
Tutorial IV: Unit Test

• What is Unit Test
• Three Principles
• Testing frameworks: JUnit for Java

CppUnit for C++
Unit Test for Web Service

http://www.cs.toronto.edu/~yijun/csc408h/
handouts/unittest-HOWTO.html

What is Unit Test?
• Unit Test:

A unit can be an operation, a class,
a software package, or a subsystem

• Integration Test:
Interactions between units

• System Test:
System verification and validation as a whole

• Acceptance Test:
Testing as a end user; Expected results from
system

Three Principles

• Testing as you go: the earlier a bug is found, the
better!

• Test can be done once a unit is ready:

Bottom-up testing: with Drivers
Top-down testing: with Stubs

• Design test cases systematically:

Include boundary values for each feature
Make sure every line of code is executed

What can be tested in units?

• A functional requirement
• Given input that satisfies the precondition,

whether the output satisfies the post-condition
• A unit can be a member function, a class, a

package or component or a subsystem …
• Automation is the key! Replace user interaction

with the scripts, if possible; replace some units
with stubs

• A unit tested can still have bugs, but most trivial
bugs should have been found

What can not?

• Generally, test can not replace the
verification or code review

• Specifically for unit test, interactions
between this unit and other units after
integration, system and user acceptance
are not possible when the system is not
ready yet

JUnit and Example
• Refer to: http://www.junit.org
• Some concepts or classes:

Fixture: a set of objects against which tests are run
Test Case:

a class which defines the fixture to run multiple tests
- create a subclass of TestCase
- add an instance variable for each part of the fixture
- override setUp() to initialize the variables
- override tearDown() to release any permanent

resource allocated in setUp
setup: a method which sets up the fixture, called before a test is

executed.
teardown: a method to tear down the fixture, called after a test is

executed.
Test Suite: a collection of test cases.

JUnit and Example (cont’d)
TestRunner: a tool to define the test suite to be run and to display

its results

• A JUnit example (in Eclipse):

source code: junit\samples\money (simplified)

functionality: single currency arithmetic

CppUnit and Example

• Refer to: http://cppunit.sourceforge.net/cgi-
bin/moin.cgi

• A compiled CppUnit module in CDF
/u/yijun/software/cppunit-1.10.2

• An example of CppUnit
/cppunit-1.10.2/examples/money

Develop Web service in AXIS
See /u/yijun/software/axis-1_1/addr.sh

deploy.wsdd, undeploy.wsdd can be generated from WSDL:
• java -cp $AXISCLASSPATH org.apache.axis.wsdl.WSDL2Java -s -d

Session -Nurn:AddressFetcher2=samples.addr
samples/addr/AddressBook.wsdl

Start a simple Axis server
• java -cp .:$AXISCLASSPATH

org.apache.axis.transport.http.SimpleAxisServer -p 9012 &
Deploy the web service
• java -cp $AXISCLASSPATH org.apache.axis.client.AdminClient -p

9012 samples/addr/deploy.wsdd
Call the web service from the client program
• java -cp .:$AXISCLASSPATH samples.addr.Main -p 9012 $*

Feedback from the client
Using proxy without session maintenance.
(queries without session should say: "ADDRESS NOT FOUND!")
>> Storing address for 'Purdue Boilermaker'
>> Querying address for 'Purdue Boilermaker'
>> Response is:

[ADDRESS NOT FOUND!]
>> Querying address for 'Purdue Boilermaker' again
>> Response is:

[ADDRESS NOT FOUND!]
Using proxy with session maintenance.
>> Storing address for 'Purdue Boilermaker'
>> Querying address for 'Purdue Boilermaker'
>> Response is:

1 University Drive
West Lafayette, IN 47907
Phone: (765) 494-4900

>> Querying address for 'Purdue Boilermaker' again
>> Response is:

1 University Drive
West Lafayette, IN 47907
Phone: (765) 494-4900

Test Web Service using JUnit

Test Cases (e.g. AddressBookTestCase.java) can be generated by:
• java -cp $AXISCLASSPATH org.apache.axis.wsdl.WSDL2Java -s -d

Session -Nurn:AddressFetcher2=samples.addr --testCase
samples/addr/AddressBook.wsdl

Modify the generated AddressBookTestCase.java :
public void doTest () throws Exception {

String[] args = {"-p", "9012"};
Main.main(args);

}

Run the following command:
• java -cp .:$AXISCLASSPATH junit.textui.TestRunner

-noloading samples.addr.AddressBookTestCase

Feedback from the Unit Test
• .- Testing address book sample.
• Using proxy without session maintenance.
• (queries without session should say: "ADDRESS NOT FOUND!")
• >> Storing address for 'Purdue Boilermaker'
• >> Querying address for 'Purdue Boilermaker'
• >> Response is:
• [ADDRESS NOT FOUND!]
• >> Querying address for 'Purdue Boilermaker' again
• >> Response is:
• [ADDRESS NOT FOUND!]
• Using proxy with session maintenance.
• >> Storing address for 'Purdue Boilermaker'
• >> Querying address for 'Purdue Boilermaker'
• >> Response is:
• 1 University Drive
• West Lafayette, IN 47907
• Phone: (765) 494-4900
• >> Querying address for 'Purdue Boilermaker' again
• >> Response is:
• 1 University Drive
• West Lafayette, IN 47907
• Phone: (765) 494-4900
• - Test complete.

• Time: 1.51

• OK (1 test)

