplexity. Mke a few things
work really well; don’t have 1000 fl aky prograns.

Be willing to cut features; who's going to be nore pissed off: a
customer who was pronised a feature that doesn’'t appear, or the
sanme custoner who gets the pronmi sed feature, and after nonths of



struggling with it, discovers he can't make it work?

CGet better agreenent between the top level VPs and the | owest
engi neers that a given schedule is reasonable.

For new devel opnent, continue the formal design reviews and code
wal k-t hroughs. These shouldn’t just happen once in the devel opnent
cycle -- things are bound to change, and code reviews can be very
val uabl e, even for our experienced programers.

ACKNOW.EDGEMENTS

| take full responsibility for the opinions contained herein, but 1'd
like to thank Mark Segal, Rosemary Chang, Mary Ann Gall ager, Jackie

Nei der, Sharon Fischler, Henry Mreton, and Jon Livesey for suggestions
and coments.

1AL P il 2l

Loy ] WiN X Sat) o

| ey
| RS
i

| ey

Report problems with the web pages to the maintainer.



