
CSC408 – Fall 2004 – Tutorial 8 – 1

Quality of Service

csc 408 – tutorial #8

Product Quality:
Customer Satisfaction

Process Quality:
Developer Satisfaction

CSC408 – Fall 2004 – Tutorial 8 – 2

The project raw mark depends …

• W: Your web service users
• C: Web services you used
• N: Number of integrated systems delivered
• Bi: Number of bugs found for integrated system
• Qi = f(Bi): Quality of each integrated system

f is a monotonic increasing function ranges from 0 to 1
• Total quality:

TQ = 1 – [wwProd(1-Qi | i in W) + wcProd(1-Qi | i in C)]
ww + wc = 1, ww > wc

• Mark: M = g(|W union C|) * h(TQ)
g, h are monotonic increasing functions, to be decided

CSC408 – Fall 2004 – Tutorial 8 – 3

Satisfaction

• Customer is satisfied with good quality product
and support

• Developer is satisfied with good quality process
• Satisfaction has multiple dimensions:

Correctness (required)
Reliability (required)
Performance, Scalability (desired)
Maintainability (desired)

• How to guarantee them?
management, measuring, tuning, configuration

CSC408 – Fall 2004 – Tutorial 8 – 4

Correctness – verification

• Verification of the web service
–Does their implementation match

their specification?
–A fault can be found by a test

according to their test cases.
• i.e. Verifying their claim

CSC408 – Fall 2004 – Tutorial 8 – 5

Correctness – your webservice

• The first task for developing your
client is to negotiate with the web
service provider
–Syntax
–Semantics

CSC408 – Fall 2004 – Tutorial 8 – 6

Correctness – validation

• Validation
–Does their implementation

match my specification?
–A fault can be found by a test

according to my test cases.

CSC408 – Fall 2004 – Tutorial 8 – 7

Stock Price Example

• Verifying Interface (syntax differences)
float getQuote(String name, String marketplace);
// market place stands for NASDAQ, NYSE, etc

float getQuote(String name);

• Checking Specification (Semantics
differences)
float getQuote(String name);
// precondition: name = ticker symbol
// postcondition: return -1 if name does not exist

float getQuote(String name);
// precondition: name = part of the full name
// postcondition: return -1 if name does not exist,
// -2 if multiple matches

CSC408 – Fall 2004 – Tutorial 8 – 8

Reliability

• Reliability means the software does not fail
– At least high confidence it does not fail

• Also measured by how quickly a failure is fixed

• These are both non-functional qualities

– Highly desirable

– Can be expensive (profitable?) to provide

CSC408 – Fall 2004 – Tutorial 8 – 9

Reliability

• Failure for installation and deployment
– Web services alleviate the problem by allowing updating

implementation without installation
– However, the WSDL interface should not be changed

frequently

• Failure for execution
– Memory leaks
– Too many clients running at the same time
– Exceptions not handled
– DoS attacks
– Shutdown of the machine (high risk)

• Bugzilla: bug in bugzilla has a unfixed duration

CSC408 – Fall 2004 – Tutorial 8 – 10

Performance and complexity

• See tutorial 5

CSC408 – Fall 2004 – Tutorial 8 – 11

Developer satisfaction:
Refactoring for Maintainability
• Maintainability =

Understandable and Flexible
–Simplicity helps maintainability
–Good structure also helps

maintainability

CSC408 – Fall 2004 – Tutorial 8 – 12

Refactoring

• What is refactoring?
A sequence of small changes to a program that
improve its structures without changing
observable behaviors

• The following activities are not refactoring:
– Adding more functionalities
– Correcting system errors is not refactoring
– Performance tuning is not refactoring

because it may not improve the maintainability

CSC408 – Fall 2004 – Tutorial 8 – 13

Refactoring

• We emphasize refactoring, for project
– Maintenance & Clean-up

– Make Unit-test cases first!

• Commit early, commit often

– Less overhead, stay in synch

– Logical: take big problem, break it down into
manageable, documented, progressive steps

CSC408 – Fall 2004 – Tutorial 8 – 14

Refactoring Examples

Martin Fowler, the Refactoring book.
• Refactoring mechanisms supported by

Eclipse

• Examples
– Extract Method

– Move Method

– Lift Method to additional class

CSC408 – Fall 2004 – Tutorial 8 – 15

Example – extract method

void f() {
...

// Compute score

score = a * b + c;

score -= discount;

}

void f() {
...

computeScore();

}

void computeScore() {

score = a * b + c;

score -= discount;

}

CSC408 – Fall 2004 – Tutorial 8 – 16

Example – extract method

CSC408 – Fall 2004 – Tutorial 8 – 17

Example – extract method

CSC408 – Fall 2004 – Tutorial 8 – 18

Example – extract method

CSC408 – Fall 2004 – Tutorial 8 – 19

Example – move method
class Jar {

...

}

class RoboPacker {

private bool isFragile(Jar foo) {

switch(foo.material) {

case GLASS: return true;

case WOOD: return true;

case TIN: return false;

}

}

}

class Jar {

bool isFragile() {

switch(material) {

case GLASS: return true;

case WOOD: return true;

case TIN: return false;

} } }

class RoboPacker {

private bool isFragile(Jar foo) {

return foo.isFragile();

}

}

CSC408 – Fall 2004 – Tutorial 8 – 20

Example – move method

CSC408 – Fall 2004 – Tutorial 8 – 21

Example – move method

CSC408 – Fall 2004 – Tutorial 8 – 22

Example – move method

CSC408 – Fall 2004 – Tutorial 8 – 23

Example – move method

CSC408 – Fall 2004 – Tutorial 8 – 24

Example – move method

CSC408 – Fall 2004 – Tutorial 8 – 25

Example – lift method
class Jar {

bool isFragile() {

switch(material) {

case GLASS:

// complex glass calculation

case WOOD:

// complex wood calculation

case TIN:

// complex tin calculation

} } }

class Jar {

bool isFragile() {

return material.isFragile();

} }

interface Material { ... }

class GlassMaterial:Material { ... }

class WoodMaterial:Material { ... }

class TinMaterial:Material { ... }

CSC408 – Fall 2004 – Tutorial 8 – 26

Questions?

