
Tutorial III. Eclipse

Outline

• Basics
• Eclipse Plug-in feature, MVC
• How to build Plug-ins
• Exploring Eclipse source code for Editor
• Using CVS inside Eclipse
• Eclipse JDK Tips

Basics
• Eclipse projects:

– Eclipse platform
• Plugin architecture
• Platform, JDT, PDT
• A number of integrated plugins: JUNIT, CVS, etc.

– Eclipse tools project
• CDT, VE, AspectJ, Hipikat

• The official website of Eclipse: http://www.eclipse.org
• Eclipse forums
• Articles
• Eclipse plugins repository
• Eclipse bugzilla
• Using Eclipse in CDF:

>setenv LD_LIBRARY_PATH /local/lib/eclipse (“.cshrc”)
>eclipse

Eclipse Plug-in Feature

• Eclipse =
a core runtime engine + a set of plug-ins

• Plug-in: the smallest extensible unit to
contribute additional functions to the system.

• Extension point: boundaries between plug-ins

Eclipse Plug-in Structure Plug-in Manifest file (plugin.xml)

Plug-in Lifecycle

• Plug-in registry
• Lazy loading
• Unfortunately, never unloaded
• Equinox project (www.eclipse.org/equinox)

How to build Plug-Ins

• Plug-ins contribute functionality to the
platform by contributing to pre-defined
extension points.

• The platform has a well-defined set of
extension points - places where you can
hook into the platform and contribute
system behavior.

How to build Plug-Ins (cond’)

1. Decide how your plug-in will be integrated with
the platform.

2. Identify the extension points that you need to
contribute in order to integrate your plug-in.

3. Implement these extensions according to the
specification for the extension points.

4. Provide a manifest file (plugin.xml) that
describes the extensions you are providing and
the packaging of your code.

Customized Editor

• An editor is a workbench part that allows a user
to edit an object (often a file). An editor is always
associated with an input object (IEditorInput).

• The interface for editors is defined in IEditorPart,
but plug-ins can choose to extend the
EditorPart class rather than implement an
IEditorPart from scratch.

Using plug-in to enhance existing
editors

• The workbench defines extension points that allow
plug-ins to contribute behaviors to existing editors or to
provide implementations for new editors.

• The workbench extension point org.eclipse.ui.editors
is used by plug-ins to add editors to the workbench.

• Plug-ins that contribute an editor must register the
editor extension in their plugin.xml file, along with
configuration information for the editor.

• Editors can also define a contributorClass, which is a
class that adds actions to workbench menus and tool
bars when the editor is active

Exploring Eclipse Source Code

Class hierarchy for Text Editor

ITextEditor is defined as a text specific
extension of IEditorPart.

The implementation of ITextEditor in
the platform is structured in layers:

AbstractTextEditor defines the
framework for extending the editor to
support source code style editing of
text. This framework is defined in
org.eclipse.ui.texteditor.

The concrete implementation class
TextEditor defines the behavior for the
standard platform text editor. It is
defined in the package
org.eclipse.ui.editors.text.

A good example

• The text editor framework provides a model-independent
editor that supports the following features:
- presentation and user modification of text
- standard text editing operations such as cut/copy/paste,

find/replace
- support for context and pulldown menus
- syntax highlighting
- content assist
- key binding contexts
…….

• Exploring how these features can be implemented in an editor
by studying the org.eclipse.ui.examples.javaeditor example.

CVS (Concurrent Versions System)

• Help support and enhance the process of
managing source code in two major ways:

- by controlling access to the source code,
using a locking system to serialize access

- by keeping a history of the changes
made to every file.

Using CVS inside Eclipse

CVS repository parameters for CDF:
CVS Server: werewolf or seawolf
Repository Path: /u/yijun/cvsroot/c408h001
Connection Type: extssh, NOT pserver

Step 1: Creating a repository
location

1. Using the Window > Open
Perspective > Other command to
open CVS Repository Exploring
Perspective.

2. Right-click within the CVS
Repositories view and select the
New > Repository Location
command from the context menu.

Step 1: Creating a repository
location (cond’)

1. Specify the address of CVS
host;

2. Specify the location of your
repository;

3. Enter your login information;
4. Select Connection Type;
5. Check ‘Save Password’

(Optional);
6. Click ‘Finish’ button.

Step 2: Share a project

1. In the Navigator
view select the
project
SampleProject.

2. From the
project's context
menu choose
Team > Share
Project.

Step 2: Share a project (cond’)

• In the sharing
wizard page,
select the
location that was
previously
created.

Step 2: Share a project (cond’)

• Specify the module
name to create on
the server. Simply
use the default
value and use the
name of the project
you are sharing.
Click Next.

Step 2: Share a project (cond’)

• This page will allow
you to see the files
that are going to be
shared with your
team. The arrows
with the plus sign
show that the files
are new outgoing
additions.

• Click ‘Finish’ button.

Check out a project from CVS
Step 3: Synchronize with the

repository

Right-click on the resource (or
the project containing the
resource) and select the
Team > Synchronize with
Repository command.

Step 4: update/commit the changes
The Incoming Mode
causes the view to
only show incoming
changes.

The Outgoing Mode
causes the view to
only show outgoing
changes

The Incoming/
Outgoing Mode will
show changes in both
sides.

.cvsignore

Eclipse JDK Tips - Content Assist
• Content assist provides you with a list of

suggested completions for partially
entered strings.
Ctrl+Space or Edit > Content Assist

Eclipse JDK Tips - Parameter Hints

• With the cursor in a method argument, you
can see a list of parameter hints.

• Ctrl+Shift+Space or Edit > Parameter
Hints.

Eclipse JDK Tips - Quick Fix

• Start with the method invocation and use
Quick Fix to create the method.

• Ctrl+1

Eclipse JDK Tips – Code Navigation

• There are two ways that you can open an
element from its reference in the Java
editor.

1.Select the reference in the code and press
F3 (Navigate > Open Declaration)

2.Hold Ctrl and move the mouse pointer
over the reference.

Eclipse JDK Tips – In-place
outlines

• Press Ctrl+F3 in the Java editor to pop up
an in-place outline of the element at the
current cursor position.

Eclipse JDK Tips – In-place
hierarchy

• Place the cursor inside the method call
and press Ctrl+T.The view shows all types
that implement the method with a full icon.

Eclipse JDK Tips - Refactoring
• Select the element to be manipulated in

the Java editor or in a Java view and press
Alt+Shift+T for the quick refactor menu.

Eclipse JDK Tips

• More Tips and Tricks can be found in

Eclipse Help > Tips and Tricks…

Checkout the right version of the
Editor part

• cvs repository:
:pserver:anonymous@dev.eclipse.org:/home/eclipse

• Versions
• org.eclipse.ui.editors
• org.eclipse.ui.editors R3_0
• Checkout

Reference

• Eclipse 3.0 Help
• << Building Commercial Quality Eclipse

Plug-ins >>
• << Eclipse In Action >>

