CSC 408F/CSC2105F Lecture Notes

These lecture notes are provided for the personal use of
students taking CSC 408H/CSC 2105H in the Fall term
2004/2005 at the University of Toronto.

Copying for purposes other than this use and all forms of
distribution are expressly prohibited.

@David B. Wortman, 1999,2000,2001,2002,2003,2004
(©)Kersti Wain-Bantin, 2001

(©Yijun Yu, 2004

Reading Assignment

van Vi et Chapter 13 (this lecture)
van Vi et Chapter 7 (next lecture)

Debugging vs. Testing

Debugging is the process of finding errors in a program under development

that is not thought to be correct [fix errors]

Testing is the process of attempting to find errors in a program that is thought
to be correct. Testing attempts to establish that a program satisfies its
Specification [prevent errors]

Testing can establish the presence of errors but cannot guarantee their
absence (E.W. Dijkstra)

Exhaustive testing is not possible for real programs due to combinatorial
explosion of possible test cases

Amount of testing performed must be balanced against the cost of
undiscovered errors

Regression Testing is used to compare a modified version of a program

against a previous version

Toy Testing vs. Professional Testing

e Toy Testing

Small quantity of test data
Test data selected haphazardly
No systematic test coverage

Weak analysis of test output

e Professional Testing

Large quantity of test data

Systematic selection of test cases

Test coverage evaluated and improved.
Careful evaluation of test output

Heavily automated using scripts and testing tools.

Testing & Bad Attitude

e The software testers job is to find as many errors as possible in the program
under test with the least effort expended

e Productivity measure is errors discovered per hour of testing

® Testers attitude should be
What is the absolutely worst thing | can do to the program?
and not
What can | do to make this program look good?

Don't let developer’s ego stand in the way of vigorous testing.
e Test case selection is one key factor in successful testing
® Insight and imagination are essential in the design of good test cases

e Testers should be independent from implementors to eliminate oversights due

to propagated misconceptions [verification and validation ...]

Levels of Program Correctness
1. No syntax errors [compilers and strong-typed programming languages]
2. No semantic errors
3. There exists some test data for which program gives a correct answer
4. Program gives correct answer for reasonable or random test data
5. Program gives correct answer for difficult test data
6. For all legal input data the program gives the correct answer

7. For all legal input and all likely erroneous input the program gives a correct or

reasonable answer

8. For all input the program gives a correct or reasonable answer

Faults and Failures

e A faultis an error in a software system
A failure is an event during which a software system failed to perform
according to its requirements specification.

e Failures are caused by (one or more) faults.

® Many possible reasons for failure:
— Incorrect or missing requirement
— Incorrect or unimplementable specification

— System design may contain a fault.

Program design may contain a fault.

— Program implementation may contain a fault.

e The purpose of testing is to discover faults and prevent failures.

Causes of Faults During Development

Requirements Incorrect, missing or unclear requirements.
Specification Incorrect translation to design

Design Incorrect or unclear specification.

Implementation Misinterpretation of design

Incorrect documentation

Misinterpretation of programming language semantics. [a small quiz]
Testing Incomplete test procedures

New faults introduced by fault repair.

Maintenance Incorrect documentation.
New faults introduced by fault repair.

Changes in requirements.

A small quiz on Java language

int a[2] = {4, 4};
int b;

b = 1;

a[b] = b = 0;
while (1) {

String a="12", b="12";

== b,

Types of Faults
Algorithmic faults - incorrect algorithm
Language usage faults - misunderstand/misuse language.
Computation and precision faults.
Documentation faults.
Stress or overload faults.
Capacity or boundary faults.
Throughput or performance faults.
Recovery faults.

Hardware and system software faults.

Testing should be a Planned Activity

Testing should be planned for during Requirements Definition and

Specification. Allocate human and computer resources for testing

May need to design hooks for testing into the software

May need to develop testing tools, test drivers, databases of test data, etc.
Testability should be one of the requirements of every software system

A Test Plan is usually developed to describe the testing process in detail

Testing must be planned for in the overall project schedule

Allow time for fixing problems discovered during testing

Testing activity should be traceable back to requirements and specification.

10

Testing Documentation

Testing requirements and Test Specification are developed during the

requirements and specification phases of the system design

Test Plan describes the sequence of testing activities and describes the
testing software that will be constructed

Test Procedure specifies the order of system integration and modules to be

tested. It also describes unit tests and test data

Logging of tests conducted and archiving of test results is often an important

part of the Test Procedure

11

Test Plan Components

Types of Testing

e Establish test objectives ® Unit testing - test individual module or small set of modules
e Designing test cases ® Integration testing - Test entire system for correct operation
e Writing test cases e Performance testing - Test that system satisfies performance and capacity
requirements.
e Testing test cases
e Software Quality Assurance - Independent testing to assess quality of the software
® Executing tests) e o
e Acceptance testing - Test system to see if it satisfies specifications for the purpose of
e Evaluating test results project completion
e |nstallation testing - Test system installation procedures and correct operation in target
environment.
e User Testing - inflict poorly tested software on the end users and let them find the bugs
® Regression testing - Test system after a modification, compare output for standard test
cases on old and new systems
12 13
Unit Testing Integration Testing
e Testing at the module level e Incremental vs. non-incremental system integration
. . . Incremental is almost always easier, more effective and less chaotic
e Test information flows across module interface
. . ® Approaches to Incremental Integration
e Test module’s handling of its local data structure PP 9
— Top Down - Start with main program module, gradually add subordinate
e Test boundary conditions for input
modules.
e Test all control flow paths in the module Could use breadth-first or depth-first strategy.
Test system as each new modules is added.
e Execute all statements at least once
Regression test previous models as required
e Test error-handling and response to bad input) .
— Bottom Up - Start with atomic (leaf) modules.
e Develop test cases for all of the above Use drivers to tests clusters of modules.
Unit testing is made easier by high cohesion Gradually add calling modules and move testing upward
e \Write driver program to read test cases and call module

Write stubs to simulate modules called by module under test

14

15

Top-Down Integration

e Advantages

— Verifies major control and decision functions early in testing
This is a big win if there are major control problems.

— Depth-first strategy makes parts of system available early for demo.

e Disadvantages

— Building stubs adequate to test upper levels may require a lot of effort
May not be able to do complete top-down integration

— Alot of effort (later discarded) is put into designing and implementing

drivers and stubs

16

Bottom-Up Integration
e Advantages
— Stubs aren'’t required
e Disadvantages
— Entire system isn’t available until end of integration

— Won't detect major control/data/interface problems until relatively late in

the testing process

17

Practical Integration Testing
e |dentify critical modules and test them early
Critical modules:
— Address multiple software requirements

— Have a high level of control

Is particularly complex or error-prone
— Have definite performance requirements

— Have a high coupling with other modules

Appear to be potential performance bottle-necks

— Are on the critical path of the project

e Use sandwich testing as a compromise between top-down and bottom-up
— Use top-down strategy for upper levels of the program
— Use bottom-up strategy of lower levels of the program

— Carefully meet in the middle

18

Validation Testing

Post integration test that entire system satisfies its Software Requirements
Specification

Black box tests to demonstrate conformity with requirements

Should test all functional and performance requirements

All deviations from Requirements (i.e. failed tests) are documented and a plan is
devised (negotiated) for correcting the deficiencies

Configuration Review verifies that all software elements have been properly developed
and documented and are maintainable

Software developed for a single customer is subjected to an Acceptance Test
Multi-customer software is subjected to alpha and beta testing

alpha testing - system is tested by real (friendly, interested) users with close
observation by developer

beta testing - system is tests by real (friendly, interested) users at their own sites with
less direct observation by the developer

19

System Testing

Higher level tests to determine suitability and performance of entire system

(i.e. hardware, software and procedures)

Recovery Testing - Test that system can recover from faults (e.g. trashed data

base) and continue processing

Security Testing - Test that system provides adequate protection for access

and modification of data. Often performed by specialist system crackers

Stress Testing - Test performance of system at high levels of load. Very large

inputs or very high levels of concurrent usage

e Performance Testing - Test run-time performance and response of complete

system

20

Types of Testing

e White Box Testing
— Uses source program as source of test information

Can design tests to exercise all paths through program, all conditionals true and

false branches
— Execute all loops at boundaries

Test operation at/near implementation limits

— ldentify possible performance bottlenecks

® Black Box Testing

— Test without knowledge of source program

Use requirements, specifications and documentation to derive test cases
— Test for missing or incorrect functionality

— Test for interface errors. Test system performance

— Test for errors in external data structures or database access

— Test for initialization and termination errors

21

Testing Styles

e Top Down Testing

Start at subsystem level using module stubs

Test at module level using procedure stubs

Test complete system

Advantages: detect major design errors early, may allow early use of system

Disadvantages: Requires many test stubs, hard to do and expensive

e Bottom Up Testing

Start testing at procedure level using driver code
Test at module level using module drivers

Test at subsystem level

Advantages: easier to create test cases and drivers

Disadvantages: find high level design errors late, no working system until late

22

Test Adequacy Criteria

e The test adequacy criteria is a non-functional requirement for a software
system that describes how thoroughly the system should be tested.
e The test adequacy criteria can be used
— to decide when to stop testing
— as a way to generate tests
— as a standard to measure testing progress.
— as a guide for adding tests to a test suite.
® Possible testing adequacy criteria include
Test coverage criteria What fraction of the program has been tested by a test suite

Fault Seeding Criteria What fraction of some set of faults deliberately added

(seeded) to a program have been discovered by testing?

Graph based criteria What fraction of the programs control flow graph has been

covered by a suite of tests.

23

Testing Coverage

® One way to assess the thoroughness of testing is to look at the testing

coverage.

e Testing coverage measures what fraction of the program has actually been
exercised by a suite of tests.

e The ideal situation is for 100% of the program to be covered by a test suite.
In practice 100% coverage is very hard to achieve.

e In analyzing test coverage we think in terms of the programs control flow
graph which consists of a large number of nodes (basic blocks, serial
computation) connected by edges that represent the branching and function
call structure of the program.

Coverage can be analyzed in terms of program control flow or in terms of data

flow.

e Automated tools can be used to estimate the coverage produced by a test

suite.

24

Control Flow based Coverage

Statement coverage - every statement (i.e. all nodes in the programs control
flow graph) is executed at least once.

All-Paths coverage - every possible control flow path through the program is

traversed at least once. Equivalent to an exhaustive test of the program.

Branch coverage - for all decision points (e.g. if and switch) every possible

branch is taken at least once.

Multiple-predicate coverage Boolean expressions may contain embedded
branching (e.g. A & (B || C)). Multiple-predicate coverage
requires testing each Boolean expression for all possible combinations of the
elementary predicates.

Cyclomatic number coverage All linearly independent paths through the control

flow graph are tested.

25

Data Flow Definitions

Definition A variable is defined in a statement if it is assigned a (new) value in

the statement.

Definition-clear A path through the program is definition clear for some variable
if it does not contain a definition (i.e. assignment) for the variable.

Liveness A definition from statement X is alive in some other statement Y
statement if there is a definition-clear path from X to Y.
This means that value assigned in statement X could be the value used in

Statement Y.

P-use (predicate-use) The use of a variable in a predicate is called a P-use.
P-uses could affect the flow of control through the program

C-use (computational use) All uses of a variable that are not P-use are C-use.

C-uses could affect the values computed by the program.

26

Data Flow Based Coverage

All-uses coverage Traverse at least once every definition-free path from every definition

to all P-use or C-use of that definition.

All-DU-Path coverage All-uses coverage plus the constraint that every definition clear

path is either cycle-free or a simple cycle.
All-defs coverage Test so that each definition be used at least once.

All-C-uses/Some P-uses coverage Test so that all definition free paths from each
definition to all C-uses are tested. If a definition is used only in predicates, test at least

one P-use.

All-P-uses/Some C-uses coverage Test so that all definition free paths from each
definition to all P-uses are tested. If a definition is used only in computations, test at

least one C-use.

All-P-uses coverage Test so that all definition free paths from every definition to every

P-use is tested.

27

Subsume Hierarchy for Program Based Testing?

All Paths

All-DU—-Paths

All-Uses
A C—use All P—uses
Some P—uses Some C—uses
/ Strong
All—-Defs Mutation
Weak
Multiple Cyclomatic Mutatior
Condition Adequacy All P—uses
~ All-Edges
B All-Nodes

Al is stronger than B

8van Vliet Figure 13.17

28

Fault Seeding Techniques

e Fault seeding is used to estimate the number of faults in a program and to
estimate the thoroughness of a test suite.

e The fault seeding technique
— Some number of faults NSare added to a program.
Need to take care that the seeded faults are similar to the real faults.
— The program is tested and some number of faults NF are found.
Let NSF be the number of seeded faults that were found.
— The percentage of seeded faults that were found is used to estimate the total

number of faults in the program using the formula

(NF —NSF)-NS

Total _faults=
o aults NS

e |f most of the faults found are the seeded faults, the results can probably be
trusted. Otherwise the software probably needs a lot more testing.

29

Error Based Testing

e This testing technique is based on assumptions about probable types of
errors in program.
e Historical experience tells us that many program errors occur at boundary
points between different domains
— input domains
— internal domains (processing cases)

— Output domains

e Error based testing tries to identify such domains and generate tests on both

sides of every boundary.

30

Sources for Test Cases

® Requirements and Specification Documents

General knowledge of the application area

® Program design and user documentation

Specific knowledge of the program source code

Specific knowledge of the programming language and implementation
techniques

Test at and near (inside and outside) the boundaries of the programs
applicability

e Test with random data
e Test for response to probable errors (e.g. invalid input data)

e Think nasty when designing test cases.

Try to destroy the program with your test data

31

More on White Box Testing

® Basic Path Testing - design test cases to guarantee that every path in the
programs control flow graph is executed at least once
Note that Boolean expressions may imply embedded control flow

Derive test cases from examination of program flow graph

e Condition Testing - design test cases that all possible outcomes for each

condition (Boolean expression) in the program

® Branch testing - design test cases to cause each condition to evaluate to true

and false

o Domain testing - more rigorous testing of conditions to find relational operator

errors

32

More on White Box Testing

e Data Flow Testing - design tests to link definition (i.e. value assignment) and
use of variables in the program
Try to execute every definition-use chain at least once

e Simple Loop Testing - design test cases to exercise every loop in the program

— Loop not executed at all - tests code after loop for correct handling of null case

Loop executed once - tests initialization and exit condition

Loop executed twice - tests passing of values between iterations

Loop executed random legal number of times

Loop executed one less than allowable maximum

Loop executed exactly allowable maximum

Loop executed one more than allowable maximum

33

More on Black Box Testing

e Equivalence Partitioning - divide input domain(s) into classes such that
testing with a member of the class is equivalent to testing with all members of
the class.

Define equivalence classes for valid and invalid data items

® Boundary Value Analysis - Observed that many errors occur at or near
boundaries of the input domain. So test heavily in this area.

Examples: null input, maximum size input

® Comparison Testing - Compare outputs from multiple independently
implemented versions of the program. Used primarily for reliability critical

systems

34

Testing - Example

Program Search an array for a given value

function Search(Ar: array *.. *of int, val : int) : int

Specification if val is an element of the array Ar then Search

returns its index in Ar. Otherwise Search returns -1

Aside What's wrong with this Specification?

35

Test Data for Search

Array with zero elements
Array with one element
val in, not in below, not in above
Array with random even size
val not in, in random, in first, in last, in middle +- 1
Array with random odd size
val not in, in random, in first, in last, in middle, in middle +- 1
Array with two elements
val not in below, not in above, in first, in last
Arrays containing ordered, reverse ordered and unordered data
Array random size containing all one value
Array of maximum allowable size
Array with upper bound of largest allowable integer
Array with lower bound of smallest allowable integer
Array with negative upper and lower bounds

Array containing largest and smallest integers

36

Code Inspections to Reduce Errors?

e A Code Inspection is a formal, systematic examination of the source code for

a program by peer developers
e The primary goal of Code Inspection is the detection of errors

e Code Inspection Team

— Moderator: run inspection meeting, logs errors

Ensures inspection process is followed
— Inspectors: Knowledgeable peer designers

— Author: present as a silent observer

Assists only when explicitly requested

aG. Russell, Inspection in Ultralarge-Scale Development, IEEE Software, January 1991

37

Code Inspection Process
Start with debugged, compilable, untested code
Inspectors read/study source code before inspection session

Inspectors paraphrase (describe verbally) the source code a few lines (< 3)
at a time

Proceed slowly intentionally
< 150 source lines/hour, < 2 hours/session

Detected errors are summarized & logged
No attempt is made to correct errors on-the-fly

Slow pace is intended to produce intense scrutiny of the source code

Inspections usually find the cause of an error.
Testing usually finds the symptoms of the error

38

BNR Code Inspection Example

® BNR produced approximately 20,000,000 lines/code in 10 years
DMS digital switch software is about 10,000,000 lines

® Inspected 2,500,000 lines, 8 releases, over 2 years

e Found 0.8 . . . 1 errors per person hour inspecting

Inspectionis 2. . . 4 times more effective than testing

e Found about 37 errors per 1000 lines of code
(Other studies found 50 .. 95 errors per 1000 lines)
Type of error: 50.6% incorrect statement, 30.3% missing statement
19.1% extra statement

® An error discovered in released software takes about 33 person hours to

diagnose and repair

e For their large, real time systems, a designer produces 3,000 .. 5,000 lines of

finished, documented code per person year

39

Software Testing Strategies
e Test from module level outward
e Use different kinds of testing for different levels of the system

e Testing by an independent group increases confidence in the testing result
— Developers make poor testers. Unwilling to make own program look bad

— Developers will have strongly held views about how program works. These view
may blind them to errors and omissions
— Developers will often test at the module level, independent testers test entire

system

e Debugging should occur before testing.

It's easier to test a (mostly) correct program

e Testing activity must be planned for during system design
Preparation for testing (e.g. tool & test case building) should start well before

testing is scheduled to begin

40

Independent Test Groups

® Separate software group with a mandate for testing
Often organizationally separate from development team

e Works with developers during system specification and design
Design in hooks for testing

Make sure specifications are testable

e Developers work with testers during testing to repair errors

41

How Much Testing is Enough?

Theory: Never finished testing

Practice: Must stop sometime. Economic issue.

Users continue testing for lifetime of system

Try to achieve balance between the benefits of finding errors before the user

and the (people and hardware) costs of testing

Use statistical models to estimate remaining errors in system
e Use test coverage to measure thoroughness of testing.

e Use results of testing to monitor rate of discovery of new errors in the
software.
Typically find many errors at the start of testing, error discovery rate tapers off

once all the "easy” errors have been found

42

Why Testing Can Fail

e Assume general control flow model for program
Computations (actions) and conditional branching

® Missing Control Flow Paths
Fault failure to test a condition
Causes (non) execution of (in)appropriate action
Arises failure to see that some (combination of condition(s) requires
a unique action
Implies Execution of all control flow paths won't detect the error
e [nappropriate Path Selection
Fault A predicate is expressed incorrectly
Causes Action is performed or omitted under inappropriate conditions
Arises Coding error or misunderstanding

Implies Exercising all statements and all path predicates won't detect the error

43

e Inappropriate or Missing Action Testing Automation
Fault An action is incorrect or missin . . .
9 e Desirable: automate the the testing process to reduce testing costs

e.g. faulty expression, variable not assigned a value))
® Automation techniques

calling procedure with incorrect arguments . o
— Test case generators, process Requirements or Specification documents

Causes Incorrect output or crash

Test case data bases, record test cases and expected results

Arises Coding error or misunderstanding — Test drivers, run all test cases and record results

Implies Executing incorrect action may or may not find the error _ Test result comparators, for regression testing

Forcing all statements to be executed helps Automatic logging of test runs for legal requirements

Use profile tool to confirm statement execution

44 45
Program Analysis Tools Execution Flow Summarizers
e Static (source code) analysis e Software tool to show where time is spent during program execution

Code analyzers, e.g. Iclint e Flow summary process

— Structure checker — Instrument program (if required)

Data analyzer - checks linkage, proper usage — Execute program with representative test data

— Dependency analyzer, e.g. makedepend Profile tool records execution control flow data
e Dynamic analysis — Post process execution control flow data to generate coverage reports
— Execution flow summarizers e Used to locate Hot Spots for program optimization
— Test coverage tools 90-10 Rule:
— Debugging memory allocators 10% of the program is responsible for 90% of its execution time

e Used to confirm test case coverage
Find parts of program that are not being exercised by a given set of test cases

46 47

Execution Flow Summarizers

e Exact solution

Compiler or preprocessor inserts counters in program to tabulate control flow
Run program, dump counters to file at end of execution

Minimum counters, one per edge in control flow graph

Advantages: exact solution, links to source code

Disadvantages: requires source code, counters may distort execution

characteristics, preprocessor/compiler modifications, only works for one language

® Approximate solution

Asynchronously sample program counter of executing program
Generate histogram of execution time vs. relative position in program

Advantages: works on binary programs, multilingual, easy to build, finds problems
in run-time packages

Disadvantages: inexact solution, harder to relate to source code, timer interrupts
may distort execution profile, time interrupts may be too coarse on fast machines

48

Other Testing Tools

e Differential File Comparators

Tools to extract the differences between two or more files (.e.qg diff, rcsdiff)
Use to analyze output from testing, to compare outputs from different test runs

May need smart diff if some test outputs can legitimately be different (e.g. dates &
times)

Differential file compare heavily used in regression testing

e Database packages

Used to manage test data for large systems

Used to manage test output for large systems

e File processing utilities

Programs like fgrep, awk, vi, sed
Used to extract interesting results testing output

Used to postprocess test output to produce summaries

49

e Simulators and Test Drivers

Simulator imitates some part of the programs intended environment

Used to test input/output, transaction handling

Allows exact replication of input data, control of input timing

Allows testing of system with many concurrent inputs, stress testing

Many simulators are script or table driven

Simulate unavailable hardware devices, replace expensive hardware for some
testing

Disadvantage: if simulator doesn't provide exact simulation then testing results can

be misleading

[JUnit, CppUnit, see Tutorial 4]

50

